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Introduction: Predicting potential associations between microbes and drugs is 
crucial for advancing pharmaceutical research and development. In this manuscript, 
we introduced an innovative computational model named BANNMDA by integrating 
Bilinear Attention Networks(BAN) with the Nuclear Norm Minimization (NNM) to 
uncover hidden connections between microbes and drugs.

Methods: In BANNMDA, we initially constructed a heterogeneous microbe-drug 
network by combining multiple drug and microbe similarity metrics with known 
microbe-drug relationships. Subsequently, we applied both BAN and NNM to 
compute predicted scores of potential microbe-drug associations. Finally, we 
implemented 5-fold cross-validation frameworks to evaluate the prediction 
performance of BANNMDA.

Results and discussion: The experimental results indicated that BANNMDA 
outperformed state-of-the-art competitive methods. We conducted case studies 
on well-known drugs such as the Amoxicillin and Ceftazidime, as well as on 
pathogens such as Bacillus cereus and Influenza A virus, to further evaluate the 
efficacy of BANNMDA, and experimental outcomes showed that there were 9 out of 
the top 10 predicted drugs, along with 8 and 9 out of the top 10 predicted microbes 
having been corroborated by relevant literatures. These findings underscored the 
capability of BANNMDA to achieve commendable predictive accuracy.
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Introduction

Microorganisms are tiny, structurally simple, and widely distributed organisms, including 
bacteria, viruses, and fungi. They are closely related to human health, offering both benefits and 
potential risks (Human Microbiome Project Consortium, 2012; Cheng et al., 2020). Various 
organs of the human body are inhabited by them and are even covered by them (Gill et al., 2006). 
These microorganisms play a role not only in promoting the absorption of food and maintaining 
intestinal health but also in effectively regulating the host’s mucosal and systemic immune systems 
by adjusting the balance of the gut microbiota (Ventura et al., 2009; Sommer and Bäckhed, 2013). 
In the intestinal environment, these microorganisms are interdependent and mutually beneficial. 
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When the balance of the gut microbiota is disrupted, it can lead to a 
variety of diseases, including obesity (Ley et al., 2006), inflammatory 
bowel disease (Durack and Lynch, 2019), and cancer (Schwabe and 
Jobin, 2013). In addition, a multitude of studies have confirmed that 
there is a significant interaction between microorganisms and drugs 
during the drug treatment process (Human Microbiome Project 
Consortium, 2012; McCoubrey et al., 2022; Zhang et al., 2023). Therefore, 
a deep understanding of the relationship between microorganisms and 
drugs is crucial for the effective treatment of diseases.

Through in-depth biological research, humanity has uncovered 
key connections between drugs and microbes. However, biological 
experiments often require a significant investment of human resources, 
materials, and time, which may limit further in-depth research. To 
overcome the limitations of biological studies, the application of 
computational methods has been increasing in recent years, driven by 
the rapid development of related research tools. These computational 
methods are dedicated to predicting the interactions between drugs 
and microbes (Wang et al., 2022). Concurrently, databases of microbe–
drug associations that have been experimentally validated, such as 
MDAD (Sun et  al., 2018) (Doi: figshare.com/articles/dataset/
MDAD__/24798456) and aBiofilm (Rajput et al., 2018) (Doi: figshare.
com/articles/dataset/aBiofilm_dataset/28045016), have also been 
established, providing valuable data resources for research. For 
instance, Zhu et al. (2022) have introduced NNAN, a method that 
utilizes a nearest-neighbor information aggregator and a feature 
attention module to identify correlations between microbes and drugs. 
Deng et al. (2022) have proposed a new method, Graph2MDA, which 
utilizes a Variational Graph Auto-Encoder (VGAE) to predict 
associations between microbes and drugs. In an effort to infer novel 
relationships between microbes and drugs, Yang et al. (2022) have 
proposed a multi-kernel fusion model based on Graph Convolutional 
Networks (GCN), known as MKGNN. Tian et al. (2023) have crafted 
a contrastive learning model for predicting connections between 
microbes and drugs, called SCSMDA. Tan et al. (2022) have developed 
a computational technique based on graph attention networks and 

sparse autoencoders for predicting potential microbe–drug 
correlations, named GSAMDA. Ma et al. (2023) have developed a 
predictive model for microbe–drug interactions that integrate the 
capabilities of Graph Attention Networks (GAT) with the image-
processing prowess of Convolutional Neural Networks (CNN).

Inspired by Liu et al. (2023) and Bai et al. (2023), we designed a novel 
prediction model called BANNMDA based on the bilinear attention 
network and kernel norm minimization to accurately infer potential 
associations between microorganisms and drugs. As illustrated in 
Figure 1, the principal contributions of BANNMDA include:

 • A novel heterogeneous microbe–drug network H was established 
by amalgamating the microbe similarity network, the drug 
similarity network, and known associations between microbes 
and drugs.

 • To forecast potential microbe–drug association scores more 
accurately, we would first use a BAN-based autoencoder alongside 
the nuclear norm minimization technique on N to calculate two 
predicted scores for potential microbe–drug associations, 
respectively. Then, we would further combine these two predicted 
scores through a weighted average to derive the conclusive outcomes.

Materials and methods

Data sources

To assess the predictive performance of the BANNMDA model, 
we selected the MDAD dataset. The MDAD dataset, compiled by Sun 
et al. (2018), is an extensive compilation of microbe–drug associations. 
It was sourced from various drug databases such as TTD and 
DrugBank, along with extensive literature, resulting in a database of 
1,373 drugs and 173 microbes connected by 2,470 associations after 
removing redundant entries. Table 1 provides specific statistical data 
for the MDAD dataset.

FIGURE 1

Overall structure diagram of BANNMDA. (A) The heterogeneous microbe–drug network was established by amalgamating the microbe similarity 
network, the drug similarity network, and known associations between microbes and drugs. (B) Predicting potential microbe–drug associations by 
BAN. (C) Predicting potential microbe–drug associations by NNM. (D) Predicting the final scores of potential microbe–drug associations.
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Methods

Microbe–drug adjacency matrix
An adjacency matrix, designated as y wn nA R ×∈ , is initially 

constructed. This matrix captures the interactions between a set of 
drugs (denoted by yn ) and microbes (denoted by wn ). The matrix is 
populated such that each entry is marked 1 if a relationship is 
established between a specific drug iy  and a particular microbe jw , 
and 0 otherwise. As the Equation 1 shown.

 

1,if associats with
0,otherwise

i j
ij

y w
A 

= 
  

(1)

Microbe/drug Gaussian kernel similarity
The Gaussian kernel similarity is calculated by using the Gaussian 

kernel function, which is a widely used kernel function for measuring 
the similarity between elements. In the field of microbe–drug 
association prediction, the Gaussian kernel similarity is one of the 
most popular methods for measuring similarity between microbes 
and drugs, which is based on the assumption that two similar 
microbes will exhibit similar interactive and non-interactive 
relationships with the same drug.

The Gaussian kernel similarity ( )GIP , y yn n
i jY y y R ×∈  between 

drugs iy  and jy , can be calculated by using the Equation 2:

 
( ) ( ) 2

GIP exp y i jY A y A yγ = − − 
   

(2)

Certainly, let us clarify the role of ( ) ( )i jA y A y−  in the context 
of Gaussian kernel similarity, particularly as it pertains to the 
Euclidean distance between two drugs. The parameter yγ  plays a 
crucial role in determining the influence of the distance between 
feature points. Equation 3 shows how it works:
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(3)

The Gaussian kernel similarity ( )GIP , w wn n
i jW w w R ×∈  can 

be  similarly applied to measure the similarity between microbes. 
Equations 4, Equation 5 show how to get the Gaussian 
kernel similarity:

 
( ) ( ) 2

GIP exp w i jW A w A wγ = − − 
   

(4)

 
( ) 2

1

11 /
wn

w i
w i

A w
n

γ
=

 
=   

 
∑ 

 
(5)

Microbe/drug functional similarity
The microbe functional similarity is determined by leveraging the 

Kamneva tool (Kamneva, 2017), which is grounded in the analysis of 

microbial gene families. The process begins with the construction of a 
microbial protein–protein functional association network using the 
comprehensive STRING (Szklarczyk et al., 2019) dataset, which provides 
a rich collection of gene functional networks related to microbes. In this 
network, nodes represent gene families encoded by the genome, and 
edges signify genetic neighborhood scores. To evaluate the functional 
similarities between microbes, a matrix wn

F wnW R ×∈  is crafted using the 
Kamneva tool, which calculates the similarity by comparing the score of 
the edges between two microbes to the sum of all link scores 
corresponding to their microbial gene families.

Furthermore, the SIMCOMP (Hattori et al., 2010) tool harnesses 
the chemical structures and molecular formulas of drugs to quantify 
their structural similarity. The core of this method is to realize the 
automated matching of nodes and edges across two chemical structure 
diagrams by software algorithms. By identifying the most extensive 
common substructure, this method can assess and calculate the 
similarities between different drug frameworks. Based on this method, 
a drug functional similarity matrix F y yn nY R ×∈  can be constructed.

Microbe/drug integrated similarities
It is essential to acknowledge that not all microbes can 

be effectively compared in terms of functional similarity. To address 
this, we have utilized both the structural similarity and the Gaussian 
kernel similarity of microbes. By combining these metrics, we have 
successfully created a novel matrix w wn nW R ×∈  by using Equation 6. 
This integrated matrix provides a more comprehensive and nuanced 
assessment of microbe similarities, offering valuable insights into their 
complex relationships.

 

( )GIP F F

GIP F

/ 2,if 0
,if 0

W W W
W

W W
 + ≠

= 
=  

(6)

Similarly, the drug matrix can be obtained as Equation 7:

 

( )GIP F F

GIP F

/ 2,if 0
,if 0

Y Y Y
Y

Y Y
 + ≠

= 
=  

(7)

Constructing the heterogeneous network H

By integrating the microbe–drug adjacency matrix with the drug 
functional similarity matrix and the microbe functional similarity 
matrix, we have constructed a unified matrix ( ) ( )y w y wn n n nH R + × +∈ .

 
T

Y A
H

A W

 
=  
   

(8)

where TA  represents A′s transposition. As Equation 8 shows.

TABLE 1 Specific statistical data for MDAD datasets.

Dataset Microbes Drugs Associations

MDAD 173 1,373 2,470
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Predicting potential microbe–drug associations 
by BANs

Bilinear attention networks (BANs) are composed of a model 
proposed by Kim et al. (2018). The central component of BANs is the 
bilinear attention mechanism, which was initially designed to learn 
the distribution of attention by taking into account the bilinear 
interactions between the input channels.

In BANs, two pivotal technologies are used to enhance the 
interaction of features and manage intricate data relationships: 
bilinear transformation and attention mechanism. The bilinear 
transformation uses a weight matrix and an additive bias to 
process input features. It excels at revealing the nuanced 
relationships within complex datasets, providing a robust 
framework for analyzing interactions. The attention mechanism 
is a fundamental technique in neural networks, designed to 
improve the model’s focus on specific aspects of the input data. 
In the context of BANs, this focus is achieved through the 
application of bilinear transformations. These transformations 
provide a more adaptable way to adjust the weights associated 
with different features, thereby enhancing the model’s ability to 
prioritize relevant information within the data. Its formula can 
be expressed as:

 Tz h Wh b= +  (9)

In the above Equation 9, h  is the input vector of BANs, W  is a 
trainable weight matrix, b is the bias term, and z is the output vector 
of BANs.

The forward propagation process of BANs is as Equation 10:

 ( ) ( )T
1 1 Relu Relu 2 2ReluRelux W h b x z x Wx bq W z b= + = = + = +

 
(10)

where 1W  is the weight matrix of the first fully connected layer, 2W  
is the weight matrix of the classification layer, 2b  is the weight matrix 
of the classification layer, q is the final output of the model, Relu is the 
activation function, defined as shown in Equation 11 and Relux  is the 
feature vector processed by the Relu activation function.

 
( )

, 0
Relu

0,otherwise
h h

h
>

= 
  

(11)

Incorporating the BANs into predictive models enables a more 
nuanced capture of both the local features and the overarching 
structure of the data. This enhanced understanding, in turn, bolsters 
the model’s capacity for representation and elevates its 
predictive accuracy.

Obviously, after inputting H  into the BANs, a low-dimensional 
matrix ( )y wy n n l

w

Q
Q R

Q
+ × 

= ∈ 
 

 can be derived, in which, the indices 

yQ  and wQ  represent the drug nodes and microbial nodes, respectively.
Thereafter, by integrating the drug matrix yQ , wQ  with FW , and A 

separately inspired by Xuan et al., 2020, it is easy to see that we can 
construct a new drug feature matrix yR  and a new microbe feature 
matrix wR  as Equations 12, 13:

 F, ,y yR Q Y A =   (12)

 
T

F, ,w wR Q W A =   
(13)

Finally, based on yR  and yR , we can obtain predicted scores for 
any given microbe jw  and drug iy  as follows:

 
( ) ( )( )T.Reluij y i w jM R y R w=

 
(14)

Hence, based on the above Equation 14, we can obtain a novel 
matrix M1 = [ ijM ].

Predicting potential microbe–drug associations 
by NNM

The kernel norm, alternatively referred to as the Schatten p-norm, 
is a matrix norm characterized by its reliance on the singular values of 
the matrix in question (Recht et al., 2010). This concept is pivotal in 
the field of optimization, particularly in the context of kernel norm 
minimization (Candès and Recht, 2012). The essence of this technique 
lies in reducing the kernel norm of a matrix, which is essentially the 
aggregate of its singular values. By doing so, it becomes feasible to 
approximate solutions for matrices that exhibit low-rank properties.

In BANNMDA, we  define the kernel norm of the prediction 
matrix E as Equation 15:

 

( )
( )

min ,

1

m n

i
i

E Eσ∗
=

= ∑
 

(15)

where E ∗  denotes the nuclear norm of the matrix E, ( )i Eσ  is 
the i-th largest singular value of the matrix E, and m  and n  are the 
number of rows and columns of the matrix E, respectively.

The objective of minimizing the nuclear norm is to identify a 
matrix E that achieves the lowest possible nuclear norm value, subject 
to fulfilling specific constraints. The optimization problem can 
be mathematically formulated as Equation 16:

 
( )min subject to , ,ij ij

E
E E A i j∗ = ∈Ω

 
(16)

Consider Ω  as a set that encompasses the known positions of the 
elements. To ensure that the prediction results fall within the range of 0 
to 1 and to enhance the model’s robustness against noise in the data, 
we impose the following constraints on the model, as Equation 17 shows:

 
( ) ( )min subject to

E
E E Hσ σ ςΩ Ω∗ − < 

 
(17)

In this context, ς  denotes the measurement noise, which 
accounts for the random variations or inaccuracies in the data. 
Meanwhile, σΩ  signifies an orthogonal mapping that is applied to 
Ω . Subsequently, we replace the inequality-constrained models with 
regularized ones.
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( ) ( ) 2

Fmin
2E

E E Hω σ σΩ Ω∗ + −
 

(18)

where ω is the regularization parameter. Inspired by Huttner et al. 
(2020), we use enhanced Lagrangian functions and the alternating 
direction method of multipliers (ADMMs) to address optimization 
problems that incorporate equality constraints. Equation 18 can 
be rewritten into the following form:

 

( ) ( ) ( ) 2
F

2
F

, , min
2

,
2

E
E Y Z E E H

E Z Y E ZKAY

γ
ω σ σ

γ

Ω Ω∗Ι = + −

+ − + −
 

(19)

where Y  is an introduced auxiliary variable, Z  is the Lagrange 
multiplier matrix, and 0γ >  is the penalty parameter. The ADMM 
algorithm can solve E, Y , and Z  iteratively, and in each round of 
iteration, there are the following three steps:

 
( ) ( ) 2 21

FFargmin ,
2 2

kE E H E Z Y E Z
ω γ

σ σ+
Ω Ω= − + − + − 

 
   

(20)

 

2
1 1

F

1argmin
2

k k kY E Y E Yγ
γ

+ +
∗

 
 = + − +
 
   

(21)

 ( )1 1 1k k k
kZ Z E Yγ+ + += + −

 
(22)

Obviously, based on the above Equations 20–22, after k rounds of 
iteration, we can finally obtain a convergent matrix E, in which, the 
unknown values in A have been completed.

Calculating the final predicted scores of potential 
microbe–drug associations

In this section, we  will use a weighted average approach to 
amalgamate the outcomes of the two prediction models. This method 
assigns different weights to each prediction, reflecting their relative 
importance or reliability. By doing so, we  can create a composite 
forecast that leverages the strengths of both models while potentially 
mitigating the weaknesses of either.

The final microbe–drug associations prediction score matrix M is 
calculated as follows:

 ( )1 1M M Eα α= + −  (23)

where 0 1α≤ ≤  is the weight value.

Model evaluation method
To enhance the model’s generalization capability and robustness, 

and to ensure the stability and reliability of performance evaluation, 
we  implemented a five-fold cross-validation to assess the model’s 
predictive performance. Initially, we randomly selected 80% of the 
recognized and unrecognized associations from the dataset as the 

training dataset, while the remaining 20% was the independent testing 
dataset. Subsequently, we  further randomly divided the training 
dataset, which was derived from the full dataset, into five equally sized 
subsets to facilitate the five-fold cross-validation. By utilizing the 
MDAD dataset, we performed five separate cross-validations, while 
ensuring that each trial was conducted independently. Upon the 
completion of the five-fold cross-validation, the model’s performance 
was assessed across various subsets of the training set. Ultimately, 
we used the pre-allocated independent test set to evaluate the model’s 
final performance.

Experiments and results

In this section, we first conducted a sensitivity analysis of key 
parameters to optimize the model’s performance. Then, we selected 
six leading-edge methods for comparison with BANNMDA. To 
further validate the reliability of our model, we specifically chose two 
representative microbes and drugs for testing.

Parameter sensitivity analysis

Considering the actual conditions of the model, we identified and 
analyzed four parameters that significantly impact the final predictive 
outcomes. In this context, within the BANs, dimension l  emerges as a 
pivotal parameter. Within the NNM, parameters ω and γ  specified in 
Equation 19 hold significant importance. In Equation 23, parameter α  
stands out as another crucial element. In this part, we aimed to identify 
optimal settings and maintain the separation of our training and testing 
datasets. In BANs, we resolved to modify the dimensionality parameter 
l , which was initially derived from the set { }4,8,16,32,64 . Subsequently, 
using a five-fold cross-validation (CV) approach, we assessed the area 
under the receiver operating characteristic curve (AUC) and the area 
under the precision-recall curve (AUPR) for the parameter 
configuration. The results are presented in Figure 2A.

In NNM, we opted to perform comprehensive tests by adjusting 
parameters ω and γ , derived from { }1,10,100,1000 , and carried out 
integrated experiments. The results are presented in Figure 2B.

Ultimately, the outcomes are presented in Figure  2C, which 
illustrates the influence of parameter α  in Equation 23 after its 
modification from { }0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90  
within the context of a five-fold CV on the MDAD dataset. The 
parameter analysis is depicted in Figure 2. As illustrated by the data in 
Figure  2, the optimal model performance is attained when the 
parameters are configured as follows: ω = 10, γ  = 1, l  = 8, and 
α  = 0.75.

Comparison with advanced methods

To enhance the validation of BANNMDA’s predictive 
capabilities, this section presents a comparative evaluation against 
six notable and competitive methods. During experiments, 
we adopted the original parameters of each competing method 
and executed all competitive methods using the same five-fold 
cross-validation approach on the MDAD dataset to ensure a fair 
and consistent comparison.
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 • HMDAKATZ (Zhu et  al., 2019): The method harnesses the 
KATZ algorithm as its foundation to predict associations between 
microbes and drugs.

 • SCSMDA (Tian et al., 2023): This approach uses a structure-
enhanced contrastive learning technique coupled with a self-
paced negative sampling strategy to forecast associations between 
microbes and drugs.

 • GSAMDA (Tan et al., 2022): This model utilizes graph attention 
networks and sparse autoencoders to provide a new approach for 
predicting potential microbial drug interactions.

 • GACNNMDA (Ma et al., 2023): Incorporating graph attention 
networks alongside CNN binary classifiers, this model pioneers 
a novel predictive framework for identifying potential microbial 
drug interactions

 • GARFMDA (Kuang et al., 2024): This model deduces potential 
associations between microbes and drugs through an integration 
of graph attention networks and a dual-layer random 
forest architecture.

 • MDASAE (Fan et  al., 2023): This model uses a stacked 
autoencoder along with a multi-head attention mechanism to 
extract and understand the complex association system between 
microbes and drugs.

We performed an assessment of these techniques with their 
default parameters and measured their performance via a five-fold CV 
process. The efficacy of the introduced BANNMDA model was 
evaluated using the AUC, AUPR, accuracy, and F1-score metrics, 
utilizing the MDAD dataset. The findings are detailed in Table 2 and 
Figure 3, showcasing the BANNMDA model’s exceptional predictive 
accuracy, surpassing the other evaluated approaches.

As shown in Table  2, our model excelled in three of the four 
assessment criteria, with only a slight lag behind the SCSMDA model 

in the AUPR metric. The lower AUPR value compared to the 
SCSMDA method may be attributed to the SCSMDA method’s use of 
a self-paced negative sampling strategy, which adeptly selects negative 
samples that are richest in information content for training purposes. 
This approach is particularly effective in addressing imbalanced 
datasets and consequently elevates the AUPR values. Consequently, 
BANNMDA stands out as a highly effective predictive tool.

Case study

To rigorously evaluate the predictive capabilities of the 
BANNMDA model, we selected two renowned drugs—amoxicillin 
and ceftazidime—as well as two prevalent microbes—Bacillus cereus 
and influenza A virus—for our case studies.

Amoxicillin (Huttner et al., 2020), classified within the penicillin 
family of antimicrobials, has been the subject of numerous studies that 
have demonstrated its association with the activity against Bacillus 
subtilis (Matei-Lațiu et  al., 2023), Clostridium perfringens (Sárvári 
et al., 2022), and Listeria monocytogenes (Sixt et al., 2024). Based on 
the predictive scores, the microbes related to amoxicillin were ranked 
in descending order of their scores. After excluding the three 
associations already present in the MDAD dataset, the top 10 microbes 
were selected for further validation. As shown in Table 3, of the top 10 
predicted microbes associated with amoxicillin, nine have been 
confirmed by existing research indexed in PubMed. For instance, 
Dewachter et al. (2022) confirms that amoxicillin has antibacterial 
effects against Streptococcus pneumoniae, while Gómez-Sánchez et al. 
(2023) establishes the association between amoxicillin and 
Staphylococcus aureus.

Cefotaxime is a potent aminothiazolyl cephalosporin antibiotic, 
renowned for its efficacy against a spectrum of Gram-negative bacteria 
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(Gentry, 1985). Multiple research studies have highlighted the 
effectiveness of cefotaxime, showing its association with combating 
infections caused by Pseudomonas aeruginosa (Wang et al., 2023), 
Escherichia coli (Feng et al., 2021), Streptococcus pneumoniae (Ataee 
et al., 2014), and various other pathogens. As detailed in Table 4, 

following the exclusion of seven known associations recorded in the 
MDAD dataset, we identified nine microbes from the top 10 predicted 
cefotaxime-associated microbes that have been substantiated by 
PubMed-indexed literature. For instance, Awad et al. (2014) examined 
the relationship between cefotaxime and Staphylococcus aureus.

TABLE 2 Results of the compared methods.

Methods AUC AUPR Accuracy F1-score

HMDAKATZ 0.9012 ± 0.0013 0.1011 ± 0.0071 0.9774 0.3551

SCSMDA 0.9566 ± 0.0037 0.9478 ± 0.0059 0.9885 0.7016

GSAMDA 0.9462 ± 0.0017 0.4428 ± 0.0011 0.9896 0.6433

GACNNMDA 0.9783 ± 0.0015 0.3153 ± 0.0311 0.9944 0.7092

GARFMDA 0.9739 ± 0.0021 0.5189 ± 0.0213 0.9957 0.7103

MDASAE 0.9611 ± 0.0021 0.2282 ± 0.0013 0.9879 0.6957

BANNMDA 0.9883 ± 0.0014 0.8959 ± 0.0012 0.9979 0.8893

The bold values are the maximum values of each column.

FIGURE 3

AUC and AUPR curves of six competitive methods based on the MDAD dataset.

TABLE 3 Top 10 amoxicillin-associated candidate microbes on MDAD.

Microbe Evidence

Streptococcus pneumoniae PMID: 35748540

Escherichia coli PMID: 33581330

Staphylococcus aureus PMID: 36099212

Halomonas pacifica Unconfirmed

Haemophilus influenzae PMID: 32585694

Pseudomonas aeruginosa PMID: 31026042

Escherichia coli O6:H1 PMID: 31777977

Micrococcus luteus PMID: 8842345

Staphylococcus epidermidis PMID: 27491399

Streptococcus mutans PMID: 24423468

TABLE 4 Top 10 cefotaxime-associated candidate microbes on MDAD.

Microbe Evidence

Staphylococcus aureus PMID: 24723282

Enteric bacteria and other eubacteria PMID: 3902652

Acinetobacter baumannii PMID: 32043433

Francisella novicida Unconfirmed

Haemophilus influenzae PMID: 19803011

Aggregatibacter actinomycetemcomitans PMID: 28668698

Bacillus subtilis PMID: 31420587

Staphylococcus epidermidis PMID: 1730894

Streptomyces sp. PMID: 25737024

Mycobacterium tuberculosis PMID: 28875168
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Bacillus cereus, a Gram-positive bacterium characterized by 
its rod-shaped structure and beta-hemolytic activity, is frequently 
detected in soil and food products. This organism is notorious 
for its role in foodborne illnesses, particularly the “fried rice 
syndrome,” a form of food poisoning (Leong et al., 2023). Based 
on the pertinent literature, there is confirmation of associations 
between Bacillus cereus and various substances, including copper 
sulfate (Arokiyaraj et al., 2019) and silver nitrate (Babu et al., 
2011). Upon the exclusion of three known associations recorded 
in the MDAD dataset, an analysis of the top 10 predicted drugs 
associated with Bacillus cereus identified 8 that have been 
confirmed by studies indexed in PubMed, as presented in Table 5. 
Park et  al. (2022) elucidates the association between Bacillus 
cereus and rifampicin through an investigation into the 
prevalence and traits of toxin-producing Bacillus cereus strains 
isolated from low-moisture foods.

Influenza A virus is a member of the Orthomyxoviridae family, 
renowned for its significant pathogenic potential in humans (Nypaver 
et al., 2021). Existing scholarly studies have documented associations 
between the influenza A virus and a range of pharmaceuticals, 
including ribavirin (Ayari et al., 2021), zanamivir (Lee et al., 2022), 
oseltamivir (Ormond et  al., 2017), and others, highlighting their 
potential roles in treatment strategies. Upon the exclusion of five 
known associations from the MDAD dataset, Table 6 reveals that nine 

out of the top 10 candidate drugs identified were correlated with the 
influenza A virus, underscoring a significant connection. For instance 
Li et al. (2022) highlights the significant role of curcumin in inhibiting 
the influenza A virus.

In summary, these pairs of case studies provide additional 
evidence of the BANNMDA model’s capability to predict potential 
associations between microbes and drugs.

Discussion

The linkage between drugs and microbes is of pivotal significance 
in the therapeutic realm of disease management, as emphasized by 
biomedical inquiries. Therefore, the advent of a sophisticated 
computational model for predictive models can significantly bolster 
the discovery of novel microbe–drug associations, optimizing 
treatment modalities for a spectrum of diseases.

In this study, we  introduced a novel model BANNMDA by 
integrating the BANs and NNM to detect potential associations 
between microbes and drugs. The BANNMDA model was initiated by 
amalgamating the drug similarity network with the extant microbe–
drug associations, alongside the similarity and association data 
between the nodes, to construct a novel heterogeneous network for 
microbes and drugs. Subsequently, the model leveraged both the 
BANs and the NNM to prognosticate the correlation scores between 
these microbes and drugs. To derive the predictive outcomes, these 
two forecasted scores were averaged with assigned weights. The 
empirical results demonstrated that BANNMDA surpassed 
contemporary methodologies and yielded satisfactory results in case 
study evaluations.

Although the BANNMDA model offered commendable 
predictive performance, there was still room for improvement. 
Notably, the BAN component of the model, while proficient in 
assimilating diverse information across heterogeneous networks, 
has demonstrated limitations in capturing the subtleties of local 
neighborhood information. This limitation is crucial as local 
neighborhood information is pivotal for understanding the 
intricate relationships within complex networks. The BAN model’s 
limitation in this area may be due to its inability to fully explore 
the nuanced interactions between nodes and their immediate 
surroundings, which is required for accurate predictions in 
network-based tasks. To address this, integrating BANs with graph 
convolutional networks (GCNs) could be  a strategic approach. 
GCNs are particularly adept at leveraging local neighborhood 
information by aggregating features from neighboring nodes, 
which can significantly enhance the model’s representational 
capabilities. This fusion would allow for a more comprehensive 
understanding of the network’s structure and the relationships 
between nodes, leading to improved predictive performance.

Furthermore, to elevate the precision of the model’s forecasts, the 
incorporation of an expanded array of biological data was suggested. 
This enrichment would involve incorporating comprehensive data on 
drug side effects, elucidating the ties between bacterial strains and 
diseases, and exploring the linkages between pharmaceuticals and 
disease pathology. By doing so, the model gains a more intricate and 
detailed understanding of drugs and microorganisms, thereby 
improving the accuracy of its predictions.

TABLE 5 Top 10 Bacillus cereus-associated candidate drugs on MDAD.

Drug Evidence

Zinc sulfate PMID: 4990588

Rifampicin PMID: 36278133

Epigallocatechin gallate PMID: 28941901

LL-37 PMID: 16801407

Vancomycin PMID: 38785365

Toremifene Unconfirmed

Curcumin PMID: 26026869

Farnesol PMID: 37717394

Dispersin B-KSL-W wound gel Unconfirmed

Indole PMID: 36869296

TABLE 6 Top 10 influenza A virus-associated candidate drugs on MDAD.

Drug Evidence

Curcumin PMID: 36365240

Epigallocatechin gallate PMID: 33829450

Vancomycin PMID: 16648946

Ciprofloxacin PMID: 24400794

LL-37 PMID: 25082153

Betulin PMID: 12837369

Toremifene PMID: 30700611

Farnesol PMID: 33811524

Azithromycin PMID: 31300721

IDR-1018 Unconfirmed
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Conclusion

In conclusion, the BANNMDA model presents a significant 
advancement in the field of computational prediction of microbe–
drug associations. It has demonstrated superior performance 
compared to existing methods, as evidenced by its successful 
application in case study evaluations. However, the model’s predictive 
capabilities can be  further enhanced by integrating graph 
convolutional networks (GCNs) to better capture local neighborhood 
information and by expanding the scope of biological data 
considered. This would provide a more nuanced understanding of 
the complex interactions between drugs and microbes, ultimately 
leading to more accurate predictions and a deeper insight into 
disease management. The future incorporation of these 
enhancements is anticipated to propel the BANNMDA model to new 
heights in its predictive accuracy and applicability in 
therapeutic strategies.
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