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Introduction: Grapevine (Vitis vinifera L.), one of the economically important 
fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) 
responsible for managing various fungal diseases. Anthracnose (Colletotrichum 
gloeosporioides) (Penz.) is one of the major constraints in quality grape 
production and therefore its management is a major concern among the grape 
growers.

Materials and methods: Among the 50 EBs isolated from healthy leaf segments 
from the eight grapevine genotypes, biologically potential 20 EBs were purified 
and identified based on morphological, and biological characteristics and 
sequence analysis of 16S rRNA region. The antagonistic activities of EBs against 
Colletotrichum gloeosporioides were studied in vitro conditions.

Results: The colony morphologies of EBs are white and yellow-coloured colonies, 
circular to irregular in shape, and entire, and flat margins. Among the 20 purified 
EBs, 19 isolates were found to be Gram-positive except one i.e., MS2 isolate. The 12 
isolates reduced nitrate and 14 isolates produced urease enzyme. The in vitro assay 
revealed that two isolates, SB4 and RF1, inhibited 56.1% and 55.6% mycelial growth of 
C. gloeosporioides,  respectively. Further, the identity of EBs was confirmed through 
PCR amplification of the 16S rRNA region resulting in ~1400 bp size amplicons. The 
sequence analysis of representative 15 isolates revealed that 5 EB isolates viz., SB5, 
CS2, RG1, RF1, C1 were identified as Bacillus subtilis with >99% sequence identity, 
two EBs viz., SB3, and CS1 were identified as B. subtilis subsp. subtilis, two EBs viz., 
SB1, and CS4 were identified as B. licheniformis. The SB2 isolate was identified as 
Bacillus sp., whereas SB4 as Brevibacillus borstelensis, TH1 as B. velezensis, TH2 as B. 
tequilensis, CS3 as B. pumilus and MS1 as Micrococcus luteus were identified.

Conclusion: The phylogenetic analysis of 16S rRNA sequence revealed eight 
distinct clades and showed the close clustering of identified species with the 
reference species retrieved from NCBI GenBank. The current investigation 
provides the scope for further field evaluations of these endophytic microbes 
for managing anthracnose disease.
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1 Introduction

Grapevine (Vitis vinifera L.) is an economically important fruit 
crop mainly cultivated for table consumption, raisins, and wine 
production (Mariappan et  al., 2017). In India, grapes have been 
cultivated in an area of 175,000.93 ha, accounting for 2.5% of the total 
area during the 2023–2024 crop season (APEDA, 2024). During the 
same period, India exported 3,43,982.34 MT of grapes, valued at 
approximately US$417.07 million (APEDA, 2024). Grapevine 
production is becoming more difficult due to fluctuating climatic 
situations and the widespread prevalence of bacterial and fungal 
diseases, which directly affect the livelihood of grape growers. Among 
these, downy mildew, powdery mildew, bacterial leaf spot, anthracnose, 
and rust were found to be  major constraints for grape cultivation 
worldwide (Fan et al., 2023; Fedorina et al., 2022; Volpi et al., 2021). 
Pesticide application is crucial in managing these diseases. However, 
the frequent and extensive use of chemicals raises concerns about 
resistance development in phytopathogens, pesticide residues in grapes, 
human health risks, and environmental pollution (De Corato, 2020). 
To overcome these issues, the application of endophytic microbes is 
considered a promising alternative (Chowdappa et al., 2009).

Anthracnose (C. gloeosporioides) (Penz.) is one of the economically 
important diseases of grapevine caused by Elsinoe ampelina (Fan et al., 
2023). However, in Indian vineyards, C. gloeosporioides and C. acutatum 
were identified as the causal pathogens of anthracnose disease, 
especially exhibiting “ripe-rot” or “birds-eye-spot” symptoms, which 
severely affecting quality and yield (Sawant et al., 2012). Subsequently, 
in 2009, Colletotrichum truncatum (formerly known as C. capsici) was 
identified as one of the incitants of the disease along with 
C. gloeosporioides (Santos et  al., 2018). The disease mainly occurs 
during the monsoon period, characterized by moist and warm 
situations (Thind, 2015). The affected grapevine leaves were exhibiting 
light to dark brown lesions with gray-colored centers leading to a “shot-
hole” appearance. The lesions also appear on mature and immature 
canes and berries, leading to the complete drying of the leaves and 
vines (Bedi et al., 1969). Worldwide, yield losses due to anthracnose 
have been reported to range from 10 to 15%, but under severe infection, 
losses can increase up to 100% in susceptible cultivars (Bedi et al., 
1969). Therefore, chemicals are widely for disease management.

The use of potential biological control agents (BCAs) is essential, to 
minimize the number of chemical fungicide applications and produce 
economically profitable and residue-free grapes of high quality. The 
application of potential BCAs is the most promising, non-hazardous, 
non-toxic, and eco-friendly strategy for controlling diseases. Under a 
natural ecosystem, plants interact with a wide range of microorganisms, 
which can be pathogens, neutral or beneficial microbes.

Endophytes were first described by the German botanist Johann 
Heinrich Friedrich Link in 1809 as ubiquitous microorganisms that 
spend part of their life cycle within plant species found on Earth. 
Every plant has a unique composition of endophytic microbes inside 
various tissues known to have negative impacts in symbiotic or 
antagonistic interactions, respectively (Hallmann et al., 1997). The first 
evidence of the presence of bacteria as endophyte was documented by 
Hollis in 1951. Later, investigations proved positive bacterial 
colonization in the phyllosphere and rhizosphere (Chanway, 1996; 
Hallmann et al., 1998). Initially, bacterial endophytes were known to 
be  isolated from surface-disinfected and internal tissues of plants 
(Garbeva et al., 2001; Hallmann et al., 1997).

In the recent past, endophytic bacteria (EB) have received 
considerable attention due to their important role in improving plant 
health and crop productivity (Hayat et al., 2010; Purahong et al., 2018). 
The EB have been identified through culture-independent and culture-
dependant approaches based on 16S ribosomal RNA (rRNA) gene 
sequence and whole genome sequence information (Campisano et al., 
2015). Several EB have been shown to possess plant growth promotion 
(PGP) traits related to regulatory mechanisms such as solubilization of 
phosphates, ammonia, and synthesis of indole-3-acetic acid (IAA) and 
other auxins (Taghavi et al., 2009). In addition, the EB can promote plant 
growth by decreasing the adverse effects of plant pathogens through direct 
or indirect mechanisms (Compant et al., 2005). The EB can directly 
antagonize phytopathogens by producing antibiotics and lytic enzymes, 
such as β-1,3-glucanases, chitinases, and cellulases, which hydrolyze the 
pathogen cell wall (Lugtenberg and Kamilova, 2009). The EB promote 
plant growth through nitrogen fixation, phytohormone production, 
nutrient acquisition, stress tolerance, and phytoremediation of heavy 
metals and hydrocarbons. Furthermore, the EB reside in a biological 
system that interacts with phytopathogens, making them potential BCAs 
for reducing chemical use in vineyards and producing safe, residue-
compliant quality grapes (Compant et al., 2013).

The EB have been reported as a highly effective strategy for the 
management of grapevine pathogens belonging to different genera, 
namely, Streptomyces, Pseudomonas, and Bacillus (Compant et al., 2013; 
Andreolli et  al., 2019; Niem et  al., 2020, 2023). The EB, namely, 
Pseudomonas fluorescens (Trotel-Aziz et al., 2008; Verhagen et al., 2010 
Orozco-Mosqueda et al., 2023; Mian et al., 2024), Bacillus subtilis (Trotel-
Aziz et al., 2008) Pantoea agglomerans (Trotel-Aziz et al., 2008; Verhagen 
et  al., 2011), and Streptomyces spp. (Abdalla et  al., 2011) have been 
reported as potential BCAs against Botrytis cinerea causing grey mold in 
grapevine, while endophytic Bacillus spp. (Krol, 1998; Furuya et al., 2011; 
Zhang et al., 2017; Biljana et al., 2023) and Serratia marcescens (Strobel 
et al., 2005) have been found effective for the management of downy 
mildew disease of grapevine caused by Plasmopara viticola. Moreover, the 
EB isolated from grapevine have been evaluated in response to crown gall, 
Pierce’s disease (Deyett et al., 2017; Baccari et al., 2019), and esca, a type 
of grapevine trunk disease of mature vines (Del Frari et al., 2019). The 
Bacillus species were found to be effective against anthracnose (Mochizuki 
et al., 2012). Similarly, Bacillus pumilus was found to be very effective 
against powdery mildew caused by Erysiphe necator (Lehman et al., 2000). 
The antagonistic activity of B. subtilis against C. gloeosporioides in mango 
has been evaluated (Dionisio and Acda, 2015). In the recent past, the 
biocontrol potential of B. velenzensis isolated from grapevine shoot-xylem 
was identified for the management of grey mold, anthracnose, and downy 
mildew diseases of grapes (Hamaoka et al., 2021). Metagenomic studies 
have been proven to be efficiently used to investigate the microbiome of 
the rhizosphere and phyllosphere regions of grapevine (Swift et al., 2021; 
Vergani et al., 2024). Furthermore, EB population is greatly affected by 
various factors, namely, grapevine genotypes, general viticultural 
operations, and extreme climatic and soil conditions (Gupta et al., 2021; 
Swift et al., 2021; Aleynova et al., 2022). Recent developments in next-
generation sequencing techniques have allowed to unfolding of complex 
microbiomes and analyses of endosymbiont communities (Knief, 2014; 
Vergani et al., 2024).

In India, scanty information is available on utilizing potential 
bacterial endophytes in grapevine disease management (Saha et al., 2023). 
Therefore, to strengthen the biocontrol disease management strategies in 
grapes, this study was devised to characterize the endophytic microbes 
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from the leaf segments of different varieties and evaluate their bioefficacy 
under in vitro conditions. Identification of the novel EB from this study 
will certainly enhance the scope of their use under field conditions.

2 Materials and methods

2.1 Sampling site

Healthy, young leaf samples from eight grapevine varieties, 
namely, Cabernet Sauvignon (CS), Manjari Shyama (MS), Red Globe 
(RG), Sauvignon Blanc (RG), Shiraz (S), Thompson Seedless (TS), 
Crimson Seedless (C) and Vitis rotundifolia (VR) were collected from 
6–8-year old plants in November 2020. These genotypes were 
cultivated at the experimental fields of the Indian Council of 
Agricultural Research (ICAR) – National Research Centre for Grapes, 
Pune, Maharashtra, India, at the coordinates 18° 29′ 570″ N and 73° 
59′ 168″ E, which is 559 m above the mean sea level.

2.2 Surface sterilization and isolation of 
endophytic bacteria

The collected leaf samples were initially washed with running tap 
water and kept for drying on Whatman’s filter paper No. 1 (Himedia, 
Thane, Maharashtra, India). Surface sterilization of the collected 
leaves was carried out under a sterile laminar airflow chamber by 
immersing in 3% sodium hypochlorite solution for 3 min, followed 
by 30 s in 70% ethanol, and 3 times rinsing with sterile distilled water 
for 5 min. After surface sterilization, the leaves were placed on sterile 
Whatman’s filter paper No. 1. for moisture removal. Later, sterilized 
leaf samples were cut into 5 mm size pieces using a sterile cork-borer 
under aseptic conditions. Four leave samples were inoculated on each 
Petri plate containing Nutrient Agar (NA) medium and incubated at 
28 ± 2°C for 48 h Petri Plate (Sigma-Aldrich Chemicals Pvt. Ltd. 
Bangalore, India). After incubation, the bacterial colonies 
surrounding the leaf samples were picked and streaked on the fresh 
Petri plates containing the NA medium for further purification. The 
isolates obtained by a single colony for several subculturing 
procedures were purified and stored at −80°C in a sterile broth 
containing 20% glycerol (Wijekoon and Quill, 2021) for 
further assays.

2.3 Morphological and biochemical 
characterization of endophytic bacteria

Among the 50 isolates, the 20 EB were purified and further 
examined for morphological, biochemical, and molecular 
characterization. The 20 EB were characterized based on colony 
morphology, Gram staining (Hucker and Conn, 1923), 
biochemical characteristics, enzyme production, and 16S rRNA 
sequence information. The following biochemical tests were 
performed according to standard techniques, as briefly described 
in the sections below: sugar production (Tserovska et al., 2002), 
urease test (Van, 1962), Methyl Red test, nitrate production, 
Voges–Proskauer (VP) test, potassium hydroxide production, 
catalase (Chatterjee et  al., 2007), oxidase, and other enzyme 

production assays. The morphological and biochemical 
characteristics of these isolates were examined according to 
Bergey’s Manual of Determinative Bacteriology (Bergey et al., 
1939). Moreover, confrontation and antibiotic sensitivity assays 
of these 20 EB were carried out using the standard techniques 
described below. All the tests were repeated twice with three 
replications each.

2.4 Screening of endophytic bacteria for 
plant growth promotion

The 20 selected EB strains were screened for the analysis of PGP 
traits using various assays, including indole acetic acid, ammonia 
production, and phosphate solubilization.

2.4.1 Indole-3-acetic acid (IAA) production
For the analysis of IAA production, the 20 EB were cultured 

in sterilized nutrient broth supplemented with 2 g/L of 
tryptophan. Freshly grown cultures were inoculated into 10 mL 
of tryptophan broth in each tube and incubated for 48 h at 
28 ± 2°C. After incubation, 1.5 mL of culture broth from each 
tube was transferred to a fresh 1.5 mL centrifuge tube and 
centrifuged at 10,000 rpm for 5 min. Following centrifugation, 
2 mL of the supernatant was collected into a clean test tube, and 
mixed with 2 drops of orthophosphoric acid. Next, 4 mL of 
Salkowski reagent was added. A positive result was indicated by 
the development of pink color in the medium (Mayer, 1958).

2.4.2 Ammonia production
The EB were tested to produce ammonia in sterilized peptone 

water. Freshly grown cultures were inoculated in 10 mL peptone 
water in each tube and incubated for 48 h at 28 ± 2°C. Thus, 
culture broth (2 mL) from each tube was dispensed in a 1.5 mL 
centrifuge tube and centrifuged at 10,000 rpm for 5 min. A 1-mL 
supernatant was then transferred into a new 1.5-mL centrifuge 
tube, and 0.5 mL of Nessler’s reagent was added Nessler’s reagent 
(Sigma-Aldrich Chemicals Pvt. Ltd. Bangalore, India). The tubes 
were observed for the presence of a dark yellow to brownish color 
for maximum production of ammonia (Mayer, 1958).

2.4.3 Phosphate solubilization
The 20 EB were spot inoculated on the Pikovskaya medium 

containing tricalcium phosphate Ca3(HPO4)2 on an agar plate and 
incubated at 28 ± 2°C for 7 days (Nautiyal, 1999). A clear halo zone 
around the bacterial culture indicated a positive reaction of phosphate 
solubilization activity. If there was no clear halo zone observed around 
the bacterial colony it was considered as a negative reaction against 
phosphate solubilization.

2.5 Primary screening of bacterial 
endophytes for enzyme production

2.5.1 Amylase activity
The 20 EB were evaluated for amylase activity in a starch agar 

medium Himedia (Thane, Maharashtra, India). The sterilized starch 
media containing plates were spot inoculated with 24-h-old 
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bacterial culture and incubated at 28 ± 2°C for up to 48 h. After 
incubation, the plates were flooded with 1% iodine solution, and a 
clear zone around the colony was considered an indication of 
amylase production by the endophytic bacterial isolate (Amaresan 
et al., 2014).

2.5.2 Chitinase activity
All 20 EB were subjected to the evaluation of chitinase production 

using a chitinase detection medium. A 1,000 mL basal medium was 
prepared containing 0.5% colloidal chitin, MgSO4·7H2O (0.2 g), K2HPO4 
(0.9 g), KCL (6.5 g), NH4NO3 (1.0 g), FeSO4·7H2O (0.002 g), MnSO4 
(0.002 g), ZnSO4 (0.002 g), and agar (25 g) with pH 7.0. The medium was 
sterilized by autoclaving for 15 min at 121°C at 15 psi and then poured 
into Petri plates to solidify. The plates were spot inoculated with 24-h-old 
EB culture and incubated at 28 ± 2°C for 48 h. After incubation, the EB 
showed a zone of clearance around the colony, which was considered an 
indication of chitin production by the isolate (Linda et al., 2018).

2.5.3 Lipase activity
The production of lipase enzyme was detected on sterilized agar 

plates seeded with the respective enzyme substrate, i.e., olive oil for 
lipase. The Petri plates were spot inoculated with the EB and incubated 
at 28 ± 2°C for up to 48–72 h. A clear opaque halo zone around the 
colony was considered a positive indication of lipase production by 
the isolate (Sierra, 1957).

2.5.4 Protease activity
Protease activity of the 20 EB was assessed using a skimmed milk 

agar medium Himedia (Thane, Maharashtra, India). The medium was 
sterilized by autoclaving for 15 min at 121°C at 15 psi and poured into 
Petri plates. The Petri plates containing the skimmed milk agar 
medium were spot inoculated with 24-h-old EB culture and incubated 
at 28 ± 2°C for 48 h. After incubation, the plates were observed for the 
clear zone. A clear zone around the colony was considered an 
indication of protease production by the isolate (Vieira, 1999).

2.6 Confrontation assay

In the confrontation assay, a 5-mm agar disk of C. gloeosporioides 
was collected from the 7-day-old culture and placed on the right side 
of the Petri plate containing potato dextrose agar (PDA) medium. The 
Petri plates were incubated at 28 ± 2°C for 24 h. After the incubation 
on the left side of the plates, the 24-h-old EB culture was streaked and 
kept for incubation for 7 days at 28 ± 2°C. Confrontation assay of each 
isolate with test pathogen was replicated 3 times, and one Petri plate 
inoculated with pathogen alone served as a negative control. After 
7 days of incubation, the fungal growth of the test pathogen was 
measured. The percentage of mycelial growth inhibition of the test 
pathogen was calculated using the control, as per the formula given 
by Owen and Hundley (2004).

2.7 Antibiotic sensitivity test

The antibiotic sensitivity analysis was performed using antibiotic-
impregnated disks. The purified EB cultures were tested against 
vancomycin, clindamycin, oxacillin, and ampicillin by Kirby Bauer 

disk-diffusion method (Bauer et al., 1966). The EB were evaluated for 
antibiotic sensitivity test using antibiotic impregnated disc method. 
Based on the inhibition zone formation, the endophytic bacteria were 
categorized as resistant, moderately sensitive, and highly sensitive. 
Highly sensitive isolates were categorized, which showed a clear zone of 
impregnated antibiotics ranging 6–11 mm in size (+), moderately 
sensitive isolates showed a clear zone of antibiotics ranging 2–5 mm 
(++), and resistant isolates showed no clear zone (+++).

2.8 DNA extraction

Genomic DNA of 20 EB was isolated and extracted from 24-h-old 
cultures with the help of the manufacturer’s protocol for HiGENoMB 
(HiMedia, India). In brief, EB cultures were inoculated in nutrient 
broth medium and incubated in an incubator shaker at 200 rpm for 
28°C for 24 h. A 45 mg/mL of lysozyme was prepared, added, and 
thoroughly mixed. Approximately 1.5 mL of 24-h-old bacterial culture 
was used in another 2 mL capped collection tube and centrifuged for 
2 min at 13,000 rpm at 20°C, and the supernatant was discarded. 
Later, 200 μL of lysozyme solution was added to the pellet. Later, 
20 μL proteinase K solution and 20 μL RNase A solution were added, 
mixed properly, and incubated for 5 min at room temperature. A total 
of 200 μL lysis solution (C1) was added and mixed for a few seconds 
and incubated at 55°C for 10 min. Subsequently, 200 μL of 100% ethyl 
alcohol was added to the lysate and mixed thoroughly by vertexing for 
a few seconds. The clear lysate was transferred to a miniprep spin 
column and subjected to centrifugation at 10,000 rpm for 1 min at 
25°C. The flow-through liquid was discarded and the spin column was 
placed in the same 2 mL collection tube. A prewash solution of 500 μL 
was added to the column and centrifuged at 10,000 rpm for 1 min at 
25°C. The flow-through was discarded, and 500 μL of diluted wash 
solution was added to the column in the same collection tube. The 
column was centrifuged for 3 min at 13,000 rpm at 25°C, the flow-
through was discarded. The column was spun again at 13,000 rpm at 
25°C for 1 min to dry it. The miniprep spin columns were then 
transferred to a separate micro-centrifuge tube later added with 25-uL 
of elution buffer. These miniprep columns were incubated for 5 min 
at 25°C and centrifuged at 10,000 rpm for 1 min to elute the 
DNA. Approximately 1 mL of homogenate was transferred to another 
1.5-mL microfuge tube and centrifuged for 5 min at 14,000 rpm. The 
supernatant was collected in another sterile 1.5 mL microfuge tube. 
Furthermore, all the steps were carried out using the manufacturer’s 
protocol. After elution of the genomic DNA, it was stored at −20°C 
for further use.

2.9 PCR amplification

The bacterial genomic DNA was amplified by polymerase chain 
reaction (PCR) using the universal primer pair specific to 16S rRNA, 
such as 27F (5´-AGAGTTTGATCMTGGCTCAG-3′) and 1492R 
(5´-GGTTACCTTGTTACGACTT-3′) (Lane, 1991). The PCR reaction 
was carried out in an automated thermal cycler (GeneAmp PCR system 
9,700) GeneAmp PCR System (Thermo Fisher Scientific, Waltham, 
MA, USA). The reaction mixture of 25 μL volume contained 0.75 μL of 
the 10-mM deoxynucleotide triphosphate (dNTPs), 0.3 μL of forward 
and reverse primers (100 ng), 0.25 μL of DreamTaq® DNA polymerase 
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(Thermo Fisher Scientific, Waltham, MA USA; 5 U/μL), 2.5 μL 10× 
buffer, and 4.5 μL of DNA template (~2.5 μg). The PCR conditions for 
amplification of the 16S rRNA region consisted of initial denaturation 
of the template at 94°C for 4 min, which was followed by 35 cycles of 
denaturation at 94°C for 30 s, annealing at 57°C for 30 s, and an 
extension at 72°C for 90 s and a single cycle of final extension at 72°C 
for 10 min. Furthermore, the PCR products were subjected to 1.2% 
agarose gel electrophoresis using 1× TAE buffer (90-mM tris acetate, 
2-mM EDTA, pH 8.0) 1XTAE buffer (Thermo Fisher Scientific, 
Waltham, MA USA) stained with 0.01% ethidium bromide (0.5 μg/mL). 
Later, the PCR products were cleaned up with the help of the 
manufacturer’s protocol described for the QIAquick PCR Purification 
Kit Qiagen, (Germantown, Maryland, USA). The cleaned-up PCR 
products were submitted to the National Centre for Microbial Resource-
National Centre for Cell Science (NCMR-NCCS), Pune, Maharashtra, 
India for double-pass Sanger sequencing.

2.10 Sequence and phylogenetic analysis

All 20 EB showed successful PCR amplification. Therefore, 20 EB 
were subjected to Sanger sequencing from NCMR-NCCS, Pune, 
Maharashtra, India, and then assembled in the SeqMan program 
(DNASTAR, Inc. Madison, WI, USA), Bioedit sofware version 1.7 
(Swindell and Plasterer, 1997; Hall, 1999). The sequence coverage and 
quality of the 15 isolates were desirable for submission to the National 
Center for Biotechnology Information (NCBI) GenBank. Therefore, 
sequence homology of 15 EB with the available sequences in the NCBI 
GenBank was carried out using the Nucleotide Basic Local Alignment 
Search Tool BLASTn program.1 BioEdit software version 1.72 was used 
for multiple sequence alignment and generating the sequence identity 
matrix using the Clustal W program (Tamura et al., 2021). MEGA11 
software was used for assessing the evolutionary analyses (Kumar 
et al., 2016; Tamura et al., 2021) http://www.megasoftware.net, using 
the Neighbor-Joining method (Saitou and Nei, 1987). The replication 
percentage of clustered taxa was performed using a 1,000 bootstrap 
test (Felsenstein, 1985; Tamura et al., 2004). The reference sequences 
for comparison were retrieved from the NCBI GenBank.

2.11 Statistical analysis

All 20 EB isolates were replicated thrice for antagonistic activity 
under in vitro conditions. The recorded data were subjected to the 
analysis of variance (ANOVA) using a completely randomized design 
with OPSTAT (Prof. O.P. Sheoran, Department of Mathematics and 
Statistics, CCSHAU, Hisar, Haryana, India), an online software 
program (Sheron et  al., 1998). Initially, the percent data were 
transformed into arcsine value and then analyzed (Gomez and 
Gomez, 1984). The standard error of the mean (SEm±), standard 
deviation (SD), and critical difference (CD) values were calculated 
(Sheron et al., 1998). The CD values were found significant at p ≤ 0.01.

1 https://blast.ncbi.nlm.nih.gov/Blast.cgi

2 https://nrcgrapes.icar.gov.in/

3 Results

3.1 Morphological and biochemical 
characterization

Initially, 50 total EB were isolated from healthy leaves of eight 
grapevine genotypes, of which three were wine varieties (Cabernet 
Sauvignon: CS; Sauvignon Blanc: SB; Shiraz: S), four table varieties 
(Crimson Seedless: C; Manjari Shyama: MS; Red Globe: RG; and 
Thompson Seedless: TS), and one wild genotype (V. rotundifolia). Among 
the 50 isolates, only 20 EB were purified, and the remaining were not 
included in the study because of morphological similarities (Figure 1). 
The 20 EB based on colony characteristics such as size, color, three-
dimensional shape, and margin were separated into two groups 
(Supplementary Table S1). The results obtained from the morphological 
characterization of isolates stated that EB isolates produced brown-, 
white- and yellow-colored colonies with circular shapes and irregular, 
entire, and flat colony margins (Supplementary Table S1). The elevation 
of isolates was convex, flat, and concave in nature, with mucoid and sticky 
consistency. Based on Gram’s staining reaction, 19 out of 20 isolates were 
found to have a Gram-positive reaction except one isolate (MS2), which 
showed a Gram-negative reaction. The potassium hydroxide test revealed 
the presence of a viscous string in the MS2 isolate, while one isolate 
exhibited no viscous string. The bacteria shapes were found to 
be rod-shaped in 16 isolates and cocci-shaped in 3 isolates (CS5, MS1, and 
S1) (Supplementary Table S1). Biochemical studies of EB showed that all 
isolates could produce catalase and oxidase enzymes. Sucrose, glucose, 
and dextrose were fermented by 13, 16, and 15 isolates, respectively. Out 
of 20 EB, 12 isolates reduced nitrate, and 14 produced urease enzymes. 
Methyl Red and VP tests showed positive results in 15 isolates 
(Supplementary Table S2).

3.2 Analysis of plant growth promotion trait

All 20 EB isolates were screened for PGP traits, and it was observed 
that all 20 isolates were positive for ammonia production by producing 
a yellow to brown color. For the indole acetic acid production, the pink 
color was observed in all the endophytic bacterial isolates 
(Supplementary Table S3). All the isolates were found to have negative 
reactions in phosphate solubilization (Supplementary Table S3).

3.3 Analysis of enzyme activity

All 20 EB were screened for hydrolytic enzyme production viz., 
lipase, glucanase, chitinase, amylase, and protease 
(Supplementary Table S3). In lipase assay, the EB isolates, namely, SB3, 
SB4, SB5, CS1, CS2, CS3, CS4, C1, T1, T2, MS1, MS2, RF1, and S1, 
showed high lipase production (Supplementary Table S3). In the 
chitinase assay, the chitinase enzyme was produced by the 12 EB isolates 
viz., SB1, SB2, SB3, SB4, SB5, CS1, C1, C2, C3, MS1, RG1, and RF1. 
Protease and amylase activity were positive only in five isolates, namely, 
SB5, C1, C2, TH1, and TH2, and in six isolates, SB5, C1, C2, C3, TH1, 
and TH2, respectively. The 13 EB isolates, namely, SB1, SB3, SB4, SB5, 
CS2, C1, C2, C3, TH1, TH2, MS1, RF1, and RG1 showed glucanase 
enzyme production. The production of the enzyme was recorded based 
on the diameter of the developed zone (Supplementary Table S3).

https://doi.org/10.3389/fmicb.2024.1502788
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://www.megasoftware.net
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://nrcgrapes.icar.gov.in/


Holkar et al. 10.3389/fmicb.2024.1502788

Frontiers in Microbiology 06 frontiersin.org

3.4 Antifungal activity against 
Colletotrichum gloeosporioides

3.4.1 Direct confrontation
A total of 20 EB isolates were evaluated for antagonistic activity 

against C. gloeosporioides under in vitro conditions 
(Supplementary Table S4; Figure  2). It was found that only five 
isolates, namely, SB4 (56.1%), RF1 (55.6%), C1, and C2 (50%), and 
RG1 (50.6%) showed growth inhibition of C. gloeosporioides in vitro 
conditions. The eight isolates, namely, SB1 (46%), SB2 (48.9%), SB3 
(43.9%), SB5 (48.3%), CS2 (43.7%), CS4 (49.4%), TH2 (46.8%), and 
MS1 (49.5%) showed more than 40% growth inhibition of 
C. gloeosporioides (Figure  2). All isolates belonged to the genera 
Brevibacillus, Micrococcus, and Bacillus. The five isolates, namely, CS1 
(32.8%), CS3 (31.1%), CS5 (12.8%), C3 (12.08%), and TH1 (13.9%) 
showed less than 40% growth inhibition activity of C. gloeosporioides 
(Supplementary Table S4; Figure 2). The bacterial endophytes viz., 
MS2 and S1 showed no prominent growth inhibition.

The percent inhibition data were statistically analyzed and showed 
significant differences at p < 0.01 (Supplementary Table S4). The 
values presented in Supplementary Table S4 were the average percent 
inhibition of three replications. A significant coefficient of variation of 

13.165 and a critical difference of 11.493 were observed among all 
treatments with p < 0.01 significance level.

3.5 Antibiotic sensitivity test

The 20 EB isolates were evaluated against four different antibiotics 
by the impregnated disk-diffusion method. Four antibiotics, namely, 
ampicillin, oxacillin, vancomycin, and clindamycin, were used. The 
results showed that all bacterial endophytes from the eight grape 
genotypes were resistant to ampicillin and oxacillin, while they 
exhibited high to moderate sensitivity to vancomycin and clindamycin 
(Supplementary Table S4; Figure 3). The sensitivity of isolates against 
antibiotics was recorded based on the diameter of the zone, as 
mentioned in the materials and methods.

3.6 PCR amplification, sequence identity, 
and phylogeny

All the 20 EB were successfully PCR amplified with ~1,400 bp size 
amplicons using 27F and 1492R 16S rRNA region-specific primers. 

FIGURE 1

Colony color and morphological characteristics of 20 bacterial endophytes isolated from leaf segments of eight grapevine genotypes (Vitis vinifera and 
Vitis rotundifolia) cultivated at experimental fields of the Indian Council of Agricultural Research (ICAR)-National Research Centre for Grapes, Pune, 
Maharashtra, India. All the bacterial strains were cultivated on nutrient agar (NA) medium for 2 days at 28°C. The details regarding the morphological 
characterization of all isolates are mentioned in Supplementary Table S1. CS, Cabernet Sauvignon; C, Crimson Seedless; MS, Manjari Shyama; RG, Red 
Globe; SB, Sauvignon Blanc; S, Shiraz; TH, Thompson Seedless; RF, Vitis rotundifolia.
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BLASTn analyses of 15 isolates revealed that their identities, which were 
in correspondence with the Gram-staining reactions, that the species 
belonged to three genera Bacillus (13), Brevibacillus (1), and Micrococcus 
(1). The EB isolates belonging to Bacillus include, namely, SB1, SB2, 
SB3, and SB5 isolated from cv. Sauvignon Blanc, CS1, CS2, CS3, and 
CS4, (cv. Cabernet Sauvignon), RG1 (cv. Red Globe), RF1 
(V. rotundifolia), TH1, and TH2 (cv. Thompson Seedless) and C1 (cv. 
Crimson Seedless). The 16S rRNA gene sequences of 15 EB were 
submitted to the NCBI GenBank (Table 1). The SB4 isolate identified as 
Brevibacillus borstelensis (Accession No. OQ473590), MS1 identified as 
isolate Micrococcus luteus (Accession No. OQ773530) and TH1 
identified as Bacillus velezensis (Accession No. OQ473003) species 
based on BLASTn analysis (Table 1; Supplementary Table S5). The 16S 
rRNA gene sequence BLASTn analyses of seven isolates viz., SB3 
(Accession No. OQ473588), SB5 (Accession No. OQ473591), CS2 
(Accession No. OQ402731), RG1 (Accession No. OQ402735), RF1 
(Accession No. OQ407829), and C1 (Accession No. OQ773525) shared 
99.40–100% sequence identity with B. subtilis strains (Accession Nos. 
OL708413, MN305772, KU551225, HQ327126, and OQ402671) 
available in the NCBI GenBank (Table 1, Supplementary Table S5). 
Similarly, the sequence information of SB1 (Accession No. OQ 407851) 
and CS4 (Acc. No. OQ407827) isolates showed BLASTn identity of 99.0 
and 99.93% identity with Bacillus licheniformis species (NCBI reference 
sequence Accession Nos. MN396384, MT184857, respectively) 
available in the NCBI GenBank.

Bacillus subtilis strains, namely, RF1, RG1, SB3, SB5, CS2, and CS1 
(Accession No. OQ402671), and C1 showed 97–99% sequence 
homology with the sequences from the NCBI GenBank 
(Supplementary Table S5). B. subtilis strains of the present study were 
found to be closely related to B. licheniformis (Accession Nos. OQ407851 
and OQ407827), with 93–97% sequence homology. The EB isolates, 
namely, SB1 and SB2 (Accession. Nos. OQ407830 and OQ407830), and 
CS4 (Accession No. OQ407827), showed 95 to 100% sequence homology 

with B. licheniformis strains (Accession Nos. MN396384 and MT184857) 
available in the NCBI GenBank (Supplementary Table S5). The EB strain 
TH2 (Accession No. OQ503168) showed 99% sequence homology with 
Bacillus tequilensis (Accession No. KY810609) (Supplementary Table S5). 
Similarly, the EB strain CS3 (Accession No. OQ473589), MS1 and SB4 
(Accession No. OQ473590) showed 98% sequence homology with 
B. pumilus (Reference Accession No. EF491624), M. luteus (Reference 
Accession No. MW866492), and B. borstelensis (Reference Accession No. 
MT292327), respectively (Supplementary Table S5).

The phylogenetic tree constructed showed eight species-specific 
distinct subclades. Subclade I represents B. tequilensis (Accession No. 
KY810609); however, it is closely related and clustered with B. subtilis 
(RF1). Subclade II represents B. subtilis species, with the isolates SB5, 
RG1, and TH2 clustered together. Subclade III includes EB isolates 
identified as B. subtilis subsp. subtilis (CP051466 and OQ773525). 
Subclade IV includes the EB identified as B. velezensis (Figure 2). 
Subclade V represented the presence of B. licheniformis and clustering 
of SB1, SB2, and CS4. In subclade VI, endophytic strains of B. pumilus 
(CS3) and B. subtilis (RG1) were found to be  closely clustered 
(Figure  4). Subclades VII and VIII showed the clustering of 
B. borstelensis and M. luteus strains (MS1), respectively. Bacillus, 
Brevibacillus, and Micrococcus were found as three major clades of EB 
in eight grapevine varieties (Figure 4).

4 Discussion

It is well known that the presence of plant bacterial 
endophytes has been found in the majority of healthy plant 
tissues (Sturz et al., 1998). Bacterial endophytes have beneficial 
effects on host plants by promoting plant growth and enhancing 
resistance to phytopathogens (Compant et al., 2005; Lugtenberg 
and Kamilova, 2009; Bhore et  al., 2010; Santoyo et  al., 2016). 

FIGURE 2

Antibiotic sensitivity assay of 16 bacterial endophytes isolated from the leaf segments of eight grapevine genotypes cultivated at the Indian Council of 
Agricultural Research (ICAR)-National Research Centre’s experimental farm.
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Moreover, the use of potential rhizospheric and endospheric 
bacteria has been found to be an alternative approach to reducing 
pesticide usage and residues in the final harvest (Compant et al., 
2013; Vergani et al., 2024). In this study, endophytic bacteria were 
isolated, characterized, and evaluated for their bioefficacy against 
C. gloeosporioides under in vitro conditions. Although various 
endophytic bacteria colonize the various plant parts for their 
survival, in this study, healthy plant leaves without any apparent 
disease symptoms were used for bacterial isolation from eight 
different genotypes cultivated under natural conditions. It has 
been found that the diversity of EB varies based on the 
geographical locations, environmental conditions, and genetic 
makeup of grapevine varieties (Gupta et al., 2021; Swift et al., 
2021; Aleynova et al., 2022). It has been evidenced that members 

of the genus Bacillus were among the most dominant species 
found as endophytes and mainly used for plant disease 
management (Salvetti et  al., 2016). In this study, among the 
20 EB, 15 were characterized based on 16S rRNA sequence 
information, of which 13 isolates belong to the genus Bacillus. A 
species of Micrococcus and Brevibacillus each. Bacillus sp. as an 
endophyte has been reported in grapevine (Campisano et  al., 
2015; Dionisio and Acda, 2015; Andreolli et  al., 2016; Deyett 
et al., 2017; Baccari et al., 2019; Saha et al., 2023). In the present 
study, morphological characterization of grapevine EB showed 
that the colonies were circular in shape, with margins varying 
from flat to irregular. The colony color was observed as white, 
whitish-brown, and yellow. A similar result on cell shape, color, 
and margins was confirmed by other groups as well (Kumar et al., 

FIGURE 3

Antagonistic activity of 15 bacterial endophytes isolated from the leaves of eight grapevine genotypes evaluated against Colletotrichum 
gloeosporioides causing anthracnose disease in grapevine in India. The antagonistic activity of these fungal endophytes against test pathogens was 
evaluated and categorized. On the right-hand side is the bacterial colony streaked, and on the left-hand side is the Colletotrichum gloeosporioides test 
pathogen inoculated. The high antagonist bacterial endophytes showed the restricted growth of the test pathogen and vice versa.
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TABLE 1 Molecular characterization of bacterial endophytes isolated from leaf segments of different grapevine genotypes having potential biocontrol 
activity.

S. No. Isolate Isolated from 
grapevine genotype

Identified species NCBI 
GenBank Acc. 
No.

Reference 
sequence 
GenBank Acc. No.

BLASTn 
percent 

identity (%)

1. SB1 Sauvignon Blanc Bacillus licheniformis OQ407851 MN396384 99.00

2. SB2 Sauvignon Blanc Bacillus sp. OQ407830 JX495603 99.46

3. SB3 Sauvignon Blanc Bacillus subtilis subsp. subtilis OQ473588 CP051466 100.00

4. SB4 Sauvignon Blanc Brevibacillus borstelensis OQ473590 MT292327 99.00

5. SB5 Sauvignon Blanc Bacillus subtilis OQ473591 OL708413 99.80

6. CS1 Cabernet Sauvignon Bacillus subtilis subsp. subtilis OQ402671 OQ773525 100.00

7. CS2 Cabernet Sauvignon Bacillus subtilis OQ402731 MN305772 99.73

8. CS3 Cabernet Sauvignon Bacillus pumilus OQ473589 EF491624 99.00

9. CS4 Cabernet Sauvignon Bacillus licheniformis OQ407827 MT184857 99.93

10. RG1 Red Globe Bacillus subtilis OQ402735 KU551225 100.00

11. RF1 Vitis rotundifolia Bacillus subtilis OQ407829 HQ327126 99.40

12. TH1 Thompson Seedless Bacillus velezensis OQ473003 MT114571 99.00

13. TH2 Thompson Seedless Bacillus tequilensis OQ503168 KY810609 99.00

14. C1 Crimson Seedless Bacillus subtilis OQ773525 OQ402671 100.00

15. MS1 Manjari Shyama Micrococcus luteus OQ773530 MW866492 99.80

CS, Cabernet Sauvignon; C, Crimson Seedless; MS, Manjari Shyama; RG, Red Globe; SB, Sauvignon Blanc; S, Shiraz; T, Thompson Seedless; VR, Vitis rotundifolia. All the accessions are 
available in the public domain (https://www.ncbi.nlm.nih.gov/).

FIGURE 4

Phylogenetic dendrogram of 15 bacterial endophyte species characterized based on the 16S rRNA gene sequence information indicated in bold letters 
and reference sequences of respective species retried from the National Center for Biotechnology Information (NCBI) GenBank was inferred using the 
Neighbor-Joining method. The original tree with the sum of branch length (SBL) = 1.65455554 was observed. The percentage of replicate trees in 
which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. The evolutionary distances were 
computed using the maximum composite likelihood method and are in the units of the number of base substitutions per site. This analysis involved 28 
nucleotide sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There were a total of 1,585 positions 
in the final dataset. The evolutionary analyses were conducted in MEGA11.
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2015; Sgroy et  al., 2009). In the present study, based on 
morphological and biochemical characterization presence of both 
the Gram-negative (1) and Gram-positive (19) bacteria were 
recovered from healthy leaves of grapevine (V. vinifera L.). 
Dominance of Gram-positive bacteria has been recovered from 
the grapevine leaf tissues (Lalande et al., 1989).

Plant growth-promoting (PGP) bacteria directly improve the 
health and support the growth of grapevines by producing 
phytohormones or by promoting nutrient assimilation and 
thereby acting as biological fertilizers (Taghavi et  al., 2009; 
Compant et  al., 2005, 2013). Beneficial bacteria that produce 
indole-3-acetic acid (IAA) can stimulate plant growth directly 
(Nabti et al., 2014). In the present study, 15 isolates were found 
positive for indole-3-acetic acid production. This evidence 
closely agrees with an earlier study on the IAA-producing Bacillus 
sp. (Baldan et  al., 2015). However, it challenges the earlier 
findings of Bhagya et  al. (2019), who had reported that EB 
isolated from nodules, roots, and seeds of green gram (Vigna 
radiata L.) were confirmed non-producers of IAA. Recent studies 
have shown that endophytic Bacillus isolates produce indole-3-
acetic acid production (Boiu-Sicuia et al., 2023; Kumari et al., 
2021; Saha et al., 2023). The ability of some bacterial species in 
ammonia production can also enhance PGP activity (Marques 
et  al., 2015). In the present investigation, EB isolates could 
produce ammonia but could not solubilize phosphate.

Biochemical characterization for identifying endophytic 
bacteria has been used in many investigations (Kumari et  al., 
2021; Boiu-Sicuia et al., 2023). In this study, 16 (SB1, SB2, SB3, 
SB4, SB5, CS1, CS3, CS4, CS5, C1, TH1, TH2, MS1, MS2, RF1, 
and S1) and 15 (SB1, SB2, SB3, SB4, SB5, CS2, CS4, CS5, C1, 
TH1, TH2, MS1, MS2, RF1, and S1) isolates utilized glucose and 
dextrose as a source of carbon, which was supported by our 
earlier findings as well (Saha et  al., 2023). The antagonistic 
activity of the potential biocontrol agents is dependent on the 
production of hydrolytic enzymes, which help in the degradation 
of the cell wall of pathogens (Compant et al., 2005; Lugtenberg 
and Kamilova, 2009). In the current study, among the 20 isolates, 
in vitro activity of extra-cellular hydrolytic enzymes, namely, 
lipase, glucanase, amylase, and protease were found to 
be produced by 13 (SB4, SB5, CS1, CS2, CS3, CS4, C1, TH1, TH2, 
MS1, MS2, RF1, and S1), 13 (SB1, SB3, SB4, SB5, CS2, C1, C2, C3, 
TH1, TH2, MS1, RF1, and RG1), 6 (SB5, C1, C2, C3, TH1, and 
TH2), and 5 (SB5, C1, C2, TH1, and TH2) isolates, respectively. 
Higher production of these hydrolytic enzymes by specific EB 
correlates with better inhibition of fungal pathogens. In the direct 
confrontation assay, EB Bacillus sp., B. borstelensis, and B. subtilis 
successfully inhibited the mycelial growth of C. gloeosporioides, 
causing anthracnose disease in India. The ability to inhibit the 
growth of C. gloeosporioides was attributed to the production of 
lytic enzymes. The 14 isolates produced glucanase, which is 
particularly effective against fungi with glucan-rich cell walls. 
Similarly, EB with elevated protease activity would show stronger 
antifungal effects against pathogens with protein-dense cell walls. 
The antibiotic properties of endophytic bacteria increased the 
host plant’s resistance to pathogens and promoted their growth 
(Santoyo et al., 2016). The EB with strong enzymatic capabilities 
and antibiotic resistance play a crucial role in sustainable plant 
disease management. In the present study, all the isolates were 

found resistant against ampicillin and oxacillin. The antibiotic 
resistance of EB may vary from species to species and the 
environmental conditions of cultivation (Nair and Padmavathy, 
2014). Additionally, their antibiotic resistance allows them to 
survive in diverse environments, ensuring continuous protection 
(Bauer et  al., 1966). This dual action not only defends plants 
against diseases but also promotes growth by enhancing nutrient 
uptake and producing growth hormones, reducing the need for 
chemical pesticides, and supporting environmentally friendly 
agricultural practices. By correlating the enzyme production 
levels with pathogen inhibition, we can identify and utilize the 
most potent EB strains for effective biocontrol, thereby reducing 
reliance on chemical treatments and promoting sustainable 
agriculture. Epiphytic and endophytic Bacillus species were found 
to be the most representative class of bacteria inhibiting fungal 
growth (Ranade et al., 2023; Saha et al., 2023). In the present 
study, RF1, C1, C2, SB4, and RG1 isolates significantly reduced 
the mycelial growth of C. gloeosporioides by >50% under in 
vitro conditions.

Scanty information is available on the molecular 
characterization of EB isolated from grapevine in India; therefore, 
in the present study, 15 EB were characterized based on 16S 
rRNA sequence information, and > 50% of isolates were 
identified as B. subtilis followed by B. licheniformis (13.33%). 
These findings were in close agreement with the earlier work 
carried out by Andreolli et al. (2016), who had suggested that 
48% population of endophytic Bacillus was obtained in 3-year-old 
grapevines. Identification of novel endophytic bacterial species 
such as B. pumilus, Bacillus velezensis, and B. tequilensis was 
carried out in the present study. Recently, these were identified 
as a potential endophytic bacterium for the management of 
grapevine trunk diseases (GTDs) and other pathogens from 
Japan, Romania, and Brazil (Hamaoka et al., 2021; Kumari et al., 
2021; Ferreira dos Santos et al., 2024). Thus, the present study 
revealed the identification of novel and potential biocontrol 
endophytic bacterial strains cultured from leaf segments of 
different grapevine genotypes used against C. gloeosporioides 
in vitro conditions. The presence of pathogens associated with 
GTDs in Indian conditions has not yet been reported, but the 
existence of root rot and wilt-associated phytopathogens cannot 
be  ignored. Therefore, their specific detection is essential for 
devising efficient management practices in Indian vineyards. 
Interestingly, vineyards in the Sangli district of Maharashtra 
State, India, had witnessed severe infection of C. gloeosporioides 
on berries for the first time leading to severe crop damage and 
failure. Under these circumstances, endophytic microbes play an 
important role, as there is limited opportunity to apply chemical 
fungicides during the flowering to berry development stages of 
the crop. Thus, using these EB will certainly be  a safe and 
sustainable approach to ensuring high-quality grape production 
in the future.

5 Conclusion

The in vitro assay revealed from the present study that among 
the 20 EB, the 11 isolates viz., SB4, RF1, RG1, MS1, C1, C2, CS4, 
SB5, SB3, SB1, and SB2 were found promising against 
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C. gloeosporioides. Moreover, these isolates were identified based 
on 16S rRNA sequence information and showed >99% sequence 
identity with the earlier known prominent biocontrol agents. The 
identified species include, B. borstelensis, B. subtilis, M. luteus, 
B. licheniformis. The findings of this study will be helpful in the 
field evaluation of these biocontrol potential EB for efficient 
management of anthracnose disease.
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