
Frontiers in Microbiology 01 frontiersin.org

Dissemination of clinical 
Escherichia coli harboring the 
mcr-1 gene in Pakistan
Sabahat Abdullah 1,2, Muhammad Ahmad Mushtaq 1, Kalim Ullah 2, 
Brekhna Hassan 3*, Mariya Azam 1,4, Muhammad Asif Zahoor 5, 
Juan Wang 6, Jianzhen Xu 2, Mark A. Toleman 3* and 
Mashkoor Mohsin 1*
1 Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan, 2 Department of 
Bioinformatics, Shantou University Medical College, Shantou, China, 3 School of Medicine, 
Department of Medical Microbiology, Institute of Infection and Immunity, Cardiff University, Cardiff, 
United Kingdom, 4 Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, 
Lahore, Pakistan, 5 Institute of Microbiology, Government College University, Faisalabad, Pakistan, 
6 Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F 
University, Yangling, China

Background: Colistin is an antibiotic used as a last resort to treat multidrug-
resistant Gram-negative bacterial infections. Plasmid-mediated mobile colistin-
resistant (mcr) genes in Escherichia coli (E. coli) are disseminated globally and 
are considered to be a major public health threat. This study aimed to determine 
the molecular characteristics of colistin-resistant Escherichia coli isolates in 
clinical settings in Pakistan.

Methods: A total of 240 clinical E. coli strains isolated from urine and pus cultures 
were collected from two hospitals in Faisalabad and analyzed for phenotypic 
resistance to colistin by cultivation on CHROMagar plates supplemented 
with colistin 2 ug/ml. Molecular characteristics of colistin-resistant isolates 
were analyzed using conventional PCR, whole genome sequencing, and 
bioinformatics analysis.

Results: PCR and whole genome analysis confirmed the presence of the mcr-1 
gene in 10 E. coli isolates. The minimum inhibitory concentration for colistin 
ranged from 4 ug/ml to 32 ug/ml. ResFinder analysis revealed the presence 
of multiple resistance determinants conferring co-resistance to β-lactams, 
aminoglycosides, trimethoprim, sulfonamides, tetracycline, quinolones, 
florfenicol, and macrolides. Hybrid genomic assembly indicated that mcr-1 is 
carried on IncI2 plasmids. Plasmid replicon typing indicated that IncI2-type 
plasmids (n = 10) were the most prevalent plasmids in these strains, followed by 
IncFIB (n = 8), IncFIC (n = 7), IncFIA (n = 6), IncFII (4), IncQ1 (n = 3), IncI1 (n = 1), 
IncY (n = 1), and IncN (n = 1). The Achtman MLST typing scheme revealed a 
large diversity of STs among the mcr-1-positive E. coli. VirulenceFinder analysis 
revealed the presence of numerous virulence factors ranging from 4 to 19.

Conclusion: Our study revealed the emergence and dissemination of colistin-
resistant E. coli isolates carrying mcr-1 in hospital settings, posing a potential risk 
to anti-infective therapy. More efforts should be taken to monitor the prevalence 
of mcr-1-carrying bacteria in Pakistan.
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Introduction

Antimicrobial resistance (AMR) is a major global public health 
concern, which has made the effective treatment of an ever-increasing 
array of infectious diseases very challenging (Aljeldah, 2022). Among 
Gram-negative bacteria, Escherichia coli (E. coli) causes a wide range 
of clinical infections due to endemic gut carriage, multidrug resistance, 
and, most importantly, rapid acquisition/transfer of resistance traits 
by horizontal gene transfer (Sora et al., 2021). Globally, 4.95 million 
deaths were reported in 2019 due to multidrug-resistant infections, 
with 1.27 million directly attributed to AMR (Murray et al., 2022). 
Moreover, the emergence of extended-spectrum β-lactamase- and 
carbapenemase-producing E. coli has resulted in the reduced 
effectiveness of antimicrobial treatment (van Den Bunt et al., 2020), 
such that healthcare professionals are now considering alternative 
antimicrobials such as colistin.

Colistin (also known as polymyxin E) is a cationic polypeptide 
antibiotic that interacts with the outer membrane of the Gram-negative 
bacteria (El-Sayed Ahmed et al., 2020). Despite colistin once being 
avoided due to its nephro- and neurotoxicity, this drug has now become 
a last-resort antimicrobial agent for treating life-threatening infections 
caused by MDR Gram-negative bacteria (Chibabhai et al., 2023). A 
gradual increase in the prevalence of colistin resistance has been noted 
in the last few years. The situation gets exacerbated by the fact that 
colistin resistance mediated by the mcr genes gets rapidly disseminated 
across diverse bacteria by horizontal gene transfer (Shafiq et al., 2023). 
The predominant carriers of mcr-1 were IncX4, IncI2, and IncHI2 
plasmids, which are transferable and adaptive plasmid types with broad 
host ranges. These plasmids contributed to the spread of mcr-1 across 
various sources and bacterial species (Anyanwu et al., 2023).

A comprehensive review revealed that the mcr gene has been 
identified in 47 countries/regions across 6 continents, with 95% of the 
cases attributed to the mcr-1 variant in 2019 (Feng et al., 2023). In 
Pakistan, the mcr-1 gene has been detected in E. coli isolated from 
wildlife, humans, poultry, chickens, dairy cows, and insects (Azam 
et al., 2020; Umair et al., 2023; Li et al., 2022). However, there remains 
a scarcity of data, especially from clinical settings in Pakistan. 
Although a number of studies exist, they primarily focus on 
phenotypic resistance patterns (Javed et al., 2020; Hameed et al., 2021; 
Bilal et al., 2020a), and data showing detailed genomic analyses are 
scarce (Li et al., 2021). The gap in literature underscores the need for 
comprehensive genomic studies to understand the prevalence, genetic 
diversity, and mechanisms of co-resistance in clinical E. coli isolates 
harboring the mcr gene. By addressing this gap, the aim of this study 
was to characterize a set of colistin-resistant E. coli clinical isolates 
recovered from hospital settings in Pakistan. The results presented 
here will contribute to updating the status of colistin resistance in the 
country and improve the monitoring and surveillance of MDR E. coli 
harboring mcr-1 gene within hospitals.

Materials and methods

Isolation of colistin-resistant Escherichia 
coli strains

A total of 240 E. coli strains recovered from urine or pus culture 
were collected from laboratories of two tertiary care hospitals in 

Faisalabad in 2019 and 2020, as described previously (Abdullah et al., 
2023). These isolates were subcultured on CHROMagar media plates 
supplemented with 2 μg/mL colistin and incubated overnight at 37°C 
to confirm the purity and isolation of colistin-resistant E. coli isolates.

Protein-based confirmation was carried out primarily to confirm 
the identity of bacterial species using a matrix-assisted laser 
desorption ionization-TOF (MALDI-TOF; Bruker Daltonics, 
Germany).

Molecular characterization of the mcr-1 
gene

DNA of E. coli isolates was subjected to conventional PCR to 
screen the presence of the mcr-1 gene using primers and conditions, 
as described previously (Uddin et al., 2022).

Antimicrobial susceptibility testing

The minimum inhibitory concentration (MIC) of E. coli isolates 
positive for the mcr-1 gene was determined using the broth 
microdilution. Antimicrobial susceptibility testing of all colistin-
resistant E. coli isolates was performed by disk diffusion using the 
Mueller–Hinton agar plates against 12 antimicrobials. E. coli ATCC 
25922 was used as a negative control strain. The interpretation of 
colistin susceptibility was based on the breakpoint value defined by 
EUCAST (v. 13.0; Satlin et al., 2020).

Whole genome sequencing and 
bioinformatics analysis

Total gDNA was extracted from an overnight culture (2 mL) on a 
QIAcube automated system (Qiagen). Following extraction, gDNA 
was quantified using fluorometric methods with a Qubit (Thermo 
Fisher Scientific). The quality ratios of gDNA (A260/280 and 260/230) 
were determined using a NanoDrop Spectrophotometer (Thermo 
Fisher Scientific). Genomic DNA libraries were prepared for whole 
genome sequencing using the Nextera XT kit (Illumina), as described 
by the manufacturer. Paired-end sequencing was performed using the 
Illumina MiSeq platform (MiSeq Reagent V3 Kit; 2 × 300 cycles). For 
each E. coli isolate, at least 80× coverage was generated. Raw sequence 
reads were trimmed using Trim Galore, and the genomes were de 
novo-assembled into contigs using SPAdes (3.9.0) with a pre-defined 
kmers set. Raw reads were also assembled using the Geneious (10.0.9; 
Biomatters Ltd.) de novo assembler, set at medium sensitivity for 
analysis of paired Illumina reads. Geneious was used to map both sets 
of contigs to reference genes identified using the closest BLAST 
homology and was also used to annotate genes from the closest 
homologs in the NCBI Genome database. Resistance genes were 
identified using Resfinder within CGE (Florensa et al., 2022), and 
wgMLST profiles were generated using the CGE platform coupled 
with the PubMLST.org database (Uelze et al., 2020). Plasmids were 
identified within the genome assembly and typed using Plasmidfinder 
(Carattoli and Hasman, 2020).

To reconstruct full circular plasmid sequences, isolates were 
also sequenced by MinION sequencing (Oxford Nanopore 
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Technologies Ltd., Oxford Science Park, United Kingdom). Large-
scale bacterial gDNA was extracted. The DNA library was prepared 
by pooling all barcoded samples to aim for a final DNA 
concentration of >500 ng/μL, and 1 μL of RAD was added to the 
DNA. A final mixture of 75 μL (34 μL sequencing buffer, 30 μL 
water, and 11 μL DNA library) was loaded into the flow cell. The 
MinION device was connected to the MinKNOW GUI to obtain 
the reads. The raw data in fast5 format were base-called with the 
high-accuracy mode and demultiplexed using Guppy 4.2.2 (Ulrich, 
2023). Unicycler (0.4.4) was used to yield hybrid assembly using 
both Illumina short reads and MinION long reads. This process 
included assembling the long reads with Flye v2.8 (Hu et al., 2024) 
and following five rounds of polishing using Pilon (Vu et al., 2022) 
with the Illumina short reads of the same sample. The comparisons 
of the complete E. coli plasmids were visualized using BRIG 
(Darphorn et al., 2021).

The single-nucleotide polymorphism (SNP)-based phylogenetic 
tree was generated by calling and filtering SNPs, site validation, and 
phylogeny based on a concatenated alignment of the high-quality 
SNPs. For inferring phylogeny, the analysis was run with the standard 
parameters, and the EC958 strain genome (GenBank accession 
number HG941718.1) was used as a reference sequence. The number 
of SNPs exhibited among closely related isolates was calculated using 
a distance matrix file generated as a result of phylogeny (Kaas et al., 
2014). The output core alignment file was used to construct the 
maximum-likelihood tree with 1,000 bootstrap replications using 
MEGA-X v 10.0.5 (Kumar et al., 2018).1 The phylogenetic tree of the 
alignments was visualized and edited using iTOL v 4.4.2 software 
(Letunic and Bork, 2019).2

Results

Identification of mcr-positive Escherichia 
coli

Ten non-repetitive colistin-resistant E. coli strains were isolated 
from two hospitals over 1 year. These non-duplicated strains were 
mainly isolated from urine (70%) followed by pus (30%) cultures. 
Similarly, the percentage of colistin-resistant E. coli isolated from 
female and male samples was found to be 60 and 40%, respectively. 
The number of patients belonging to age ranges of 15–25 years, 
35–45 years, 45–55 years, 55–65 years, and 65–75 years were 2, 3, 3, 1, 
and 1, respectively. All 10 colistin-resistant E. coli isolates were found 
to be mcr-1 producers using specific mcr-1 PCR.

Antimicrobial resistance phenotypes

All of the isolates exhibited an MIC of colistin between 4 μg/mL 
and 32 μg/mL (Supplementary file 1). Antimicrobial susceptibility 
testing revealed that all 10 E. coli isolates were MDR strains. MDR 
was defined as acquired non-susceptibility to at least one agent in 

1 https://www.megasoftware.net/home

2 https://itol.embl.de

three or more antimicrobial categories (Magiorakos et  al., 2012). 
Isolates exhibited resistance to fluoroquinolones (100%), tetracyclines 
(100%), trimethoprim (80%), various types of penicillins (40–100%), 
and cephalosporins (10–60%). Moreover, 80% of isolates were 
susceptible to amoxiclav and aminoglycosides, while 100% 
susceptibility was observed for carbapenem antibiotics 
(Supplementary file 2).

Phylogenetic analysis

Whole genome sequencing provided comprehensive information 
for the isolates and their phylogenetic relationship. Phylogenetic 
relationships among E. coli isolates were determined, and a maximum 
likelihood phylogenetic tree based on concatenated alignments of 
high-quality SNPs from the core genome was constructed. The 
genome of the sequenced isolates covered 72% of the EC958 
reference genome.

We determined the SNP distance of the core genome. This method 
involves aligning the core genome sequences of the isolates, calling 
SNPs, and calculating SNP distances for comparing differences across 
E. coli isolates in the core genome, typically arising from whole-
genome alignment and variant calling. The SNP matrix in the final 
dataset revealed a minimum of 27 SNPs and a maximum of 41,769 
SNPs between all examined genomes. The core alignment showed that 
in ST-3902, isolates PK-5121 and PK-5139 differed from each other 
by 85 SNPs. These two isolates also differed by 277 and 256 SNPs, 
respectively, with the isolate PK-5235 from ST-167. Similarly, in 
ST-156, the isolates PK-5163 and PK-5199 differed by 45 SNPs 
(Figure 1; Supplementary file 3).

In silico analysis of antimicrobial resistance 
genes and virulence genes

Whole genome analysis confirmed the presence of the mcr-1 gene 
in 10 isolates. ResFinder analysis revealed the presence of multiple 
resistance genes for β-lactams, aminoglycosides, tetracycline, 
chloramphenicol, sulfonamides, trimethoprim, and quinolones, 
located on chromosomes and plasmids. Isolates carried antimicrobial 
resistance genes ranging from 5 to 14. PK-5185, containing 14 
resistance genes, was the isolate with the largest number of resistance 
genes. The most prevalent resistance gene was floR, conferring 
resistance to florfenicol (n = 10). VirulenceFinder analysis showed the 
presence of various virulence factors (n = 22; cia, cib, etsC, fyuA, gad, 
hlyF, hra, iroN, irp2, iss, iucC, iutA, lpfA, ompT, papA_F19, papC, sitA, 
terC, traT, cvaC, cma, and tsh) in isolates ranging in number from 4 
to 19 (Table 1).

Plasmid characterization

Plasmid replicon typing exhibited 8 different Inc. types of 
plasmids, ranging from 1 to 10 per isolate. The incI2-type plasmid was 
observed to harbor the mcr-1 gene among all E. coli isolates (n = 10; 
Table 2). The most prevalent Inc. types of plasmids observed were 
IncFIB, IncFIC, and IncFIA in 7, 7, and 5 numbers of isolates, 
respectively. IncFII and IncQ1 types were detected in three isolates 
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FIGURE 1

Phylogenetic tree of mcr-1-positive Escherichia coli isolates based on core genome SNP alignments.

TABLE 1 Genomic characteristics of clinical Escherichia coli isolates harboring the mcr-1 gene.

Isolate ID Inc type(s) Resistance genes Virulence genes

PK-5073 p0111_1, IncFIB(AP001918)_1, ColRNAI_1, 

ColE10_1, IncFII_1, IncI2_1_Delta, 

IncFIC(FII)_1, and Col(MG828)_1

tet(X), blaEC-18, blaTEM-215, floR, fosA4, mph(A), and 

dfrA12

cvaC, etsC, gad, hlyF, iroN, iss, iucC, iutA, 

lpfA, mchF, ompT, sitA, terC, traT, and tsh

PK-5088 p0111_1, ColE10_1, IncI2_1_Delta, 

ColRNAI_1, IncFII_1, and Col(MG828)_1

tet(34), tet(A), blaEC-18, blaTEM-215, floR, catA1, and 

aph(3′)-Ia

gad, lpfA, terC, and traT

PK-5090 IncFII_1, ColRNAI_1, IncFIB(AP001918)_1, 

ColE10_1, IncFIC(FII)_1, p0111_1, IncI2_1_

Delta, and Col(MG828)_1

tet(X), blaEC-18, blaTEM-215, floR, fosA4, mph(A), and 

dfrA12

cvaC, etsC, gad, hlyF, iroN, iss, iucC, iutA, 

lpfA, mchF, ompT, sitA, terC, traT, and tsh

PK-5121 IncFIA_1, p0111_1, IncQ1_1, IncI2_1_Delta, 

IncFIB(AP001918)_1, ColRNAI_1, and 

IncFIC(FII)_1

tet(34), tet(A), sul2, blaEC-15, blaTEM-1, floR, aph(3″)-Ib, 

aph(6)-Id, aph(3′)-Ia, dfrA14, and qnrS1

cia, cib, cma, cvaC, etsC, gad, hlyF, iroN, iss, 

iucC, iutA, ompT, papC, sitA, terC, and traT

PK-5139 IncI1_1_Alpha, p0111_1, IncFIC(FII)_1, 

IncFIA_1, IncI2_1_Delta, IncQ1_1, 

IncFIB(AP001918)_1, and ColRNAI_1

tet(34), tet(A), sul2, blaEC-15, blaTEM-1, floR, aph(3″)-Ib, 

aph(6)-Id, aph(3′)-Ia, dfrA14, and qnrS1

cia, cib, cma, cvaC, etsC, gad, hlyF, iroN, iss, 

iucC, iutA, ompT, papC, sitA, terC, and traT

PK-5163 IncFIC(FII)_1, Col(MGD2)_1, ColRNAI_1, 

IncFIB(AP001918)_1, IncFIA_1, and IncI2_1
tet(34), tet(A), sul2, blaEC-18, blaTEM-1, floR, aph(3″)-Ib, 

aph(6)-Id, and aph(3′)-Ia

cia, cib, etsC, fyuA, gad, hlyF, hra, iroN, irp2, 

iss, iucC, iutA, lpfA, ompT, papA_F19, papC, 

sitA, terC, and traT

PK-5185 IncI2_1_Delta, Col(MGD2)_1, ColRNAI_1, 

and IncN_1

tet(A), tet(34), tet(A), sul2, sul3, blaEC, blaTEM-1, floR, 

aph(3″)-Ib, aph(6)-Id, aadA2, aac(3)-Iid, mph(A), and 

mef(B)

gad, hra, papA_F19, and terC

PK-5199 IncFIA_1, IncFIC(FII)_1, Col(MGD2)_1, 

IncI2_1_Delta, ColRNAI_1, and 

IncFIB(AP001918)_1

tet(A), tet(34), sul2, blaEC-18, blaTEM-1, floR, aph(3″)-Ib, 

aph(6)-Id, and aph(3′)-Ia

cia, cib, etsC, fyuA, gad, hlyF, hra, iroN, irp2, 

iss, iucC, iutA, lpfA, ompT, papA_F19, papC, 

sitA, terC, and traT

PK-5205 IncI2_1_Delta, IncFIC(FII)_1, IncFIA_1, 

IncFIB(AP001918)_1, p0111_1, IncQ1_1, and 

ColRNAI_1

tet(34), tet(A), sul2, blaEC-15, blaTEM-1, floR, aph(6)-Id, 

aph(3″)-Ib, aph(3′)-Ia, and dfrA14

cia, cib, cma, cvaC, etsC, gad, hlyF, iroN, iss, 

iucC, iutA, ompT, papC, sitA, terC, and traT

Pk-5235 Col(MG828)_1, ColRNAI_1, Col156_1, 

Col(BS512)_1, and IncI2_1_Delta,
tet(34), sul2, blaEC-15, aph(6)-Id, and aph(3″)-Ib capU, fyuA, gad, irp2, iss, terC, and traT
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each. Furthermore, IncI1 and IncN plasmid types were observed in a 
single isolate each.

BLASTn analysis of plasmids harboring the mcr-1 gene, 
pPK-5073, pPK-5088, pPK-5090, pPK-5121, and pPK-5205 against 
the NCBI nr database, showed that they exhibited homology with 
plasmid pPK105 (Accession no. MG808035.1), an E. coli strain 
isolated from chicken of healthy broiler in 2020  in Faisalabad, 
Pakistan, with identities of 94.98, 87.84, 94.57, 93.87, and 95.12 at a 
coverage of 97, 97, 98, 97, and 98%, respectively (Figure 2A). BLASTn 
analysis of these plasmids adding pPK-5185 against the NCBI nr 
database also exhibited homology with plasmid pZJ3920-3 (Accession 
no. CP020548.1) of E. coli strain isolated from the human bile in 
2015  in Hangzhou, China, with identities of 95.32, 90.53, 94.98, 
93.74, 93.63, and 94.98 at a coverage of 98, 98, 99, 98, 99, and 99%, 
respectively (Figure 2B). E. coli plasmid pHLJ179-141 (Accession no. 
MN232210.1) isolated from the chicken gut in 2019 in Guangzhou, 
China, had a backbone structure similar to plasmid pPK-5139 with 
identities of 94.76% and at a coverage of 99% (Figure 2C). BLAST 
search of pPK-5163 and pPK-5199 exhibited identity 91.97 and 100% 
at coverage of 99 and 96.85% with plasmid pHeN867 (Accession no. 
KU934208.1) of E. coli strain HeN867 isolated from chicken samples 
in China in 2020 and plasmid pC2 (Accession no. CP042471.2) of 
E. coli strain A50 isolated from Gallus gallus domesticus ISA15 in 
Algeria in 2017 (Figure 2D). Plasmid pPK-5235 shared a coverage of 
80% and an identity of >95% with plasmid pHLJ109-92 (Accession 
no. MN232203.1) in E. coli strain isolated from the chicken gut in 
China in 2020 and plasmid pBA76-MCR-1 (Accession no. 
KX013540.1) in E. coli strain BA76 isolated from sacral wound swab 
in Bahrain in 2015 (Figure 2E).

Discussion

Owing to the increasing incidence of carbapenemase-producing 
Enterobacteriaceae (Abdullah et al., 2023), colistin has become a last-
resort antimicrobial, largely used for the treatment of severe bacterial 
infections. An additional challenge when it comes to polymyxin 
resistance is the rapid dissemination of MCR-producing 
Enterobacteriaceae. The emergence of mcr-1-producing E. coli isolates 
in hospital settings is a significant public health concern (Xie et al., 

2022). Various approaches exist for detecting colistin resistance and 
mcr genes, each with unique strengths and limitations. Culture-based 
methods, such as broth microdilution, remain the gold standard for 
colistin susceptibility but are labor-intensive and costly. Rapid tests 
such as the colistin drop and colistin agar spot tests offer quicker 
alternatives but may suffer from accuracy issues, particularly with 
false-negative results. PCR-based and other nucleic acid amplification 
tests (NAATs) enable the rapid detection of the mcr genes directly 
from samples but rely on known gene variants, potentially missing 
novel or rare mutations. Whole genome sequencing (WGS) provides 
comprehensive resistance profiling, but its high cost and 
bioinformatics requirements may limit its use in routine diagnostics, 
especially in low-resource settings. The limited detection capabilities 
of many assays underscore the need for methodological advancements 
to improve the accuracy and accessibility of mcr-mediated colistin 
resistance screening (Zhang et al., 2022).

In this study, whole genome sequencing (WGS) was used to 
characterize clinical E. coli isolates harboring the mcr-1 gene, a 
plasmid-mediated colistin resistance determinant, collected from two 
tertiary care hospitals in Pakistan. This study revealed the presence of 
the mcr-1 gene in colistin-resistant E. coli isolates (n = 10/240, 4%). 
Other studies reported 2.6 and 2.8% prevalence of mcr genes in E. coli 
isolates in clinical settings in Pakistan (Bilal et al., 2020b; Ejaz et al., 
2021). The findings of other studies performed in India and Iran also 
correspond to the results of our study and reported a 3.2 and 3% 
prevalence of mcr genes among clinical E. coli isolates (Wise et al., 
2018; Aghapour et al., 2019). Several studies, particularly in Asia, 
documented a significant decrease in the emergence rate of isolates 
resistant to colistin due to the ban on its use to avoid the further 
emergence of isolates harboring the plasmid-mediated mcr-1 gene 
(Binsker et al., 2022; Saeed et al., 2021; Wang et al., 2020; Usui et al., 
2021). The relatively low proportion of mcr-1-producing E. coli isolates 
in hospital settings in this and other studies may reflect the limited use 
of colistin in clinical practice as opposed to the higher use of colistin 
in agriculture with corresponding higher proportions of resistant 
isolates among food-producing animals and agricultural communities 
(Lencina et  al., 2024; Li et  al., 2023). Countries including the 
United States, the United Kingdom, and Canada also never approved 
the use of colistin in livestock farming and have constantly described 
lower rates of detection of colistin-resistant isolates (Anwar et al., 
2022; Binsker et al., 2022). Nevertheless, no such regulation on the ban 
of veterinary use of colistin was implemented in Pakistan, where 
colistin is frequently used in different antimicrobial combinations in 
animal farming for prophylactic and therapeutic purposes. Despite the 
low prevalence, continuous surveillance and strict control measures 
are vital to prevent the rapid spread of mcr-mediated resistance 
through horizontal gene transfer, preserving colistin’s role as a last-
resort antibiotic.

It is noteworthy that no isolates in this study showed colistin 
resistance due to chromosomal mutations, which often contribute 
more frequently to resistance than the plasmid-mediated mcr genes. 
Typically, colistin resistance can arise from mutations in chromosomal 
genes such as pmrA, pmrB, phoP, phoQ, or mgrB, which alter the 
bacterial outer membrane by modifying lipopolysaccharides. These 
mutations are often observed in clinical isolates and can confer 
resistance without the need for mcr genes (Tkadlec et al., 2021). This 
is in agreement with the majority of the studies in Pakistan (Umair 
et al., 2023; Li et al., 2022).

TABLE 2 Characteristics of plasmids harboring the mcr-1 gene.

Isolate 
ID

Plasmid 
type

Size 
(bp)

G + C 
content

Resistance 
gene

PK-5073 IncI2 63,227 48.5% mcr-1

PK-5088 IncI2 64,819 45.6% mcr-1

PK-5090 IncI2 56,636 43.1% mcr-1

PK-5121 IncI2 54,509 48.4% mcr-1

PK-5139 IncI2 58,676 42.5% mcr-1

PK-5163 IncI2 15,589 46.7% mcr-1

PK-5185 IncI2 59,013 42.8% mcr-1

PK-5199 IncI2 59,609 49.9% mcr-1

PK-5205 IncI2 57,157 46.8% mcr-1

PK-5235 IncI2 29,093 47.7% mcr-1
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Surveillance of AMR rates is a valuable tool to aid physicians in 
understanding the local resistance trends and improving the 
prescribing of antimicrobials. This study showed the resistance 
pattern in E. coli strains carrying the mcr-1 gene isolated from pus 
(30%) or urine (70%) samples in hospital settings. The strains 
exhibited resistance to fluoroquinolones (100%), tetracyclines 
(100%), trimethoprim (80%), various types of penicillins (40–100%), 
and cephalosporins (10–60%). These findings are in agreement with 
the recent studies reporting increasing AMR in the region 
(Chaurasia et al., 2019; Browne et al., 2021). A recent study analyzed 
the AMR rates for GLASS-specified pathogen/antimicrobial 
combinations from Pakistan (2006–2018) and reported high 
resistance rates (>50%) to fluoroquinolones and third-generation 
cephalosporins among the E. coli and K. pneumoniae (Saeed et al., 
2021). The emergence and spread of resistant pathogens are driven 
by factors such as high antibiotic selection pressure and poor 
infection control, often resulting in cross-transmission among 
patients (Castro-Sánchez et al., 2016). In this study, several mcr-1 
isolates also carried genes conferring resistance to β-lactams, 
aminoglycosides, and fluoroquinolones, complicating treatment 
options and underscoring the adaptive potential of E. coli under 
antibiotic pressure. Although data here are limited, these findings 
highlight the importance of antimicrobial stewardship and the need 
to explore alternative treatments.

The AMR gene profiles largely correlated with the phenotypic 
AST results, demonstrating resistance in line with the detected 
genes. For example, mcr-1 correlated with colistin resistance, and the 
presence of β-lactamase genes (e.g., blaTEM-1 and blaEC-18) matched 
with β-lactam resistance in AST. Aminoglycoside and tetracycline 
resistance genes (e.g., aph(6)-Id and tet(A)) similarly corresponded 

to observed phenotypic resistance. However, a few isolates showed 
susceptibility to certain antibiotics (e.g., aminoglycosides and 
amoxiclav) despite carrying resistance genes, suggesting potential 
gene expression variability or regulatory influences affecting 
the phenotype.

Understanding the occurrence of specific virulence genes among 
colistin-resistant E. coli isolates in this study sheds light on their 
potential pathogenicity. Predominant genes identified, such as terC, 
gad, traT, and iss, are linked to immune evasion and stress resistance, 
while hlyF, iucC, and iroN enhance iron acquisition, critical for 
survival in host environments. The co-presence of these virulence 
traits with colistin resistance highlights the heightened risk posed by 
these isolates, suggesting a need for more focused monitoring and 
tailored infection control strategies in healthcare settings.

The present study also evaluated the prevalence of STs in 
colistin-resistant E. coli clinical isolates. The MLST typing analysis 
of colistin-resistant E. coli isolates reveals a significant genetic 
diversity, with the isolates distributed across six different sequence 
types (STs). While the presence of multiple isolates from the 
sequence type ST-3902 might hint at its resilience under selective 
pressures, such as colistin use. In addition, colistin use alone may 
not be sufficient to drive the expansion of this particular ST over 
others, as clonal spread can result from various ecological and 
clinical factors beyond antibiotic selection. The presence of isolates 
within ST-4388 and ST-156 further indicates the prevalence of these 
lineages, while the unique STs (ST-351, ST-10, and ST-167) highlight 
the genetic variability among colistin-resistant E. coli isolates. The 
most common ST among clinical isolates of colistin-resistant E. coli 
was ST10, with a frequency of 11.63% worldwide (Dadashi et al., 
2022). A notable aspect of the study involves examining the links 

FIGURE 2

(A–E) Circular comparisons of IncI2 plasmid harboring the mcr-1 gene with other different plasmids.
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between the colistin-resistant E. coli strains found in environmental 
and agricultural settings, particularly poultry, and those identified 
in clinical settings (Zahra et al., 2018; Tang et al., 2019). It is crucial 
to highlight that specific sequence types such as ST10 and ST156 
have been observed in both contexts. This overlap suggests a 
potential zoonotic transmission pathway, indicating that the use of 
colistin in agriculture may contribute to the emergence and spread 
of resistant strains in humans. The presence of shared STs between 
environmental, agricultural, and clinical settings highlights the 
urgent need for coordinated AMR surveillance and control strategies 
across both sectors.

Numerous studies have reported various Inc-type plasmids 
carrying mcr-1; however, IncI2, IncHI2, and IncX4 are the three 
major types found in different species of Enterobacteriaceae (Aworh 
et al., 2021; Binsker et al., 2023; Vu et al., 2022). Notably, this study 
found the IncI2 plasmid type harboring the mcr-1 gene among all 
isolates (n = 10), suggesting a strong association between IncI2 
plasmids and the mcr-1 gene, which confers colistin resistance. The 
most prevalent plasmid types included IncFIB, IncFIC, and IncFIA, 
indicating that these plasmid types are common carriers of resistance 
genes. In addition, IncFII, IncQ1, IncI1, and IncN types were also 
found among isolates. This diversity of plasmid types, especially the 
prevalence of various IncF plasmids, underscores the complex 
mechanisms of horizontal gene transfer contributing to the spread of 
colistin resistance.

Conclusion and recommendations

The whole genome-based characterization of mcr-1-producing 
clinical E. coli isolates in Pakistan provides critical insights into the 
genetic diversity, resistance mechanisms, and transmission dynamics 
of these pathogens. By identifying similarities in resistance genes and 
virulence factors, the findings provide indirect insights into how 
these pathogens may spread across different settings. Colistin, often 
considered a last-resort antibiotic for MDR infections, is rendered 
ineffective by the presence of the mcr-1 gene, leaving limited 
therapeutic options. The spread of such resistant pathogens could 
lead to increased morbidity, mortality, and healthcare costs. Based on 
our findings, we recommend implementing enhanced surveillance 
programs to monitor the prevalence and spread of mcr-1-producing 
E. coli and other resistant pathogens. Additionally, promoting the 
rational use of antibiotics through antimicrobial stewardship 
programs is essential to reduce selective pressure and prevent the 
emergence of resistance. We also advocate for increased investment 
in research to develop new antibiotics and alternative therapies, as 
well as rapid diagnostic tools for the timely detection of 
resistance genes.
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