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Introduction: The primary objective of our investigation was to assess the 
repercussions of prolonged exposure to heavy metals and smoking on the 
microbiome of the oral buccal mucosa. Concurrently, we aimed to elucidate 
the intricate interplay between external environmental exposures and the 
composition of the oral microbial ecosystem, thereby discerning its potential 
implications for human health.

Methods: Our study cohort was stratified into four distinct groups: MS 
(characterized by concurrent exposure to heavy metals and smoking), M (exposed 
solely to heavy metals), S (exposed solely to smoking), and C (comprising 
individuals serving as a control group). Specimens of buccal mucosa and blood 
were systematically acquired from the participants, facilitating subsequent 
microbial diversity analysis across the four oral buccal mucosa sample cohorts 
through 16S rRNA gene sequencing techniques. Simultaneously, blood samples 
were tested for heavy metal concentrations. In addition, we performed 
topological analyses by constructing microbial networks.

Results: Our findings notably indicate that co-exposure to heavy metals and 
smoking yielded a more pronounced alteration in the diversity of oral microflora 
when compared to singular exposures to either heavy metals or smoking. By 
comparing the oral bacterial communities and functional pathways between 
the four groups, we found significant differences in bacterial communities and 
functional pathways between the groups. Notably, the impact of heavy metal 
exposure overshadowed that of smoking, with concurrent exposure to heavy 
metals and smoking eliciting marginally greater effects than exposure to heavy 
metals alone. In addition, our analysis of the correlation between microbiota and 
blood heavy metal concentrations showed that the heavy metal cadmium (Cd) 
had a significantly greater effect on oral microbiota than other heavy metals.

Discussion: Chronic exposure to heavy metals and smoking disrupts the normal 
bacterial communities in the oral mucosa of residents of contaminated areas. 
This exposure reduces the complexity and stability of microbial networks and 
increases the risk of various diseases reduces the complexity and stability.
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1 Introduction

Oral health is an important part of systemic health. As an 
important first gateway to the human body, the oral cavity not only 
undertakes complex functions such as chewing, swallowing, and 
speech, but also has a close connection with a number of systems such 
as the respiratory system, digestive system, and cardiovascular system 
(Sedghi et al., 2021; Zhang et al., 2018). At the same time, the oral 
cavity is one of the most diverse sites in the human body for hosting 
microorganisms and is one of the five research priorities of the Human 
Microbiome Project (HMP) (oral, nasal, vaginal, intestinal, and skin) 
(Li X. et al., 2022). The oral microbiome plays a critical role in health 
and disease. Heavy metals are important raw materials that contribute 
to the development of national economies. However, the 
environmental impact of heavy metal emissions from metal 
production processes is of increasing concern worldwide. In 
particular, areas around mining and smelting facilities are often 
heavily polluted by heavy metals, causing irreversible ecological 
damage (Li K. et al., 2022). Heavy metals that have been discharged 
accumulate in soil and water and eventually enter the human body 
through the food chain or through direct contact with the skin; 
excessive accumulation of these metals in the human body can have 
carcinogenic effects, affect vital organs and ultimately disrupt normal 
biological functions (Li et al., 2024). With the rapid development of 
industrialization, urbanization and agricultural intensification, heavy 
metal contamination of soil has become an important global 
environmental problem and has attracted much attention (Liu et al., 
2025). Although small amounts of copper  and zinc are essential 
elements, they can be  toxic to humans and animals at high 
concentrations. Lead, cadmium, mercury and arsenic are non-essential 
elements that may be mutagenic, teratogenic and carcinogenic at very 
low levels (Bi et al., 2018). Mercury (Hg), Arsenic (As), Lead (Pb), 
Cadmium (Cd), and Chromium (Cr) have drawn great attention 
owing to their poisoning risks and high toxicity (Sha et al., 2019). Cd 
is known for its harmful effects on kidneys and bones, while As is 
highly toxic to most multicellular organisms (Zhou et al., 2024). In 
addition, recent studies have shown that heavy metal pollution also 
affects the structure of human microbial communities.

The oral cavity contains a variety of microbial communities, 
including bacteria, archaea, fungi and viruses, which are closely related 
to the occurrence of oral diseases (Pietrobon et al., 2021). Under normal 
physiological conditions, the oral flora maintains a dynamic balance, 
which can resist the invasion of exogenous pathogenic bacteria and 
protect the health of the organism (Li B.J. et al., 2023; Hoashi-Takiguchi 
et al., 2022). When the balance of oral flora is broken under the action 
of certain stimulating factors, the relative abundance of pathogenic 
bacteria in the oral cavity increases and the relative abundance of 
beneficial bacteria decreases (Liu et  al., 2021), and the 
microenvironment of the oral cavity changes (Priya et al., 2020), which 
leads to periodontal disease (Hathaway-Schrader and Novince, 2021), 
caries (Zhang et al., 2018) and other oral diseases. Studies have validated 
that dysbiosis of the oral flora not only precipitates oral diseases but also 
exhibits a close correlation with the onset and progression of diverse 
systemic diseases, encompassing cardiovascular ailments such as 
atherosclerosis and myocardial infarction (Wolf and Ley, 2019; Marietta 
et al., 2019), respiratory diseases (Tada and Senpuku, 2021) such as 
chronic obstructive pulmonary disease (COPD) and lung cancer, 
neurological diseases (Lin et al., 2021) such as Alzheimer’s disease, 

digestive diseases (Gao et al., 2018) such as inflammatory bowel disease 
(IBD) and gastrointestinal tract cancer (GI), endocrine diseases (Ruff 
et al., 2020) such as diabetes mellitus and polycystic ovary syndrome 
(PCOS), and immune system diseases such as HIV.

In general, oral microorganisms in healthy individuals are in a 
state of equilibrium with temporal stability. The oral bacterial 
community is dominated by six phyla: Firmicutes, Bacteroidota, 
Proteobacteria, Actinobacteriota, Fusobacteriota and Spirochaetes 
(Dewhirst et  al., 2010). While microorganisms establish a stable 
ecological niche in the human host, they are at the same time 
susceptible to a variety of internal and external factors, such as 
antibiotics, dietary habits, smoking and exposure to heavy metals. 
Firstly, antibiotics not only significantly affect the composition and 
function of the oral microbiota, but also induce specific metabolic 
changes during antibiotic interventions (Monroy-Perez et al., 2020). 
A prospective cohort study found that the Shannon diversity index 
was reduced after treatment with amoxicillin relative to the untreated 
group and continued to be reduced over 6 months (Menon et al., 
2019). Secondly, numerous scholars have endeavored to discern the 
correlation between diet and oral microbiota in the pursuit of 
formulating dietary regimens conducive to oral health. In infants, oral 
candidiasis is less frequent in breastfed and mixed-fed infants than in 
those fed solid foods: in adults, dietary changes can also modulate the 
oral microbiota and prevent the development of associated diseases 
(Anderson et al., 2020). Thirdly, smoking is widely recognized to affect 
the composition of the oral microbiota. For instance, smokers exhibit 
a notable reduction in the abundance of Proteobacteria within the oral 
microbiota, coupled with an elevation in Firmicutes and 
Actinobacteriota (Wu et al., 2016). Fourthly, epidemiological evidence 
indicates a correlation between exposure to toxic metals and oral 
microbiome-mediated diseases, such as dental caries and gingival 
diseases. Moreover, toxic metals such as antimony, arsenic, and 
mercury in saliva have been linked to alterations in the composition 
of the oral microbiome. Specifically, elevated levels of antimony and 
increased quantities of Lactobacillus spp. have been associated with 
dental caries. Heavy metals (Cr, Ni, Cu) are associated with the growth 
of Capnocytophaga, Neisseria, Aggregatella, Streptococcus, 
Campylobacter, Selenomonas and Prevotella in the oral cavity, and the 
heavy metals induce changes in the structure of the bacterial 
community (Zhang W. et al., 2023).

These factors mentioned above affect oral microbial communities 
to different degrees. A total of 127 participants were screened to 
collect oral samples based on the inclusion criteria, our objectives are 
to (1) determine which factors affect the microbial community 
structure of the human oral cavity; (2) explore the differences in the 
composition and diversity of oral microbial communities under the 
influence of heavy metal contamination and cigarette smoking; (3) 
predict functional differences in oral bacterial communities; and (4) 
assess whether network topological features of oral microbial 
communities differ under heavy metal and smoking exposure.

2 Materials and methods

2.1 Research site

Long-term smelting and mining of non-ferrous metals in the last 
century have seriously polluted the atmosphere, soil, surface water and 
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groundwater in Baiyin City. Minqin and Shuanghe villages 
(36°28′38.188″N, 104°18′47.870″E; 36°27′24.650″N, 104°21′22.057″E) 
are selected as typical polluted areas. As a comparison, Hewan and 
Yangwa villages (35°46′41.541″N, 104°0′37.443″E; 35°45′54.661″N, 
104°1′28.117″E), which are located 100 km away from Baiyin City and 
have relatively low levels of heavy metal pollution, in Yuzhong County, 
Lanzhou City, were selected as control areas. These two selected areas 
have similar levels of socio-economic development, and their 
inhabitants have similar lifestyles and eating habits.

2.2 Collection of soil samples and heavy 
metal analysis

Soil samples were collected in April 2021 from the contaminated 
and control areas to assess the levels of heavy metal pollution. A total 
of 18 sampling points were selected in this study (S1–S10, S1–S8), with 
S1–S10 located in the field in the vicinity of Minqin village and 
Shuanghe village (Figure  1C) and S1–S8 located in the field near 
Yangwa village and Hewan village (Figure 1D). At each sampling 
point, areas of approximately 10 × 10 m were randomly selected in the 
fields, and five subsampling sites were set up in each selected field 
using a five-point sampling method. After removing gravel and 
impurities at the surface, soil from five subsampling points (at 20 cm 
depths) was collected using a sterile wooden spatula and thoroughly 
mixed into a composite sample. A total of 18 samples were collected. 
The samples were sent to the laboratory on the same day. To determine 

the heavy metal content in soil, each soil sample was first air-dried at 
room temperature, and then biological debris, plant roots, leaves, and 
stones were removed, followed by sieving through a 200-mesh nylon 
sieve. Finally, each sample was thoroughly mixed and stored in a 
polyethylene bag for further analysis. Each sample of approximately 
0.5 g was digested using a microwave digestion system (Sartorius, 
PB-10, Germany). Then, the content of heavy metals (Mn, Sb, Cu, Cd, 
Zn, Hg, Pb, Mo, Co, and Ni) was measured using inductively coupled 
plasma–mass spectrometry (ICP–MS, Agilent, United States). Quality 
assurance/control procedures were conducted using standard 
reference materials (Chinese Academy of Measurement Science) with 
each batch of samples (one blank and one standard).

2.3 Research object

During the period from September 2019 to January 2021, 
residents who have lived in the local area for more than 10 years, who 
have not left the local area for more than half a consecutive year to go 
out to work, etc., and who were aged 40–69 years old, who voluntarily 
participated in the present survey and signed the informed consent 
form, were included by questionnaire in the two regions, and 
comprehensive demographic and lifestyle information was collected 
using questionnaire surveys, and the relevant information about the 
researchers’ targets was determined. The questionnaire covered three 
main sections: lifestyle habits, smoking behavior and oral health. By 
excluding those with missing information from the questionnaire or 

FIGURE 1

The location of sampling points in the contaminated and control areas. (A) China, (B) Baiyin and Lanzhou are shown on the left. The geographical 
locations of the (C) contaminated and (D) control sampling sites are shown on the right.
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insufficient biological samples, a total of 127 subjects were included 
and divided into four groups: MS = (co-exposure to heavy metals and 
smoking) = 34, M = (exposure to heavy metals) = 55, S = (exposure to 
smoking) = 19, and C = (control group) = 19.

2.4 The collection of oral buccal mucosa 
and blood samples

Fasting venous blood was collected from all subjects in vacuum 
anticoagulated blood collection tubes. The blood samples were gently 
mixed upside down to prevent coagulation. Subsequently, 1 mL of 
whole blood was divided into 2 mL freezing tubes for the analysis of 
heavy metal content, and the separated blood samples were stored at 
−80°C for measurement.

The oral samples were collected from the study subjects meeting 
the following four criteria: (1) no systemic diseases such as diabetes 
mellitus, hypertension, etc.; (2) no history of medication (including 
antibiotics) or basic periodontal treatment in the 3 months prior to 
the collection of oral samples; (3) the number of teeth in the mouth 
was ≥24; and (4) no oral diseases, such as dental caries, periodontal 
disease, oral cancer, etc. Smokers need to have smoked for at least 
10 years from the legal smoking age. Subjects were informed in 
advance not to eat for at least 1 h before sampling and were allowed to 
rinse their mouths with water to remove food debris in the mouth 
before sampling. Then, the buccal mucosa on the left and right sides 
of their mouths were scraped with a sterile cotton swab for 10 s. After 
oral sampling, all samples were immediately stored at −80°C for 
subsequent laboratory processing.

To investigate the association between the concentration of heavy 
metals in the blood and the composition of the buccal mucosa 
microbiota, blood samples were collected from the peripheral veins of 
the research subjects. We  collected 15 mL of heparinized venous 
blood, removed 2 mL of whole blood, and stored it at −80°C. The 
contents of heavy metals in blood were measured using an inductively 
coupled-mass spectrometer (ICP–MS, Elan DRC-II ICP–MS, 
PerkinElmer Sciex, United States). Subjects signed informed consent 
and the study was approved by the Ethics Committee of Lanzhou 
University School of Public Health.

2.5 DNA extraction, sequencing and 
bioinformatic analyses

DNA was extracted from each buccal mucosa sample using an 
E.Z.N.A. Soil DNA Kit (Omega Bio-Tek, Norcross, GA, United States) 
following the manufacturer’s instructions, and its concentration and 
purity were assessed on a 1% agarose gel. The hypervariable region 
V3–V4 of the bacterial 16S rRNA gene were amplified with primer 
pairs 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′) by an ABI GeneAmp® 9700 
PCR thermocycler (ABI, CA, United  States). Thermocycling 
conditions consisted of 3 min at 95°C, followed by 30 amplification 
cycles of 30 s denaturation at 95°C, 30 s annealing at 55°C, 72°C for 
45 s, and a final extension of 72°C for 10 min. All amplification 
reactions were performed in a total volume of 20 μL, containing 4 μL 
of 5× FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL of both the 
forward and reverse primers, 10 ng of template DNA, and 0.4 μL of 

FastPfu DNA Polymerase. To mitigate individual PCR biases, each 
sample was amplified in triplicate and pooled together. The amplicon 
quality of the PCR products was assessed on a 2% agarose gel, followed 
by purification with an AxyPrep Gel Extraction Kit (Axygen 
Biosciences, United  States). Purified amplicons were combined at 
equimolar concentrations and paired-end sequenced (2 × 300 bp) on 
an Illumina MiSeq platform (Illumina, United States) at the Majorbio 
Bio-pharm Technology Co., Ltd. (Shanghai, China) according to 
standard protocols. Raw sequencing data of the bacterial 16S rRNA 
gene have been deposited in the NCBI Sequence Read Archive under 
BioProject accession number PRJNA979792. The resulting sequences 
were processed using the QIIME pipeline. Briefly, low-quality 
sequences were trimmed with Cutadapt and quality filtered. 
Paired-end reads were assembled using FLASH version 1.2.11. 
USEARCH was used to remove chimeric sequences based on the 
UCHIME algorithm, and the remaining sequences were allocated to 
operational taxonomic units (OTUs) with 97% similarity using the 
UPARSE pipeline. OTUs with fewer than two sequences were 
eliminated, and their representative sequences were assigned to 
taxonomic lineages using the RDP classifier version 2.2 against the 
SILVA database (version 138) using confidence threshold of 0.7.

2.6 Statistical analysis

Alpha diversity index ACE, Shannon index, etc. were calculated 
using Qiime software. The Wilcoxon rank sum test was employed for 
intergroup differences in Alpha diversity. The similarity of microbial 
community structure among samples was examined using PCoA 
analysis (Principal Coordinate Analysis) based on the Bray–Curtis 
distance algorithm. This analysis was combined with the 
PERMANOVA non-parametric test to determine whether the 
differences in microbial community structure between sample groups 
were significant; LEfSe analysis (Linear discriminant analysis Effect 
Size) (LDA > 3.5, p < 0.05) was used to identify bacterial taxa with 
significant differences in abundance from phylum to genus level 
between different groups. To assess functional differences in metabolic 
pathways in microbial communities between groups, we  used 
PICRUSt2 based on the SILVA database of 16S rRNA sequences and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to 
predict microbial functional genes. Given the potential for a 
non-linear response relationship between mixture exposures, BKMR 
was used to assess the combined effects of different exposure factors 
on the bacterial and KEGG pathways. This approach integrates 
Bayesian and statistical learning methods to estimate nonlinearities 
and/or interactions in exposure-outcome associations. The analyses 
were conducted using the bkmr package in R Statistical Software. A 
total of 50,000 iterations of the BKMR variable selection model were 
performed using the Markov chain Monte Carlo algorithm. Response 
relationships for individual exposures and mixed exposure effects 
were investigated using BKMR, Including exploring bidirectional 
interactions between the main exposures.

2.7 Network analysis

Ecological network analysis was able to reveal the co-occurrence 
patterns between different microorganisms. To eliminate rare OTUs, 
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those with a mean relative abundance less than 0.01% across all 
samples were removed. Spearman rank correlation were calculated 
between pairs of OTUs, and p-values from the correlation analysis 
were adjusted using the Benjamin and Hochberg False Discovery Rate 
(FDR) controlling methods. The meta-community network was 
constructed using the weighted correlation network analysis 
(WGCNA) package, based on the correlation coefficients and 
FDR-adjusted p-values. A cutoff of 0.001 for p-values (FDR-adjusted) 
and a threshold of 0.77 for correlation coefficients were selected using 
the methods dependent on random matrix theory. Each node in the 
network represents one OTU, and each edge that connects two nodes 
represents the correlation between OTUs. Network topological 
features were obtained with the “igraph” package. All the samples were 
then divided into four groups. Sub-network images of each group 
were visualized using the Gephi 0.9.2.1 To characterize the network 
topology, we  calculated four node-level topological features (i.e., 
closeness centrality, node degree, betweenness centrality, and eigen 
centrality) and six network-level topological features (i.e., nodes, links, 
cluster number, average degree, graph density, and modularity) for 
each sub-network.

3 Results

3.1 The heavy metal pollution of the study 
area

To assess whether there were differences in metal pollution levels 
between the contaminated and control areas, the concentrations of 
heavy metals in the soil and the blood of the subjects in the two areas 
were compared using the Wilcoxon rank-sum test. In the ploughed 
soil of the contaminated area, our results showed that the mean values 
of seven metals (Mo, Cd, Sb, Cu, Hg, Pb, and Zn) were substantially 
higher than those of the control area (p < 0.05), whereas the levels of 
Co, Ni, and Mn were similar between the two areas (p > 0.05; 
Supplementary Table S1). The concentrations of four metals (Zn, Hg, 
Cd and Pb) in the blood of subjects living in contaminated areas were 
significantly higher than those in the control area (p < 0.05; 
Supplementary Table S2).

3.2 Factors affecting the oral microbiota

Following the removal of low-quality sequences, chloroplasts, 
chimeras, and singleton sequences, a total of 3,602,609 high-quality 
reads were obtained from 127 human oral samples, with an average 
of 28,367 reads per sample. Within the scope of the present 
investigation, a comprehensive tally of 2,300 Operational Taxonomic 
Units (OTUs) was discerned and classified into 39 phyla, 108 classes, 
260 orders, 439 families, and 901 genera. Analysis via PERMANOVA 
revealed a significant influence of heavy metal exposure and 
smoking on the community structure and composition of oral 
bacteria (p < 0.05), whereas dyspepsia and antibiotic usage did not 
yield a significant effect on the community structure and 

1 https://gephi.org/

composition of bacteria (p > 0.05; Supplementary Table S3). 
Consequently, our study pivoted toward investigating the impacts 
of heavy metals and smoking on oral microorganisms.

3.3 Alpha and beta diversity of the oral 
microbiota

3.3.1 Rarefaction curve
The rarefaction curves were plotted to evaluate whether the 

sequencing volume was sufficient to cover all taxa, indirectly reflecting 
the richness of species in the samples and the depth of sequencing. By 
analyzing the dilution curves of the samples (Figure 2A), it could 
be seen that the curves of each group are relatively flat, which indicated 
that the data obtained from sequencing were well saturated to meet 
the requirements of the analysis, and that the sequencing data could 
reflect the diversity information of oral bacterial communities well.

3.3.2 Venn diagram
The Venn diagram could visualize the similarity and overlap status 

of the composition of the number of OTUs in the oral samples. The 
numbers of shared and unique OTUs in oral samples under different 
exposure conditions were shown below (Figure 2B). It was found that the 
number of shared OTUs among different groups in oral samples was 
N = 533, which accounting for 23.17% of the total number of OTUs. 
Moreover, the highest number of shared OTUs was found in group S and 
control (N = 917, 39.87%), while the lowest number of shared OTUs was 
found in group MS and control (N = 649, 28.22%). This suggested that 
the effect of mixed exposure to heavy metals and smoking on the number 
of OTUs in oral samples was less than the effect of exposure alone.

3.3.3 Alpha diversity of oral bacterial 
communities

For the Alpha diversity of human oral microbial communities, 
ACE is an index used to estimate the number of microorganisms in 
the environment (the species richness of the community), and the 
larger its value, the higher the microbial richness in the community; 
Shannon is an index used to estimate the species diversity of the 
environmental community, and the larger its value, the higher 
the diversity of the community. We found that the ACE index was the 
largest in group C, indicating the highest microbial richness in this 
group, and that the ACE index differed significantly among the four 
groups (p < 0.01). However, the Shannon and Simpson indices showed 
no statistically significant difference (Figures 2C–G).

3.3.4 Beta diversity of oral bacterial communities
Based on the Bray–Curtis distance matrix, the microbial 

community structure of the different groups in the oral samples was 
as follows (Figure 2H and Supplementary Table S4). The differences 
in microbial structure between the different groups in the oral samples 
were significant (R2 = 0.2906, p = 0.001). Specifically, there was a 
significant difference in microbial structure between any two groups 
in the oral samples (p < 0.05). The largest difference in microbial 
communities was found between the MS and control groups 
(R2 = 0.205, p = 0.001), while the smallest difference in communities 
was found between the S and control groups (R2 = 0.070, p = 0.01). 
The differences in microbial communities gradually increased in the 
order of group S, M and MS compared to the control group.
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3.4 Bacterial community structure of oral 
samples

A total of 2,300 OTUs were identified in this study, belonging to 
39 phylums, 108 classes, 260 orders, 439 families and 901 genera.

At the phylum level, a total of 39 phyla were detected, and the 
phyla with relative abundance >1% were Firmicutes, Actinobacteriota, 
Proteobacteria, Fusobacteriota, Bacteroidota, Patescibacteria. The first 
5 of these phyla accounted for more than 95% of the oral flora of all 
samples and were the main dominant phyla in the human oral flora 
(Figures  3A,B and Supplementary Table S5). The abundance of 
Firmicutes gradually increased in the order of group MS, M, S, and C; 
while the abundance of Actinobacteriota gradually decreased in the 
order of group MS, M, S, and C.

At the genus level, a total of 901 genera were detected, and the 
genera with relative abundance >1% were Streptococcus, Rhodococcus, 
Gemella, Rothia, Actinomyces, Delftia, Neisseria, Haemophilus, 
Fusobacterium, Veillonella, Leptotrichia, Prevotella, Granulicatella, 
Porphyromonas, Peptostreptococcus (Figures  3C,D and 
Supplementary Table S6). Among them, the relative abundance of 
Streptococcus in group C was higher than that in all other groups; the 
abundance of Rhodococcus gradually decreased in the order of group 
MS, M, S, and C.

3.5 Analysis of differential species

The samples were analyzed for intergroup differences using LEfSe 
analysis to look for species that marked significant differences at each 
taxonomic level. Differences in the dominant phylum and genus of 

microbial communities between groups were as follows (Figure 4; 
Supplementary Figure S1; Table 1).

At the phylum level, after LEfSe analysis, three dominant phyla 
were found to be  significantly different between groups C and S: 
Actinobacteriota, Proteobacteria, and Patescibacteria; and three 
dominant phyla found to be significantly different between groups C 
and M: Firmicutes, Actinobacteriota, and Bacteroidota. The 
differential species found between groups C and MS were the same as 
those found in groups C and M. The relative abundance of 
Actinobacteriota was significantly (p < 0.05) higher in groups S, M 
and MS compared to Group C. In addition, the relative abundance of 
Firmicutes and Bacteroidota was significantly lower (p < 0.001) in 
both groups MS and M. The relative abundance of Proteobacteria was 
significantly lower (p < 0.05) in group S than in group C, whereas that 
of Patescibacteria was significantly higher (p < 0.05).

At the genus level, five dominant genera were found to 
be  significantly different between Groups C and S: Gemella, 
Actinomyces, Neisseria, Haemophilus, and Porphyromonas; seven 
dominant genera were found to be significantly different between 
Groups C and M: Streptococcus, Rhodococcus, Gemella, Delftia, 
Prevotella, Granulicatella, and Porphyromonas; significant 
differences were found between groups C and MS for six dominant 
genera: Streptococcus, Rhodococcus, Gemella, Delftia, Neisseria, and 
Porphyromonas. The relative abundance of Gemella and 
Porphyromonas was significantly reduced in groups S, M and MS 
compared to group C (p < 0.05); the relative abundance of 
Rhodococcus and Delftia was significantly increased in groups M 
and MS (p < 0.001). In addition, the relative abundance of Neisseria 
and Haemophilus was significantly (p < 0.05) reduced in group S 
compared to group C; the relative abundance of Streptococcus, 

FIGURE 2

Analysis of α-diversity and principal coordinate analysis of buccal mucosal bacterial communities. (A) Rarefaction curves for the bacterial community 
dataset. The flat curve indicated that the sequence number used for analyses was adequate. (B) Number of common and unique OTUs in oral samples. 
(C–G) Differences in bacterial α diversity indices between the MS, M, S, and C groups. Significant differences were determined by using the Wilcoxon 
rank-sum test. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. (H) Principal coordinate analysis (PCoA) of bacterial community dissimilarities based on the Bray–
Curtis distances. Significant differences in bacterial β diversity between the MS, M, S, and C groups were determined by using ANOSIM statistics 
(MS = co-exposure to heavy metals and smoking, M = exposure to heavy metals, S = exposure to smoking, and C = control group).
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Prevotella, and Granulicatella was significantly (p < 0.05) reduced 
in group M; the relative abundance of Streptococcus and Neisseria 
were significantly reduced in relative abundance in group MS 
(p = 0.004).

3.6 The predictive function analysis using 
KEGG

The differences in microbial gene functions among the four 
groups in terms of metabolic pathways were assessed using KEGG 
enrichment analyses. The KEGG database is a comprehensive 
database that correlates genetic and functional information, and the 
KEGG PATHWAY database, which analyses metabolic pathways, is 
one of its core databases. Comparing the non-redundant gene set with 
the KEGG database, this study annotated the genes to the KEGG 
database and found that the level 1 KEGG pathways mainly involved 
seven functional pathways, among which the highest abundance 
pathway was Metabolism, with an average relative abundance of 
annotated genes of 51.53% (Figure 5A). Among the 41 level 2 KEGG 
pathways, Membrane Transport was the pathway with the highest 
abundance of annotated genes, and the relative abundance of 
annotated genes was 13.23%, in addition, Carbohydrate Metabolism, 
Amino Acid Metabolism, Replication and Repair, Translation, and 
Energy Metabolism had higher average relative abundance of 
annotated genes of 11.02, 10.44, 7.99, 5.40, and 5.06%, respectively 
(Figure 5B).

Based on the KEGG level 2 pathways, there was a significant 
difference between the MS, M and S groups compared to the C group 
(Figure 6). Comparison of enriched KEGG pathways between the C 
and S groups indicated that cellular processes and signaling, poorly 
characterized pathways were enriched in the C group. Comparison 
of enriched KEGG pathways between the C and S groups indicated 
that cellular processes and signaling, poorly characterized pathways 
were enriched in the C group. Further comparison revealed that 
replication and repair, translation, membrane transport and 
nucleotide metabolism pathways were enriched in the C group 
relative to the MS group, while xenobiotics biodegradation and 
metabolism, amino acid metabolism, lipid metabolism and 
carbohydrate metabolism were enriched in the MS group than the C 
group. At the same time, we found similar results in the MS and 
M groups.

3.7 Correlation analysis between oral 
microbiota and blood heavy metals

To further investigate the effects of heavy metal exposure on oral 
microorganisms, Spearman correlation analyses were performed 
between the measured heavy metal concentrations and genus-level 
relative abundance of Top 15 bacteria (Figure 7A). The results showed 
that 6 heavy metals (Cd, Hg, Pb, Mo, Zn, and Co) had a significant 
effect on the bacterial community. Rhodococcus and Delftia were 
positively correlated with Cd and Pb, Rhodococcus was negatively 

FIGURE 3

The bacterial community composition of the MS, M, S, and C groups. Compositional differences in bacterial communities of the buccal mucosa at the 
phylum (A,B) and genus (C,D) levels. The p-value was calculated using the Wilcoxon rank-sum test and adjusted by using the false discovery rate. 
*p < 0.05; **p < 0.01; ***p < 0.001 (MS = co-exposure to heavy metals and smoking, M = exposure to heavy metals, S = exposure to smoking, and 
C = control group).
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FIGURE 4

LEfSe analysis to select species that differed between groups. (A) Branch diagram of lefse difference species between MS and C groups. (B) Branch 
diagram of lefse difference species between M and C groups. (C) Branch diagram of lefse difference species between S and C groups (MS = co-
exposure to heavy metals and smoking, M = exposure to heavy metals, S = exposure to smoking, and C = control group).
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correlated with Mo; Porphyromonas was negatively correlated with 
Cd, Hg, and Pb; Granulicatella, Streptococcus, and Haemophilus were 
negatively correlated with Cd; Neisseria was negatively correlated with 
Cd and Co; Gemella was negatively correlated with Cd and positively 
correlated with Mo; and Peptostreptococcus was positively correlated 
with Zn.

3.8 Correlation analysis of differential 
bacteria with differential functional 
pathways

In order to clarify the relationship between differential bacteria 
and differential functions, 10 differential marker species at the 

genus level were correlated with the top10 differential functional 
pathways in gene abundance (Figure 7B). The results showed that 
Rhodococcus (belonging to the Actinobacteriota), Delftia (belonging 
to Proteobacteria) was associated with Membrane Transport, 
Carbohydrate Metabolism, Amino Acid Metabolism, Replication 
and Repair, Energy Metabolism, Xenobiotics Biodegradation and 
Metabolism, Lipid Metabolism, Nucleotide Metabolism pathways 
had strong positive correlations (p < 0.001); Actinomyces (belonging 
to the Actinobacteriota) had strong positive correlations with 
Nucleotide Metabolism, Replication and Repair, Translation 
pathways were positively correlated (p < 0.05). Streptococcus, 
Gemella, Peptostreptococcus, Porphyromonas, Haemophilus, and 
Neisseria were strongly negatively correlated with these 10 
functional pathways (p < 0.05); Granulicatella was negatively 

TABLE 1 Differences in relative abundance of dominant phyla and genera of microbial communities between groups (*p < 0.05, **p < 0.01, and 
***p < 0.001).

ANOVA Phyla p Genera p

Gemella 0.001**

Actinobacteriota 0.023* Actinomyces 0.020*

C vs. S Proteobacteria 0.036* Neisseria 0.017*

Patescibacteria 0.034* Haemophilus 0.041*

Porphyromonas 0.021*

Streptococcus <0.001***

Rhodococcus <0.001***

Firmicutes <0.001*** Gemella 0.002**

C vs. M Actinobacteriota <0.001*** Delftia <0.001***

Bacteroidota <0.001*** Prevotella <0.001***

Granulicatella 0.003**

Porphyromonas <0.001***

Streptococcus 0.004**

Firmicutes <0.001*** Rhodococcus <0.001***

Actinobacteriota <0.001*** Gemella <0.001***

C vs. MS Bacteroidota <0.001*** Delftia <0.001***

Neisseria 0.004**

Porphyromonas <0.001***

FIGURE 5

Histogram of the distribution of KEGG level 1 functional pathway genes (A) and level 2 functional pathway genes (B) among different groups (MS = co-
exposure to heavy metals and smoking, M = exposure to heavy metals, S = exposure to smoking, and C = control group).
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FIGURE 7

(A) Correlation between genus level bacteria and heavy metals. (B) Heatmap for correlation analysis of differential bacteria with differential functional 
pathways (*p < 0.05, **p < 0.01, ***p < 0.001; p-values calculated using the SparCC algorithm).

correlated with Carbohydrate Metabolism, Energy Metabolism, and 
Membrane Transport (p < 0.05).

3.9 Ecological network analysis of oral flora

A meta-community ecological network was constructed based 
on the Spearman correlation and then divided into four different 

sub-networks. These networks consisted of four groups, namely, 
heavy metal and smoking co-exposure (Figure 8A), heavy metal 
exposure (Figure 8B), smoking exposure (Figure 8C), and control 
(Figure  8D). The overall network level characteristics of the 
microbiota sub-networks were compared between the different 
exposure groups (Table 2). Compared with the C group, the number 
of network nodes and edges decreased in the order of group S, group 
MS, and group M, indicating that the network pattern of group S was 

FIGURE 6

The KEGG pathway predicts differences in microbial community metabolic pathways between groups. (A) Differences in predicted function based on 
KEGG metabolic pathway at level 2 between MS and C groups. (B) Differences in predicted function based on KEGG metabolic pathway at level 2 
between M and C groups. (C) Differences in predicted function based on KEGG metabolic pathway at level 2 between S and C groups (MS = co-
exposure to heavy metals and smoking, M = exposure to heavy metals, S = exposure to smoking, and C = control group).
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more complex and stable; the clustering coefficient of group MS was 
the highest; the average degree and graph density of group S were 
the largest; and the modularity and average path length of group M 

were higher than those of other groups, which indicated that the oral 
bacterial network of group M was stronger and better connected 
than those of other groups.

FIGURE 8

Molecular ecological networks were constructed based on the correlation between bacterial OTUs. The networks of MS (A), M (B), S (C), and C (D) are 
shown. Node sizes are proportional to the number of connections. Each node represents a bacterial OTU and is colored according to its phylum-level 
classification relationship. Red lines indicate negative interactions between bacterial OTUs, while blue lines indicate positive interactions (MS = co-
exposure to heavy metals and smoking, M = exposure to heavy metals, S = exposure to smoking, and C = control group).

TABLE 2 Network-level topological features of the bacterial subnetworks in human oral.

Group Nodes Edges Clustering 
coefficient

Average 
degree

Graph 
density

Modularity Average 
path length

MS 41 72 0.505 3.515 0.088 0.6 3.189

M 36 56 0.39 3.111 0.089 0.628 4.068

S 48 113 0.38 4.708 0.1 0.546 3.134

C 48 249 0.582 10.375 0.221 0.284 2.068

MS = co-exposure to heavy metals and smoking, M = exposure to heavy metals, S = exposure to smoking, and C = control group.
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In oral bacteria of group MS, 72 correlations were detected with 
70 positive and two negative correlations; in oral bacteria of group M, 
56 correlations were detected with 52 positive and four negative 
correlations; in oral bacteria of group S, 113 correlations were detected 
with 89 positive and 24 negative correlations; in oral bacteria of group 
C, 249 correlations with 182 positive and 67 negative correlations. In 
all four groups, the most positive correlations were found in the 
Firmicutes (p < 0.05), and the most negative correlations were found 
between the Firmicutes and the Actinobacteriota (p < 0.05).

3.10 Assessment of exposure effects and 
interactions of different exposure factors 
using the BKMR model

A BKMR model was used to explore the effects of combined heavy 
metal and smoking exposure group (MS), heavy metal exposure group 
(M), smoking group (S), and control group (C) on the abundance of 
bacteria and KEGG metabolic pathways. In the bacterial phylum 
classification, the combined heavy metal and smoking exposure group 
(MS) had a greater effect on Actinobacteriota (Figure  9A), 
Patescibacteria (Figure 9B) and Proteobacteria (Figure 9C) than the 
heavy metal exposure group (M); in the KEGG metabolic pathway, the 
combined heavy metal and smoking exposure group (MS) had a 
greater effect on the Cellular Processes (Figure 9D), Environmental 
Information Processing (Figure  9E), Metabolism (Figure  9F) and 
Human Diseases (Figure 9G) than the heavy metal exposure group 

(M). Using bivariate-interaction plots, we  found no interaction 
between the different exposure factors (Supplementary Figure S2).

4 Discussion

Modulated by factors such as the immune system, host lifestyle, 
hygiene practices, and environmental conditions, the human oral 
microbiota had been intricately linked to a diverse spectrum of 
diseases (Qian et al., 2019; Hurley et al., 2019; Sanz-Martin et al., 
2017). Hence, comprehending the oral microbiota holds paramount 
significance in elucidating the intricate interplay between microbiota 
and human health. PERMANOVA analysis revealed that heavy metal 
exposure and smoking had a significant effect on the community 
structure and composition of oral bacteria, whereas age, gender, 
indigestion, and antibiotic use did not have a significant effect on the 
community structure and composition of bacteria. Previous 
investigations into the oral microbiota have predominantly examined 
heavy metals and smoking as distinct exposure factors, with limited 
exploration into their combined effects. Therefore, our study 
endeavored to delineate the impacts of exposure to heavy metals and 
smoking individually, as well as in combination, on the constitution 
of the oral microbiome.

In general, ecosystems with higher species diversity are more 
stable, functional and self-regulating (Xun et al., 2019; Pennekamp 
et  al., 2018). Although species interacted differently in different 
ecosystems, there was evidence that high species diversity could 

FIGURE 9

Univariate exposure-response functions for each exposure factor on bacteria phylum levels and KEGG primary pathways. The results were assessed by 
Bayesian Kernel Machine Regression (BKMR) models. The first three graphs show the effect on the phylum level of bacteria, these are the following 
Actinobacteriota (A), Patescibacteria (B), and Proteobacteria (C). The latter are based on the effects on the KEGG pathway, respectively, namely Cellular 
Processes (D), Environmental Information Processing (E), Metabolism (F), and Human Diseases (G).
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provide more functional redundancy and buffer ecosystem functions 
against possible species loss or extinction when faced with 
environmental disturbances (Bannar-Martin et al., 2018; Louca et al., 
2018). Within the oral microbial system, various oral microbiota were 
presumed to offer a distinct repertoire of enzymes, facilitating the 
degradation of toxic substances and constraining the proliferation of 
specific pathogenic bacteria linked to oral diseases through 
competitive interactions. Conversely, a decline in oral microbial 
diversity had been correlated with the occurrence of oral diseases 
(Zheng et al., 2020). In our study, we observed that the control group 
exhibited the highest level of species richness. This observation 
suggested that exposure to heavy metals and cigarette smoke might 
introduce toxicants, thereby impeding bacterial growth and 
consequent species depletion. Conversely, simultaneous exposure to 
heavy metals and cigarette smoke was associated with the highest level 
of species diversity. This outcome implied that metal exposure may 
engender an upsurge in metal resistance genes, thereby influencing 
the composition of bacterial profiles. In addition, cigarette smoke 
altered the composition of the bacterial flora. The abundance of 
Neisseria was decreased by smoke (Jia et al., 2021; Wu et al., 2016), 
which is consistent with our results. Exposure factors contributed to 
alterations in the oral environment, thereby fostering a diverse array 
of bacterial habitats. The combined impact of the two factors might 
precipitate an augmentation in alpha diversity within the oral 
microbial community. Comparative analyses of beta diversity values 
among oral microbial communities exposed to different factors 
revealed a gradual escalation in structural disparities relative to 
control groups, progressing in the sequence of smoking-exposed, 
heavy-metal-exposed, and mixed-exposed cohorts. Exposure to heavy 
metals and smoking might elicit distinct physiological and immune 
responses in individuals, potentially exacerbating inter-individual 
variations in oral microbiota. This suggests that heavy metals and 
smoking affect the diversity of oral bacteria. Metal exposure had a 
greater impact on microbial diversity than smoking. This might be due 
to the fact that metals can be highly toxic even in small concentrations. 
They directly interfered with microbial metabolism, enzymes, and 
cellular structure, often causing in cellular damage, stress responses, 
or even death. Many microbes required metals as cofactors for various 
enzymes. Obligate human pathogens and commensals had to 
generally derive these from their hosts. Unlike smoking-related 
chemicals, many metals did not degrade easily. Metals could persist in 
the environment, and their concentration could accumulate over time, 
causing chronic exposure to microbial communities. This constant 
exposure to metals could lead to selective pressure, promoting certain 
resistant microbial species while eliminating others, reducing overall 
microbial diversity.

Microbial community profiling revealed that the predominant 
microorganisms in the oral communities of smokers tended to 
be Actinobacteriota, Fusobacteriota, Bacteroidota, and Patescibacteria 
compared to controls. This finding was consistent with a previous 
study (Yu et  al., 2019). According to previous reports (Lim et  al., 
2018), oral diseases could usually be predicted by the composition and 
characteristics of microbial communities in oral buccal mucosa 
samples. Previous studies had shown that smoking disrupts the 
balance of oral commensal microbial composition, leading to gingival 
disease and dental alterations (Galvin et al., 2023; Wang et al., 2022). 
These factors assumed a pivotal role in restructuring the oral microbial 
community, underscoring the key role of smoking on the homeostasis 

of microbial communities within the oral cavity. Studies had revealed 
that individuals exposed to heavy metals exhibit a prevalence of 
Actinobacteriota, Proteobacteria, Fusobacteriota and Patescibacteria 
as dominant microorganisms within oral communities, aligning with 
findings reported in previous research (Zhang W. et al., 2023). The 
beneficial outcomes stemming from the symbiotic relationship 
between host and microbiota might bolster host defenses and uphold 
gastrointestinal tract health. However, microenvironmental shifts 
triggered by the infiltration of heavy metals into the oral cavity have 
the potential to disrupt the advantageous effects of host-microbiota 
symbiosis (Kilian et al., 2016; Rodriguez-Rabassa et al., 2018). When 
present in relatively high abundance in the corresponding oral 
communities, Actinobacteriota phylum was commonly associated 
with intestinal diseases and had been linked to cardiovascular diseases, 
chronic obstructive pulmonary disease (COPD), asthma, and 
metabolic disorders (diabetes) (Rizzatti et  al., 2017; Larsen et  al., 
2015). This also implied that a high abundance of Actinobacteriota in 
the heavy metal and smoking co-exposure group (MS) might disrupt 
the homeostasis of the oral microbial community, thereby 
predisposing individuals to oral diseases or infections. At the genus 
level, the microbial composition of the smoking group exhibited an 
increase in Actinobacteriota and Patescibacteria, alongside a decrease 
in Proteobacteria. Similarly, the microbial composition of the heavy 
metal-exposed group demonstrated an increase in Rhodococcus and 
Delftia, coupled with a decrease in Streptococcus, Gemella, Prevotella, 
Granulicatella, and Porphyromonas. Research had elucidated that 
arsenic exposure correlates with a notable reduction in species within 
the genus Prevotella, while mercury exposure was associated with 
significant reductions in species within the genera Neisseria, 
Granulicatella, and Abotrophia, alongside significant increased in 
Streptococcus. Furthermore, in a murine model, zinc deficiency and 
arsenic exposure individually induced alterations in the gut 
microbiome, and their combined effect exhibited synergistic actions 
(Gaulke et al., 2018). This might be relevant because the oral and gut 
microbiomes were predictive of each other (Segata et al., 2012). A 
previous study (Gao et  al., 2018) demonstrated that Streptococcus 
(Firmicutes), Actinomyces (Actinobacteria), and portion of Neisseria 
(Proteobacteria) are considered to be normal flora in a healthy oral 
cavity and can establish a co-operative relationship with the host. 
We  needed to make a special note that although many Neisseria 
species are commensals in the human microbiota, particularly in the 
oral and nasopharyngeal regions, it was important to note that certain 
species, such as meningitidis and gonorrhoeae, are obligate human 
pathogens and can cause serious infections. Additionally, the presence 
of Corynebacterium genus had been associated with a reduced risk of 
laryngeal cancer (Hayes et al., 2018), but this genus was not found in 
any of the exposed groups. The genus Porphyromonas (belonging to 
the Bacteroidetes) was thought to be most often positively associated 
with the etiology of periodontitis and other oral diseases (Costalonga 
and Herzberg, 2014).

The composition of oral salivary flora exhibited variations 
among different groups, necessitating a thorough investigation into 
the functional gene diversity of oral flora to comprehend the 
impact of changes in flora composition on its functionality. 
Analysis of functional gene annotations from the KEGG database 
revealed that the functional genes associated with heavy metal 
exposure and smoking groups were predominantly allocated to 
categories such as Membrane Transport, Carbohydrate 
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Metabolism, Amino Acid Metabolism, Replication and Repair, 
Translation, Energy Metabolism, Xenobiotics Biodegradation and 
Metabolism, Lipid Metabolism, and Nucleotide Metabolism. This 
indicated that functional pathways such as Carbohydrate 
Metabolism, Translation, and Amino Acid Metabolism are oral 
microecological important functions (Wang et al., 2023). Research 
found the Nervous System and Biosynthesis of Other Secondary 
Metabolites were significantly enriched in the smoking group, 
while Xenobiotics Biodegradation and Metabolism, Amino Acid 
Metabolism, and Lipid Metabolism were significantly enriched in 
the heavy metal group. Co-exposure to heavy metals and cigarette 
smoking had a similar effect on function as heavy metal exposure 
alone. Heavy metals (HMs) could expedite the onset of oral 
diseases through diverse mechanisms, encompassing the 
disruption of cell membrane integrity, inhibition of enzyme 
activity, and induction of inflammation (Zhang Y. et al., 2023). 
Similarly, the presence of copper ions can inhibit adhesion of 
Prevotella to epithelial cells (Mihaila et al., 2019). In addition, HMs 
ions might play a role in cellular activities such as gene 
transcription, translation, and metabolism, accelerating the cell 
cycle of bacterial cells and contributing to the enhancement of 
bacterial adaptation to changes in the oral microenvironment 
induced by heavy metal ions. This, in turn, affected the stability of 
the oral microbiota, ultimately influencing the oral microbiota of 
individuals exposed to heavy metals. Thus, our study suggested 
that heavy metal and smoking exposures could induce dysbiosis in 
oral flora, thereby altering the function of bacterial communities. 
However, since PICRUSt2 predicted microbial function based only 
on 16S rRNA reads, the study was only a preliminary prediction of 
bacterial function, and further verification should be carried out 
in future studies using methods such as metagenomics to better 
understand the function of buccal mucosal bacteria from 
different populations.

The findings of this investigation revealed that heavy metals 
(Cd, Pb, Mo, Hg, Zn, Co) present in blood were associated with the 
proliferation of Rhodococcus, Delftia, Porphyromonas, 
Granulicatella, Streptococcus, Neisseria, Gemella, Haemophilus, 
Peptostreptococcus, with environmental factors eliciting alterations 
in the structural composition of bacterial communities. 
Consequently, heightened levels of heavy metals in the bloodstream 
might contribute to the onset of oral diseases by impacting the 
abundance and diversity of the oral microbiota. Environmental 
factors further disrupt the balance of the human oral microbiota, 
thereby compromising microbial interactions and predisposing 
individuals to oral diseases (Abdelhamid, 2016). Prolonged 
exposure to heavy metals such as nickel, cobalt, lead, and 
chromium had been reported to affect the expression of 
pro-inflammatory mediators, consequently precipitating the 
destruction of periodontal tissues (Khalid and Abdollahi, 2020). In 
a prior study, chronic lead exposure was associated with adverse 
impacts on oral health. Elevated levels of lead in the bloodstream 
were found to correlate with heightened expression of bacteria 
harboring Streptococcus gordonii, Clostridium nucleatum, and 
Porphyromonas gingivalis, which could lead to disease (Peyyala 
et al., 2018; Tort et al., 2018; Ayangbenro and Babalola, 2017). Even 
at low concentrations, salivary HMs can impair oral health and 
alter the bacterial community structure (Lu et al., 2014). Arsenic, 
a common HMs contaminant, had been reported to alter the 

intestinal flora of mice, resulting in a significant decrease in the 
abundance of Firmicutes (Li et al., 2019; Hsieh et al., 2018). While 
there remained a scarcity of studies substantiating the literature 
concerning the impacts of heavy metals (HMs) exposure on the 
composition of oral microbial communities, it was undeniable that 
heavy metal exposure alters the gut microbiota. Furthermore, the 
acknowledged homology between the oral and gut microbiota 
underscores the potential for heavy metal exposure to influence 
oral microbial communities. Additionally, contamination of soil 
with heavy metals inevitably led to alterations in soil microbial 
community structure, subsequently impacting the human body via 
the food chain (Li H. et al., 2023).

Network analysis could reveal complex interactions between 
different bacterial species in microbial ecology studies (Faust and 
Raes, 2012). It was found that the bacterial network of the heavy 
metal exposure group (M group) had fewer nodes and links than 
the bacterial networks of the other groups, suggesting that heavy 
metals lead to a simpler oral bacterial network and we found that 
the number of modules and nodes within each module in the 
network of the control group was higher than that of the other 
three groups, suggesting that the microbial network of the control 
group had higher complexity and ecological diversity, and that 
microbes interacted with each other in a more complex and tightly 
knit manner. Under the network construction conditions, most of 
the links were positive, and the node correlation coefficient cut-off 
value was >0.5, suggesting that the human oral microbiota might 
be  predominantly co-operative or mutually beneficial to each 
other. It had been found that bacterial networks with lower graph 
density in megacities were more fragile than in non-megacities, 
and that megacity populations had more associations with oral-
related diseases (Kim et al., 2018). Similarly, our results showed 
that the graph density of bacterial networks in the heavy metal and 
smoking co-exposure group was lower than that of bacterial 
networks in the other groups. Therefore, people in the heavy metal 
and smoking co-exposure group might be more susceptible to the 
risk of related diseases. The average degree value of the heavy metal 
exposure group was 3.111. The above results suggest that heavy 
metal exposure reduces the complexity of the oral mucosal 
bacterial network.

Based on Bayesian kernel machine regression (BKMR) 
modeling, we found an association between combined exposure to 
heavy metals and smoking and heavy metal exposure. Previous 
studies had shown that smoking and heavy metals affect the oral 
microbiome of populations. A large study of healthy people in the 
United States found that smoking affected the relative abundance 
of microbes in the phylum Actinobacteriota and Proteobacteria 
(Wu et al., 2016). Another study in a healthy population found that 
heavy metal exposure led to a reduction in the oral microbiome in 
the phylum Firmicutes, Proteobacteria, and Fusobacteriota (Al-
Zyoud et al., 2020). This was consistent with the results of this 
study. These bacteria might be reduced by heavy metals and toxic 
substances in cigarettes, or indirectly by competition for 
colonization with enriched bacteria or co-aggregation with 
reduced bacteria. There were several potential mechanisms by 
which smoking and heavy metals may alter microbial ecology, 
including increasing the acidity of saliva, depleting oxygen, 
antibiotic effects, influencing bacterial adherence to mucosal 
surfaces, and impairing host immunity. Our analysis of inferred 
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metagenomes revealed the combined heavy metal and smoking 
exposure group (MS) had a greater effect on the Cellular Processes, 
Environmental Information Processing, Metabolism, and Human 
Diseases than the heavy metal exposure group (M). Heavy metals 
and cigarette smoking were also known to have a significant impact 
on human immunity and thus on the host’s ability to resist 
pathogen colonization. The chemotactic mobility and phagocytosis 
of oral polymorphonuclear leukocytes were reduced in heavy 
metal-contaminated and cigarette smokers; since these cells were 
essential for host defence against pathogens, the harmful 
substances in heavy metals and smoke inevitably promote an oral 
ecosystem that was more conducive to pathogens, thereby 
increasing the risk for oral diseases.

In conclusion, based on Bayesian kernel machine regression 
modelling, we  found that both exposure to heavy metal and 
smoking have an impact on oral microorganisms. However, our 
study indicated that heavy metals exposure exerted a more 
pronounced influence, with smoking playing a synergistic role.

5 Conclusion

We found that co-exposure to heavy metals and smoking 
altered the diversity of oral microflora more than heavy metals 
and smoking alone. Comparing the changes in oral bacterial 
community and functional pathways, there were significant 
differences in the oral microflora of different taxa, with each 
group having its own specific high abundance of bacteria. The 
effects of exposure to heavy metals were greater than those of 
smoking, and the effects of simultaneous exposure to heavy metals 
and smoking were slightly greater than exposure to heavy metals 
alone. Smoking plays a synergistic role in this study. Meanwhile, 
through the correlation analysis between microbiota and blood 
heavy metals, we found that the effect of Cd on microorganisms 
in this region was much greater than that of other heavy metals. 
This may be  attributed to the severe pollution caused by 
environmental cadmium due to the long-term smelting of 
non-ferrous metals in the last century, despite the adoption of 
industrial measures. Despite measures such as industrial 
restructuring and ecological restoration, the environmental Cd 
pollution caused by past industrial production still cannot 
be recovered for a long time. This study will provide new ideas for 
oral health care and disease control measures for the population 
residing in the Baiyin area.
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