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Background: Acute hematogenous osteomyelitis is the most common form of 
osteomyelitis in children. In recent years, the incidence of osteomyelitis has been 
steadily increasing. For pediatric patients, clearly describing their symptoms can 
be quite challenging, which often necessitates the use of complex diagnostic 
methods, such as radiology. For those who have been diagnosed, the ability to 
culture the pathogenic bacteria significantly affects their treatment plan.

Method: A total of 634 patients under the age of 18 were included, and the 
correlation between laboratory indicators and osteomyelitis, as well as several 
diagnoses often confused with osteomyelitis, was analyzed. Based on this, a 
Transformer-based deep learning model was developed to identify osteomyelitis 
patients. Subsequently, the correlation between laboratory indicators and the 
length of hospital stay for osteomyelitis patients was examined. Finally, the 
correlation between the successful cultivation of pathogenic bacteria and 
laboratory indicators in osteomyelitis patients was analyzed, and a deep learning 
model was established for prediction.

Result: The laboratory indicators of patients are correlated with the presence 
of acute hematogenous osteomyelitis, and the deep learning model 
developed based on this correlation can effectively identify patients with acute 
hematogenous osteomyelitis. The laboratory indicators of patients with acute 
hematogenous osteomyelitis can partially reflect their length of hospital stay. 
Although most laboratory indicators lack a direct correlation with the ability to 
culture pathogenic bacteria in patients with acute hematogenous osteomyelitis, 
our model can still predict whether the bacteria can be successfully cultured.

Conclusion: Laboratory indicators, as easily accessible medical information, 
can identify osteomyelitis in pediatric patients. They can also predict whether 
pathogenic bacteria can be  successfully cultured, regardless of whether the 
patient has received antibiotics beforehand. This not only simplifies the diagnostic 
process for pediatricians but also provides a basis for deciding whether to use 
empirical antibiotic therapy or discontinue treatment for blood cultures.
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FIGURE 1

Inclusion and exclusion flowchart of patients in this study.

1 Introduction

Osteomyelitis is one of the common bone and muscle infections 
in children. Acute hematogenous osteomyelitis (AHO) is the most 
common form of this disease in pediatrics. In recent years, the 
incidence of osteomyelitis has been increasing annually (Walter et al., 
2021). The incidence is generally higher in males compared to females, 
and lower limb infections are more prevalent than upper limb 
infections (Kremers et al., 2015; Disch et al., 2023). Typically, healthy 
bones have strong resistance to pathogen invasion. The occurrence of 
osteomyelitis mainly occurs through three mechanisms: direct 
inoculation, extension from adjacent lesions, and hematogenous 
dissemination. Additionally, in conditions of bone ischemia, trauma, 
or foreign bodies, pathogens are more likely to adhere to exposed 
bone locations, leading to bone infection. Most cases of osteomyelitis 
can be  cured; however, a small number of affected children may 
experience discrepancies in limb length between the affected and 
unaffected sides (Liu et al., 2024).

The presentation of AHO varies, ranging from localized infections 
at a single epiphyseal site to multifocal infections accompanied by 
septic shock (Funk and Copley, 2017). Fever and pain are the most 
common manifestations of bone infections. Common signs of 
osteomyelitis include fever, pain, swelling, erythema, localized 
warmth, and varying degrees of functional impairment. The onset of 
symptoms can differ depending on the type of pathogen involved 
(Calvo et al., 2016). When the lower limb bones are affected, children 
often have difficulty bearing weight or may exhibit noticeable limping, 
whereas involvement of the pelvis may lead to a waddling gait. Overall, 
the functional impairment and the location of the infection are highly 
correlated (Dich et  al., 1975). In fact, similar symptoms can 
be observed in various pediatric orthopedic conditions. For example, 
osteosarcoma (OSC) and Ewing’s sarcoma (EWS) are the most 
common primary malignant bone tumors in children and young 

adults, and they also present with significant pain and swelling (Wang 
et  al., 2022). Fractures also present with localized pain, swelling, 
functional impairment, deformities, and abnormal movements. 
Considering that children may have difficulty responding accurately 
to physical examinations, confirming a diagnosis of osteomyelitis 
through simple procedures is more challenging.

Acute hematogenous osteomyelitis is often caused by pathogen 
infections, so identifying the type of pathogen early in the disease is 
crucial for treatment (Jahan et al., 2024). This not only directly guides 
the physician’s treatment but also provides psychological comfort to 
the family. Although Staphylococcus aureus is the most common 
pathogen in osteomyelitis (McNeil, 2020), pathogen culture is the gold 
standard for pathogen diagnosis, with blood culture being the most 
common method (Woods et al., 2021). To obtain accurate culture 
results, samples need to be  taken before the use of antibiotics. 
However, in practice, it is difficult to ensure that patients have not 
self-medicated with antibiotics before admission. Bone biopsy or 
aspiration is also limited to the early stages of the disease. Thus, to 
achieve accurate culture results, discontinuing antibiotics is often 
necessary (Manz et al., 2018). For critically ill patients, discontinuing 
antibiotics to obtain accurate bacterial culture results is clearly 
impractical. Despite the stringent sampling requirements, not all 
children with acute osteomyelitis can successfully culture the pathogen 
(Section et al., 2015). Discontinuing antibiotics is often difficult for 
patients due to the potential risks of disease progression. Therefore, 
discontinuing medication to diagnose the pathogen type is a 
significant clinical challenge.

Artificial intelligence has been widely applied in the diagnosis and 
treatment of osteomyelitis. AI methods not only efficiently handle 
repetitive tasks and improve diagnostic efficiency but also explore 
complex relationships between medical information, mapping features 
to manifestations, and establishing quantitative relationships between 
medical information and clinical outcomes. A 2022 study classified 
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acute osteomyelitis, chronic osteomyelitis, and Ewing’s sarcoma using 
patient X-ray images (Consalvo et  al., 2022). Another 2022 study 
proposed a machine learning model based on clinical features and 
biomarkers to classify diabetic foot, necrotizing fasciitis, and 
osteomyelitis, trained and validated on a dataset of 1,581 samples 
(Kim et al., 2022). A 2024 study included 145 patients with diagnosed 
spinal infections undergoing metagenomic next-generation 
sequencing (mNGS) to differentiate pathogen types in iatrogenic 
vertebral osteomyelitis (IVO) and native vertebral osteomyelitis 
(NVO) (Gao et al., 2024). These studies demonstrate the potential of 
AI in the diagnosis and treatment of osteomyelitis.

This study explored the correlation between laboratory parameters 
and diseases commonly confused with acute hematogenous 
osteomyelitis. Based on this, we developed an intelligent diagnostic 
system based on clinical and laboratory features, which can classify 
patients into categories of acute hematogenous osteomyelitis, benign 
bone tumors, malignant bone tumors, and fractures. At the same time, 
we  investigated the correlation between the ability to culture 
pathogenic bacteria and the number of hospital days, and established 
a deep learning model to predict whether pathogenic bacteria can 

be cultured. This model supports clinicians in deciding whether to 
discontinue antibiotics for blood culture purposes.

2 Materials and methods

2.1 Patient

This study is a retrospective analysis that includes patients under 
18 years of age who were hospitalized at our institution from January 
1, 2016, to June 1, 2024. Baseline characteristics, including age and 
gender, were collected, as shown in Figure 1.

Inclusion criteria were as follows:

 1 Age under 18 years at the time of admission.
 2 Diagnosis of one of the following conditions: acute 

hematogenous osteomyelitis, benign bone tumor, malignant 
bone tumor, or fracture. AHO was diagnosed based on both 
laboratory indicators and clinical presentation. Benign and 
malignant bone tumors were diagnosed through pathology, 

FIGURE 2

Research workflow of this study. (A) We constructed feature vectors using patients’ clinical characteristics and laboratory parameters, and utilized the 
deep learning architecture proposed in this study for classification tasks. (B) The structural diagram of the model in this study. Input was encoded 
through a standard ANN (with three linear layers and RELU activation function) and decoded through a transformer.
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TABLE 1 Baseline information of patients.

AHO/100
Benign bone 
tumor/238

Malignant bone 
tumor/70

Fracture/226

Sex M67/F33 M146/F92 M31/F39 M153/F73

Gender 9.00 (5.00, 11.25) 11.50 (9.00, 14.00) 13.00 (10.25, 15.00) 9.00 (6.00, 11.00)

Length of hospital stay 19.50 (14.75, 27.00) 6.00 (5.00, 8.00) 15.00 (11.25, 19.00) 4.00 (3.00, 7.00)

EO# 0.15 (0.08, 0.22) 0.11 (0.10, 0.20) 0.10 (0.10, 0.20) 0.07 (0.02, 0.12)

EO% 2.40 (1.58, 3.73) 2.00 (1.30, 3.30) 1.70 (0.90, 2.90) 0.90 (0.20, 1.70)

HCT 33.95 (31.58, 36.95) 39.65 (37.60, 41.80) 34.45142 37.70 (35.25, 39.98)

HGB 112.00 (103.75, 121.00) 133.00 (124.00, 140.75) 115 126.00 (118.00, 133.00)

MCH 27.50 (26.48, 28.73) 28.40 (27.90, 29.50) 29.11285 28.40 (27.40, 29.00)

MCHC 331.18 335.00 (332.00, 340.00) 335.00 (329.00, 342.75) 335.00 (328.00, 339.00)

MCV 82.50 (80.00, 86.00) 85.00 (83.72, 87.83) 87.38571 85.00 (82.00, 87.00)

MPV 7.508 9.60 (8.50, 10.30) 9.26142 8.20 (7.50, 8.50)

PCT 0.2599 0.26394 0.278 0.25 (0.22, 0.27)

PLT 337.00 (285.75, 394.75) 280.50 (240.25, 323.75) 298.00 (260.25, 349.50) 298.00 (262.25, 342.75)

WBC 6.29 (4.98, 7.38) 6.89 (5.70, 8.00) 7.39 (5.93, 8.68) 8.41 (7.39, 11.82)

RBC 4.20 (3.80, 4.50) 4.40 (4.40, 4.71) 4.32 (4.00, 4.40) 4.40 (4.20, 4.80)

RH 1.00 (0.00, 1.00) 0.00 (0.00, 1.00) 0.00 (0.00, 0.00) 1.00 (1.00, 1.00)

A/G 1.30 (1.10, 1.60) 1.70 (1.60, 1.90) 1.586714286 1.68 (1.60, 1.90)

ALT 13.50 (10.00, 25.25) 13.00 (9.00, 18.00) 18.00 (12.00, 30.00) 13.00 (11.00, 15.00)

AST 21.00 (17.00, 25.00) 19.00 (15.00, 23.00) 19.00 (15.00, 26.00) 22.00 (21.00, 26.00)

GGT 17.00 (14.00, 28.00) 14.00 (11.00, 18.00) 21.00 (14.00, 30.25) 14.00 (12.00, 15.00)

TP 69.889 68.42521 64.57142 68.90 (68.22, 73.20)

Urea 4.31 (3.52, 4.77) 4.42 (3.81, 5.36) 4.00 (3.39, 4.59) 4.31 (3.83, 4.82)

FIGURE 3

Expression of laboratory parameters in different disease types.
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while fractures were diagnosed through imaging or clear 
clinical manifestations (i.e., pain, deformity, and 
restricted movement).

 3 For patients with AHO, at least one blood-based bacterial 
culture must have been performed during hospitalization.

Exclusion criteria were as follows:

 1 Presence of metabolic diseases.
 2 Presence of other primary tumors.
 3 Presence of multiple primary infections.
 4 Presence of primary heart, kidney, or liver dysfunction.

2.2 Laboratory parameters and blood 
culture

Collect laboratory data for the included population, The parameters 
related to blood cell counts include white blood cell count (WBC), red 
blood cell count (RBC), and platelets (PLT), all of which are obtained 
through the electrical impedance method (Coulter principle). 
Hemoglobin (HGB) is obtained using the sodium dodecyl sulfate 
hemoglobin colorimetric method. The white blood cell classification 
parameters include absolute eosinophil count (EO#, Eosinophil Count) 
and percentage (EO%, Eosinophil Percentage), absolute basophil count 
(BA#, Basophil Count) and percentage (BA%, Basophil Percentage), 
absolute lymphocyte count (LY#, Lymphocyte Count) and percentage 
(LY%, Lymphocyte Percentage), absolute monocyte count (MO#, 
Monocyte Count) and percentage (MO%, Monocyte Percentage), and 
absolute neutrophil count (NE#, Neutrophil Count) and percentage 
(NE%, Neutrophil Percentage). EO# and EO%, BA# and BA%, LY# and 
LY%, MO# and MO%, NE# and NE% are all obtained through VCS 
counting [V represents dual motor direct current characteristics 
(Coulter principle); C represents radio frequency conduction 
characteristics; S represents laser scattering]. Biochemical indicators 
include the albumin/globulin ratio (A/G), alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), where AST is obtained 
through the reduced coenzyme method (NADH method). Albumin 
(AlbG) is obtained using the bromocresol green (BCG) method, and 
direct bilirubin (BilD) and total bilirubin (BilT) are obtained through 
the vanadate oxidation method. Gamma-glutamyl transferase (GGT) 
is obtained using the l-γ-glutamyl-3-carboxy-4-nitroaniline substrate 
method, and total protein (TP) is obtained using the biuret method. 
RH represents the Rh blood type (Rhesus Blood Type), obtained 
through the gel microcolumn method. Hematocrit (HCT), platelet 
count (PLT), mean platelet volume (MPV), plateletcrit (PCT), platelet 
distribution width (PDW), mean corpuscular volume (MCV), mean 
corpuscular hemoglobin (MCH), mean corpuscular hemoglobin 
concentration (MCHC), red cell distribution width (RDW), and 
unconjugated bilirubin (UNBIL) are all calculated values.

2.3 Blood culture

After the patient visits, blood samples should be collected as 
soon as possible. Draw 10 mL of blood from each arm of the patient 
for both aerobic and anaerobic blood cultures. Subsequently, send 
the blood culture bottles to the laboratory for testing. The detection 
involves monitoring whether bacteria consume nutrients in the 
culture bottles or produce new metabolites, triggering an alarm. 
Generally, if no alarm is triggered by the instrument within 5 days, 
the result is considered negative. If an alarm is triggered by the 
culture bottle, it is necessary to perform Gram staining microscopy 
and plate inoculation with the mixed solution from the culture 
bottle. For positive alarms in aerobic blood culture bottles, blood 
agar and MacConkey agar plates are commonly used. For positive 
alarms in anaerobic blood culture bottles, ensure anaerobic 
procedures and perform incubation in an anaerobic or 
microaerophilic environment.

2.4 Deep learning model

We developed a deep learning model structure to process 
laboratory parameters. The model consists of an ANN and a 
transformer. The transformer is a sequence-to-sequence model 
based on the attention mechanism, with the core idea of using self-
attention to capture contextual relationships at different positions 
in the input sequence (Vaswani et al., 2017). We constructed 
feature vectors from clinical and laboratory data. The input is 
encoded through an ANN (including three linear layers with RELU 
activation functions) and then decoded by the transformer to 
classify the patients. For the two tasks in this study—differentiating 
AHO and identifying infection bacteria through blood cultures—
we used the same model architecture, only changing the final fully 
connected layer to suit different tasks. The research workflow of 
this study is shown in Figure 2. The deep learning model in this 
study was trained on a workstation equipped with an NVIDIA RTX 
4090 GPU (24GB VRAM) and 64GB of system memory. The 
training was based on PyTorch 2.4.1 and utilized CUDA 11.8 
for acceleration.

TABLE 2 Association between categorical variables and disease 
classification using cramér’s V.

Indicator Cramér’s V χ2 P-value

Gender 0.14607 13.528 *0.00362

RH 0.41983 111.745 *0

*Has statistical significance.

TABLE 3 Analysis of variations in continuous variables across different 
disease groups.

Indicator
H-

value
P-

value
Indicator

H-
value

P-
value

Age 88.93294 *0 PCT 21.60439 *0

EO# 80.67734 *0 PLT 37.97623 *0

EO% 108.21281 *0 WBC 109.35881 *0

HCT 136.72223 *0 RBC 66.77762 *0

HGB 133.80915 *0 A/G 133.28753 *0

MCH 47.72300 *0 ALT 24.30355 *0

MCHC 14.29948 *0.00252 AST 43.32638 *0

MCV 49.52752 *0 GGT 68.77069 *0

MPV 229.19484 *0 TP 50.19360 *0

Urea 16.94605 *0.00072

*Has statistical significance.
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TABLE 4 Baseline characteristics of the training, validation, and test sets for multicategory deep learning of laboratory parameters in AHO, benign bone tumors, malignant bone tumors, and fractures.

Train/380 Validation/126 Test/128

AHO/70
Benign 
bone 

tumor/142

Malignant 
bone 

tumor/37
Fracture/131 AHO/18

Benign 
bone 

tumor/40

Malignant 
bone 

tumor/16
Fracture/52 AHO/12

Benign 
bone 

tumor/56

Malignant 
bone 

tumor/17
Fracture/43

Sex M47/F23 M88/F54 M17/F20 M85/F46 M12/F6 M28/F12 M5/F11 M32/F20 M8/F4 M30/F26 M9/F8 M35/F8

Gender
9.00 (5.00, 

11.00)

11.00 (8.00, 

13.00)
12.64865 9.00 (6.00, 11.00) 8.50000 12.05000

14.00 (11.00, 

14.25)
8.94118 7.66667

12.00 (9.50, 

14.00)
11.82353 8.72093

EO# 0.15 (0.08, 0.22) 0.12 (0.10, 0.21) 0.10 (0.10, 0.20) 0.07 (0.02, 0.11)
0.11 (0.08, 

0.14)
0.10 (0.10, 0.20) 0.10 (0.10, 0.23) 0.06 (0.01, 0.13) 0.22250 0.14 (0.10, 0.20)

0.10 (0.02, 

0.19)
0.10 (0.03, 0.11)

EO% 2.60 (1.60, 3.80) 2.05 (1.20, 3.48) 2.00 (0.90, 3.20) 0.90 (0.20, 1.70) 2.05556 1.80 (1.50, 2.77) 2.00 (1.08, 3.10) 0.80 (0.15, 1.70) 3.65833 2.00 (1.60, 3.30) 1.41765 1.00 (0.30, 1.75)

HCT
34.40 (32.10, 

37.20)
39.43873 35.23514

37.70 (35.45, 

40.05)
34.06667

40.05 (37.70, 

43.52)
32.57500

37.70 (34.80, 

39.90)
31.28333 39.09455

31.70 (30.70, 

35.80)
37.16977

HGB
113.00 (106.00, 

122.00)
131.99296 117.94595

126.00 (119.00, 

133.50)
113.44444 135.20000 109.62500

126.00 (115.50, 

132.00)
103.75000 130.38182 113.64706 124.74419

MCH
27.30 (26.50, 

28.60)

28.50 (27.90, 

29.60)
29.07297

28.40 (27.40, 

29.30)
27.80556

28.40 (27.93, 

28.73)
28.98750 27.91961 26.74167 28.39818 29.31765 28.61163

MCHC 331.08696
335.00 (332.00, 

339.75)
335.27027

335.00 (329.00, 

339.00)
332.50000 336.75000 339.43750 333.58824 330.75000 334.92727 330.94118 335.69767

MCV
82.00 (80.00, 

85.00)
85.51479 86.95946

85.00 (82.00, 

87.00)
83.61111

85.00 (83.88, 

86.27)
86.42500 83.70588 80.83333 85.18545 89.21765 85.30233

MPV 7.48116
9.60 (8.60, 

10.30)
9.13514 8.20 (7.60, 8.50) 7.62222 9.54500 9.58750 8.01569 7.47500 9.31455 9.22941 8.50 (7.50, 8.60)

PCT 0.26536 0.26711 0.28 (0.25, 0.30) 0.25 (0.21, 0.27) 0.22778 0.25525 0.28125 0.26 (0.21, 0.28) 0.27750 0.26309 0.27294 0.26 (0.23, 0.28)

PLT
345.00 (292.00, 

401.00)

279.00 (242.25, 

331.25)

298.00 (267.00, 

339.00)

298.00 (251.50, 

337.50)

285.00 

(254.25, 

325.50)

274.00 (232.75, 

298.00)
312.00000 316.54902 375.25000

296.00 (256.00, 

324.50)
304.41176

303.00 (278.00, 

342.00)

WBC 6.29 (5.04, 7.75) 6.90 (5.83, 8.54) 7.11541 8.40 (7.39, 11.75) 6.09000 6.48675 7.23875 9.97098 6.92917 7.03382 8.65471 8.27 (7.39, 9.96)

RBC 4.20 (3.90, 4.60) 4.42 (4.40, 4.71) 4.39 (4.00, 4.44) 4.40 (4.20, 4.80) 4.07778 4.40 (4.40, 4.65) 4.20 (4.04, 4.40) 4.40 (4.20, 4.80) 3.88333 4.48 (4.40, 4.80) 4.14294 4.40 (4.15, 4.75)

RH 1.00 (0.00, 1.00) 0.00 (0.00, 1.00) 0.00 (0.00, 0.00) 1.00 (1.00, 1.00)
0.00 (0.00, 

1.00)
0.00 (0.00, 1.00) 0.00 (0.00, 0.00) 1.00 (1.00, 1.00)

0.50 (0.00, 

1.00)
0.00 (0.00, 1.00)

0.00 (0.00, 

0.00)
1.00 (0.00, 1.00)

A/G 1.30 (1.10, 1.60) 1.75690 1.57541 1.68 (1.60, 1.80)
1.45 (1.20, 

1.66)
1.74300 1.57813 1.68 (1.50, 1.90) 1.38833 1.70 (1.60, 1.86) 1.61941 1.68 (1.60, 1.90)

ALT
14.00 (10.00, 

25.00)

13.00 (9.00, 

18.00)

21.00 (12.00, 

30.00)

13.00 (11.50, 

15.00)

19.50 (13.00, 

37.00)

12.50 (9.75, 

18.25)

18.00 (9.75, 

34.50)

13.00 (10.00, 

15.00)
13.25000

13.00 (9.00, 

16.00)

14.00 (10.00, 

24.00)

13.00 (11.50, 

14.00)

(Continued)
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2.5 Statistical analysis

Statistical analysis was performed using IBM SPSS software 
version 26.0. First, the Kolmogorov–Smirnov test was conducted to 
assess the normality of all data. For normally distributed data, the 
mean ± standard deviation was used for description, while for 
non-normally distributed data, the median (interquartile range) was 
used. Differences in continuous variables among multiple groups 
were analyzed using the Kruskal–Wallis H test, while categorical 
variables were analyzed using the chi-square test, with Cramér’s V 
used to quantify the strength of association. In the analysis between 
two groups, after testing for normality, the Mann–Whitney U test 
was applied to non-normally distributed data, and the t-test was 
used for normally distributed data. Differences in categorical 
variables were analyzed using the chi-square test, and Cramér’s V 
was used to quantify the association between categorical variables. 
Correlations between continuous variables were assessed using 
Pearson’s test for normally distributed data and Spearman’s test for 
non-normally distributed data. A p-value of <0.05 was considered 
statistically significant. Statistical plots were generated using 
Python’s matplotlib.

3 Results

3.1 Baseline

A total of 634 patients were included in this study, with variables 
having missing values greater than 20% being removed. Table 1 shows 
the clinical information and laboratory parameters of the 
included patients.

3.2 Multicategory correlation analysis of 
laboratory parameters for AHO, benign 
bone tumors, malignant bone tumors, and 
fractures

The expression of laboratory parameters in patients with different 
disease types is shown in Figure 3.

Correlation test results for disease types and clinical 
characteristics, as well as laboratory parameters, are presented in 
Tables 2, 3. We  found that, among clinical characteristics, both 
gender and age were related to orthopedic disease types. In 
laboratory parameters, all parameters included in this study were 
related to orthopedic disease types.

3.3 Multicategory deep learning of 
laboratory parameters for AHO, benign 
bone tumors, malignant bone tumors, and 
fractures

By removing columns with more than 20% missing values and 
imputing the missing values, a total of 21 common variables across the 
four diseases were used in modeling. The training, validation, and test 
sets were split in a 6:2:2 ratio, with baseline characteristics shown in 
Table 4.T
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FIGURE 4

Accuracy and loss curves of the multicategory deep learning model for laboratory parameters in AHO, benign bone tumors, malignant bone tumors, 
and fractures on the training and validation sets.

TABLE 5 Correlation between continuous variables and hospitalization duration.

Indicator Correlation P-value Indicator Correlation P-value

Age 0.00963 0.92427 LY# −0.02446 0.80911

EO# 0.04269 0.67326 LY% 0.05748 0.56999

EO% 0.09702 0.33692 MO# 0.08611 0.39429

HCT −0.33353 *0.00070 MO% 0.07880 0.43583

HGB −0.35001 *0.00036 NE# −0.07093 0.48315

MCH −0.25294 *0.01112 NE% −0.09425 0.35096

MCHC −0.15533 0.12281 RDW 0.37916 *0.00010

MCV −0.26286 *0.00824 A/G −0.03404 0.73673

MPV 0.03388 0.73787 ALT 0.02556 0.80071

PCT −0.05340 0.59771 AST −0.15158 0.13222

PLT 0.08313 0.41091 AlbG −0.06810 0.50082

WBC −0.05722 0.57176 BilD 0.01904 0.85087

RBC −0.22104 *0.02710 BilT −0.05883 0.56096

PDW 0.04390 0.66454 GGT −0.07641 0.44987

BA# 0.08405 0.40572 TP −0.08939 0.37648

BA% 0.06003 0.55300 UNBIL −0.12966 0.19854

*Has statistical significance.

The training results are shown in Figure 4. Over 32 epochs, the 
model achieved optimal performance on the validation set and 
attained an accuracy of 1.0 on the test set.

3.4 Correlation between hospitalization 
duration for AHO and laboratory 
parameters

As shown in Tables 5, 6, although AHO is more common in males, 
there is no correlation between the patient’s gender or age and their 
hospitalization duration. Among the laboratory parameters, RDW is 
positively correlated with the length of hospital stay, while HCT, HGB, 
MCH, MCV, and RBC are negatively correlated with the length of 
hospital stay, with a p-value of <0.05. This indicates a strong link between 
the patient’s hospitalization duration and their red blood cell 
physiological state. Although inflammation markers can assess disease 

TABLE 6 Analysis of variations in hospitalization duration across different 
categorical variables.

Indicator U-value P-value

Bacterial culture 1636.0 *0.00362

Gender 1272.0 0.22296

RH 943.0 0.07069

*Has statistical significance.
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severity, they are not directly related to the patient’s hospitalization 
duration. Liver function also shows no correlation with the 
hospitalization duration for AHO. The correlation between bacterial 
culture results and clinical information or laboratory parameters in AHO 

patients reveals statistical differences in HCT, HGB, RDW, A/G, and 
AlbG. Additionally, there is a significant difference in the length of 
hospital stay between the negative and positive culture sample groups. 
As shown in Table  7, patients with positive cultures have a longer 
hospital stay.

3.5 Correlation analysis of bacterial culture 
results in AHO

Baseline information for AHO patients is shown in Table  7. 
Additionally, among the patients with positive cultures, the identified 
strains included 51 Staphylococcus aureus, 1 Acinetobacter baumannii, 

TABLE 7 Baseline information for AHO bacterial culture.

Negative/42 Positive/58

Gender M26/F16 M41/F17

Age 8.00 (4.00, 11.00) 10.00 (6.00, 12.00)

Length of hospital 

stay
16.00 (12.00, 23.00) 21.00 (16.00, 28.00)

EO# 0.14 (0.08, 0.27) 0.15 (0.09, 0.21)

EO% 2.40 (1.55, 4.00) 2.45 (1.60, 3.55)

HCT 35.25476 32.65172

HGB 119.00 (110.00, 125.00) 107.91379

MCH 27.65714 27.50 (26.10, 28.75)

MCHC 332.40476 330.29310

MCV 83.21429 82.00 (78.50, 85.00)

MPV 7.52857 7.49310

PCT 0.25905 0.26052

PLT 333.50 (288.25, 376.00) 352.81034

WBC 5.99 (4.90, 7.69) 6.36 (5.03, 7.30)

RBC 4.21429 4.10 (3.80, 4.45)

PDW 16.20952 16.20 (15.93, 16.40)

BA# 0.03310 0.03 (0.02, 0.04)

BA% 0.60 (0.40, 0.70) 0.50 (0.40, 0.70)

LY# 2.35 (1.80, 3.05) 2.20 (1.80, 2.90)

LY% 41.83571 37.92931

MO# 0.40 (0.33, 0.60) 0.40 (0.40, 0.60)

MO% 7.60000 7.35 (5.62, 8.10)

NE# 2.70 (2.02, 3.75) 3.10 (2.02, 4.20)

NE% 46.96429 51.12759

RDW 14.44524 14.60 (14.03, 16.10)

RH 1.00 (0.00, 1.00) 1.00 (0.00, 1.00)

A/G 1.30 (1.20, 1.40) 1.22759

ALT 16.00 (10.00, 20.00) 16.00 (11.25, 30.75)

AST 20.00 (18.25, 25.75) 20.00 (16.00, 23.00)

AlbG 39.55 (38.50, 41.30) 38.40 (36.05, 39.27)

BilD 1.60 (1.30, 2.27) 1.70 (1.30, 2.85)

BilT 4.75 (3.17, 6.35) 4.80 (3.82, 6.80)

GGT 18.00 (13.25, 23.00) 19.50 (16.25, 30.00)

TP 70.06905 69.91552

UNBIL 3.00 (2.02, 4.28) 3.00 (2.42, 4.07)

TABLE 8 Association between categorical variables and bacterial culture 
negative/positive groups using cramér’s V.

Indicator Cramér’s V χ2 P-value

Gender 0.07067 0.49937 0.47978

RH 0.05376 0.28907 0.59082

TABLE 9 Analysis of variations in continuous variables between bacterial 
culture negative and positive groups.

Indicator U-statistic P-value

Age 1,416 0.16587

EO# 1,187 0.83119

EO% 1137.5 0.57622

HGB 751 *0.00111

MCH 1,073 0.31273

MCV 1058.5 0.26504

PLT 1,257 0.78801

WBC 1238.5 0.88891

RBC 982.5 0.10002

PDW 1199.5 0.89968

BA# 1,251 0.81698

BA% 1165.5 0.71384

LY% 1,012 0.15122

MO# 1193.5 0.86423

MO% 1,124 0.51365

NE% 1433.5 0.13321

RDW 1,431 0.13761

A/G 896.5 *0.02347

ALT 1381.5 0.25372

AST 1,071 0.30436

AlbG 762.5 *0.00146

BilD 1444.5 0.11271

BilT 1,362 0.31502

GGT 1516.5 *0.03702

UNBIL 1284.5 0.64422

Indicator t-statistic P-value

HCT 3.15776 *0.00211

MCHC 0.97213 0.33338

MPV 0.21465 0.83049

PCT −0.10334 0.91791

LY% 1.39233 0.16697

NE% −1.47695 0.14289

TP 0.11779 0.90647

*Has statistical significance.
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FIGURE 5

Upregulation and downregulation of parameters in the groups with 
or without detection of pathogenic bacteria in AHO patients: 
parameters were adjusted as follows: RDW was upregulated, while 
A/G, HGB, HCT, and AlbG were downregulated.

1 Staphylococcus epidermidis, 1 Bacillus subtilis, 1 Achromobacter 
xylosoxidans, 1 Klebsiella, 1 Malassezia furfur, and 1 
Pseudomonas aeruginosa.

As shown in Tables 8, 9, there are no significant differences in 
gender and RH between the negative and positive culture sample 
groups. Only HGB, A/G, AlbG, GGT, and HCT showed significant 
differences between the negative and positive culture sample groups. 
According to Table 7, the positive culture group had lower levels of 
HGB, A/G, AlbG, and HCT, and higher levels of GGT. The 
upregulation and downregulation situations in the two groups are 
illustrated in Figure 5.

3.6 Deep learning model for detecting 
pathogenic bacteria in AHO

By removing columns with more than 20% missing values and 
filling in the missing values, 34 common variables from both bacterial 
culture negative and positive AHO patients were used for modeling. 
The baseline features are shown in Table 10.

The training/testing ratio was 6:2:2. The training results are 
shown in Figure 6. Over 58 epochs, the model achieved optimal 
performance on the validation set and an accuracy of 1.0 on the 
test set.

4 Discussion

Acute hematogenous osteomyelitis is a challenging diagnosis in 
pediatric emergency departments. The condition can develop 
gradually over a few days but typically manifests within 2 weeks. 
Patients may present with localized symptoms such as redness, 
swelling, and fever at the infection site. They might experience dull 
pain, with or without movement, and sometimes systemic symptoms 
such as fever or chills. In subacute cases, some patients may exhibit 
generalized discomfort, mild pain over several weeks accompanied 
by slight fever or other systemic symptoms (Schmitt, 2017). The 

variety of symptoms and the difficulty children have in clearly 
describing their condition make the diagnosis and treatment of 
osteomyelitis quite challenging (Stephan et al., 2022). In this study, 
we  propose a diagnostic model consisting of two deep learning 
models that can accurately diagnose AHO in children and predict 
whether the pathogenic bacteria can be identified through blood 
cultures. This study not only provides clinicians with a 
straightforward method for confirming AHO but also offers support 
for decisions regarding the necessity of stopping antibiotics for 
bacterial culture.

There are several methods for diagnosing AHO, with blood 
cultures and X-rays currently being strongly recommended. 
However, both methods have their drawbacks. Blood cultures 
require a lengthy period to yield results and cannot always ensure 
accuracy (Doern et al., 2019). X-rays, while simple, quick, and safe, 
have low sensitivity (Zaki and Morrison, 2024). Additionally, MRI 
often requires sedation for pediatric patients, and collecting samples 
from the affected area for bacterial culture through invasive methods 
faces the same issues as blood culture (Dartnell et al., 2012; Dong 
et al., 2019). In addition to these two types of examination methods, 
recent research by Paliwal et al. (2021) has revealed the diagnostic 
capability of ultrasound for acute hematogenous osteomyelitis 
(AHO). By assessing the accumulation of deep soft tissue fluid 
around the bones in AHO cases, rapid diagnosis can be achieved. 
This method is also expected to advance the diagnosis of AHO 
(Paliwal et al., 2021).

Additionally, Stephan et al. (2022) identified elevated C-reactive 
protein (CRP) and erythrocyte sedimentation rate (ESR) as the most 
sensitive laboratory markers in pediatric emergency settings. In the 
study by Manz et  al. (2020), elevated CRP was also found to 
be  associated with poor long-term outcomes in AHO. Based on 
previous studies, Stephan et al. (2024) also demonstrated in subsequent 
experiments that elevated CRP and ESR are closely related to poor 
long-term prognosis in AHO. In this study, we propose a method for 
diagnosing AHO through laboratory parameters. By employing a 
multiclass model structure, it can effectively diagnose several common 
orthopedic conditions, significantly enhancing diagnostic efficiency. 
Considering that the model in this study needs to differentiate between 
osteomyelitis and other orthopedic diseases, and that C-reactive protein 
and erythrocyte sedimentation rate are not essential laboratory 
parameters for orthopedic diseases, they were not included in this study.

Different types of pathogenic bacteria may lead to variations in 
hospital length of stay. A 2023 study indicated that there is a difference 
in hospital stay duration for osteomyelitis caused by methicillin-
resistant Staphylococcus aureus (MRSA) and methicillin-sensitive 
Staphylococcus aureus (MSSA) (Wen et al., 2023). Additionally, children 
with acute osteomyelitis who are Black, Hispanic, or of other races and 
ethnicities have longer hospital stays compared to White children 
(Campbell et al., 2023). In our study, we found that the infection level 
and liver function levels of patients were not associated with the length 
of hospital stay. Considering that in China, the length of hospital stay 
is highly correlated with the patient’s recovery of physical health and is 
less influenced by the wishes of the patients and their families, 
we believe that the status of the red blood cells is an important factor 
affecting the recovery process of AHO. This study found a positive 
correlation between RDW and length of hospital stay, while HCT, 
HGB, MCH, MCV, and RBC showed a negative correlation with length 
of hospital stay. This may be due to the important role of red blood cells 
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in oxygen transport and bone tissue repair. If there is an insufficient 
number of red blood cells (as seen in anemia) or abnormal red blood 
cell function, the bone tissue may not receive enough oxygen, which 
can delay repair.

The Pediatric Infectious Diseases Society and the Infectious 
Diseases Society of America recommend performing blood cultures 
before the use of antibiotics (Woods et al., 2021). Despite the presence 
of clear symptoms, the detection rate of blood cultures remains 
unsatisfactory, and this rate rarely exceeds 60% in various cohorts 
(Russell et al., 2015; McNeil et al., 2019). Although sampling from 
adjacent infected sites can somewhat improve the detection rate, it 

does not provide an overwhelming advantage over blood cultures 
(Athey et al., 2019). In practical medical work, patients often have 
already been on oral antibiotics for some time by the time they arrive 
at the hospital. Once effective antibiotics are started, the detection 
rate of blood cultures usually drops rapidly within a few hours of 
exposure. Therefore, deciding whether to stop antibiotics for culture 
testing is a challenging decision for physicians. Previous studies have 
analyzed different clinical features as independent predictors of 
positive blood cultures (Burns et al., 2023). In this study, our model 
accurately predicts whether pathogens can be  identified through 
blood cultures. This provides guidance for clinicians on whether to 

TABLE 10 Baseline features of the deep learning model for pathogen detection in training, validation, and test sets.

Train Validation Test

Negative Positive Negative Positive Negative Positive

Sex M15/F13 M 25/F7 M 3/F3 M 8/F6 M 8/F1 M 8/F3

Gender 6.51852 10.00 (6.75, 11.25) 11.40000 7.85714 9.75000 11.00 (8.50, 13.00)

EO# 0.15 (0.08, 0.27) 0.14 (0.09, 0.20) 0.07200 0.13 (0.09, 0.17) 0.26375 0.18636

EO% 2.60 (1.15, 4.00) 2.55 (1.68, 3.08) 2.10 (1.10, 2.10) 1.60 (1.10, 4.28) 4.12500 3.23636

HCT 35.19259 32.66875 34.18000 34.32857 36.16250 29.70909

HGB 116.88889 108.46875 106.80000 112.92857 122.12500 104.00 (85.50, 108.50)

MCH 27.67778 27.65 (26.60, 29.02) 27.14000 27.28571 28.12500 24.42727

MCHC 332.33333 331.90625 328.20000 328.64286 337.62500 327.45455

MCV 83.33333 82.00 (80.75, 85.25) 82.60000 83.00000 83.37500 74.63636

MPV 7.57407 7.39688 7.62000 7.34286 7.33750 7.85455

PCT 0.24 (0.23, 0.29) 0.26094 0.22600 0.24929 0.27375 0.27727

PLT 331.00 (289.50, 365.50) 336.00 (289.75, 407.75) 301.40000 342.35714 379.37500 359.90909

WBC 6.78630 6.35 (4.83, 6.96) 4.78000 7.03786 6.29625 6.27636

RBC 4.22593 3.99688 3.94000 4.13571 4.35000 4.04545

PDW 16.26667 16.24063 16.10000 15.98571 16.07500 16.34545

BA# 0.03556 0.03 (0.02, 0.04) 0.02800 0.04071 0.03 (0.02, 0.03) 0.03091

BA% 0.60 (0.40, 0.70) 0.50 (0.40, 0.72) 0.64000 0.59286 0.55000 0.49091

LY# 2.70 (1.90, 3.30) 2.24375 1.56000 2.56429 2.11250 2.30 (1.80, 2.60)

LY% 45.11481 37.85000 32.88000 38.67857 34.76250 39.34545

MO# 0.40 (0.35, 0.60) 0.48125 0.46000 0.40 (0.40, 0.47) 0.45000 0.43636

MO% 7.31481 7.75 (6.57, 8.30) 9.00000 6.65 (5.38, 7.95) 7.12500 6.87273

NE# 2.70 (2.00, 3.40) 3.05 (2.18, 3.88) 2.86000 3.76429 3.43750 3.18182

NE% 43.90741 51.00313 56.04000 50.32857 53.46250 50.05455

RDW 14.57037 14.60 (14.10, 15.72) 15.28000 14.45000 13.65000 17.81818

RH 1.00 (0.00, 1.00) 0.50 (0.00, 1.00) 1.00 (1.00, 1.00) 1.00 (0.00, 1.00) 1.00 (0.75, 1.00) 1.00 (0.50, 1.00)

A/G 1.30 (1.20, 1.45) 1.18125 1.48000 1.31429 1.27500 1.22727

ALT 15.00 (9.00, 20.00) 16.00 (11.00, 28.25) 23.80000 17.00 (12.25, 40.25) 14.50000 16.00 (13.50, 23.50)

AST 23.00 (19.50, 26.00) 19.00 (16.00, 22.25) 19.40000 20.50 (19.00, 26.75) 18.12500 20.00 (17.00, 21.50)

AlbG 39.30 (38.45, 41.20) 36.88438 41.20000 37.76429 39.95000 38.60 (37.35, 40.55)

BilD 1.70 (1.30, 2.45) 1.70 (1.30, 2.70) 1.40 (1.30, 2.30) 1.60 (1.30, 2.55) 1.40000 1.70 (1.65, 2.40)

BilT 5.50000 4.80 (3.10, 6.42) 3.70 (3.40, 5.40) 5.19286 3.98750 4.80 (4.60, 6.95)

GGT 15.00 (12.50, 20.00) 21.00 (16.75, 30.00) 26.40000 29.00 (17.50, 50.25) 21.00000 19.18182

TP 69.84444 70.17500 69.44000 67.52143 71.50000 71.26364

UNBIL 3.52222 3.00 (1.95, 4.17) 2.60 (2.30, 3.10) 3.00 (2.60, 3.33) 2.57500 3.20 (2.75, 4.05)
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FIGURE 6

Accuracy and loss curves of the deep learning model for pathogen detection on training and validation sets.

proceed with empirical antibiotic treatment. This study reveals that, 
in addition to affecting the recovery process of AHO patients, red 
blood cell status also influences the results of bacterial culture. This 
may be related to how red blood cell status affects the overall function 
of the immune system, thereby impacting the proliferation and 
distribution of bacteria within the body. Abnormal red blood cell 
function may weaken the immune response to infections, allowing 
pathogens to become localized in tissues and making them more 
difficult to detect in blood cultures.

Despite this, the study has some limitations. First, it is a single-
center study, including both laboratory parameters and blood culture 
results. This suggests that the study may have potential issues with 
generalizability. Second, the study only established a classification 
method between acute hematogenous osteomyelitis and benign bone 
tumors, malignant bone tumors, and fractures, without exploring 
classifications for different subtypes and disease progressions of 
osteomyelitis, which is also due to a lack of data. Third, while the 
study predicted whether pathogens could be successfully cultured 
from patients, it did not further classify the cultured pathogens. 
Fourth, this study only included laboratory parameters from AHO 
patients, while the diagnosis of AHO can also rely on imaging 
information. Due to a lack of data, this study did not include any 
medical imaging information. Therefore, the next step for this 
research is to collect data from multiple centers, expand the cohort, 
and include more data modalities.

5 Conclusion

Early laboratory parameters can accurately diagnose whether 
pediatric patients have acute hematogenous osteomyelitis. Laboratory 
parameters can describe the severity of acute hematogenous 
osteomyelitis and are somewhat correlated with the patient’s length of 
hospital stay. Early laboratory parameters can predict whether a 
patient’s blood sample will successfully culture pathogens, thereby 
guiding clinical decision-making, indirectly improving clinical 
outcomes, and shortening the hospital stay.
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