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Introduction: Urinary tract infections (UTIs) are one of the most prevalent 
infections in North America and are caused by a diverse range of bacterial 
species. Although uropathogenesis has been studied extensively in the context of 
macromolecular interactions, the degree to which metabolism may contribute 
to infection is unclear. Currently, most of what is known about the metabolic 
capacity of uropathogens has been derived from genomics, genetic knockout 
studies or transcriptomic analyses. However, there are currently very little 
empirical data on the metabolic activity of uropathogens when grown in urine.

Methods: To address this gap, we conducted a systematic survey of the 
metabolic activities of eight of the most common uropathogenic bacterial 
species that collectively represent 99% of uncomplicated UTIs.

Results: Liquid chromatography-mass spectrometry (LC–MS) analyses of human 
urine cultures revealed that uropathogens have four distinct metabolic clades. We 
generalized these clades as serine consumers (Escherichia coli, Klebsiella pneumoniae, 
and Proteus mirabilis), glutamine consumers (Pseudomonas aeruginosa), amino 
acid abstainers (Enterococcus faecalis and Streptococcus agalactiae), and amino 
acid minimalists (Staphylococcus aureus and Staphylococcus saprophyticus). These 
metabolic classifications can be further subdivided on a species-to-species level.

Discussion: This survey provides a framework to understanding the metabolic 
activity of the diverse range of uropathogens and how these species use 
divergent metabolic strategies to occupy the same niche.
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1 Introduction

Urinary tract infections (UTIs) are one of the most common infections, affecting around 
400 million people worldwide (Zeng et al., 2022). UTIs can be caused by a diverse range of 
microorganisms, but in an outpatient setting, eight bacterial species are responsible for 99% of 
infections (Flores-Mireles et al., 2015; Wagenlehner et al., 2020). This relatively small number 
of species is somewhat surprising given the significant diversity of species identified in human 
feces, the presumed source of uropathogens (Tannock, 1999; Segata et al., 2012). This suggests 
that selective forces are at play, and one contributing factor may be nutritional selection.

Most of what we know about UTIs comes from Escherichia coli, which is frequently used 
as the model pathogen in studies since it is responsible for around 75% of uncomplicated 
UTIs (Flores-Mireles et  al., 2015; Wagenlehner et  al., 2020). Information about 
uropathogenic E. coli metabolism comes from genomic mapping, genetic knockouts, or 
transcriptional studies (Chan and Lewis, 2022). The consensus in the literature is that 
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uropathogenic E. coli must take up a wide range of urinary amino 
acids to fuel central carbon metabolism (Alteri et al., 2009; Chan 
and Lewis, 2022). In particular, serine catabolism is essential for 
E. coli growth in urinary environments (Hull and Hull, 1997; Roesch 
et  al., 2003; Anfora and Welch, 2006; Anfora et  al., 2007). 
Uropathogenic E. coli has also been shown to salvage various 
nucleotides, presumably to support gene replication (Russo et al., 
1996; Vejborg et al., 2012; Shaffer et al., 2017; Andersen-Civil et al., 
2018; Ma et al., 2018). In addition, E. coli also relays on urinary 
ethanolamine as a nitrogen source (Sintsova et al., 2018; Dadswell 
et al., 2019).

Although the metabolic requirements for uropathogenic E. coli 
are now emerging, this is only one of the many uropathogenic species, 
and thus, represents an incomplete picture of the metabolic selective 
strategies that could contribute to infection. Other uropathogenic 
species have yet to be metabolically characterized, despite collectively 
accounting for the remaining 25% of infections (Flores-Mireles et al., 
2015; Wagenlehner et  al., 2020). These species include Klebsiella 
pneumoniae, Staphylococcus saprophyticus, Enterococcus faecalis, 
Streptococcus agalactiae (group B streptococcus), Proteus mirabilis, 
Pseudomonas aeruginosa, Staphylococcus aureus, and Candida spp. 
(Flores-Mireles et al., 2015; Wagenlehner et al., 2020). Of these rarer 
uropathogens, infections caused by P. mirabilis have been attracting 
an increasing degree of attention because of its ability to produce 
crystalline biofilms which leads to complicated catheter-associated 
UTIs (Norsworthy and Pearson, 2017; Gmiter and Kaca, 2022). 
Similar to E. coli, P. mirabilis was also found to preferentially catabolize 
serine in human urine (Brauer et  al., 2019, 2022). However, the 
metabolic needs of all uropathogens outside of E. coli are poorly 
understood. Moreover, there have not been any in-depth 
investigations of the metabolic distinctions between different 
uropathogenic species.

Recent advances of high-resolution liquid chromatography-mass 
spectrometry (LC–MS) have radically expanded the complement of 
metabolic activities that can be tracked in routine studies. Moreover, 
our group has recently developed a specialized metabolic boundary 
flux analysis strategy used to characterize the metabolic phenotypes 
of microbes based on the rates of nutrient uptake and waste product 
excretion (Lewis, 2024). These metabolic profiles provide a convenient 
mechanism for making interspecific comparisons of metabolic 
activities and are useful for identifying metabolic phenotypes that 
distinguish closely related species (Rydzak et  al., 2022). Herein, 
we  harnessed this boundary flux analysis strategy to conduct a 
systematic metabolomics survey of the eight most common 
uropathogenic species to provide a systematic review of the nutritional 
strategies used by these species when grown in human urine.

2 Materials and methods

2.1 Human urine collection and bacterial 
strains

Human urine was collected and pooled from five healthy adult 
donors (three females, two males) via a one-time collection, following 
institutional ethics board approval (REB19-0442). Immediately after 
collection, the pooled urine stock was filter sterilized, aliquoted, and 
stored at −20°C. In preparation for experiments, aliquots of the 

pooled urine were thawed at room temperature and centrifuged 
(4,200 × g, 15 min). This pooled stock was used for all experiments 
presented in this study.

Bacterial species most frequently responsible for uncomplicated 
UTIs—each contributing to at least 1% of infections in outpatient 
setting—were selected for our metabolomics survey. A total of eight 
species were evaluated including four Gram-negative species (E. coli, 
K. pneumoniae, P. aeruginosa, and P. mirabilis) and four Gram-positive 
species (E. faecalis, S. agalactiae, S. aureus, and S. saprophyticus). For 
each species, six diverse strains were selected from different isolation 
origins, including laboratory controls and clinical isolates from UTIs 
and other infections (Supplementary Table S1).

2.2 In vitro bacterial growth in pooled 
human urine

A total of 48 bacterial strains were grown in vitro in pooled, 
sterile-filtered human urine. All bacterial strains were first cultured 
overnight in Mueller Hinton (MH) medium (BD Difco, Mississauga, 
ON, Canada) at 37°C with shaking (180 rpm). Overnight cultures 
were centrifuged (4,200 × g, 15 min) and washed twice with phosphate 
buffered saline (PBS) to remove contaminating metabolites. Strains 
were then inoculated at an OD600 (optical density at 600 nm) of 0.1 in 
pooled human urine (Mutiskan™ GO Microplate Spectrophotometer, 
Thermo Scientific), producing 200 μL bacterial cultures on a 96-well 
plate. Thus, all urine cultures were normalized to approximately 
1 × 105 colony-forming units per milliliter (CFU/mL) at the start of 
the experiment. The urine cultures were incubated at 37°C with 5% 
CO2 and 21% O2 (Heracell™ VIOS 250i Tri-Gas Incubator, Thermo 
Scientific) for 4 h and the OD600 of the cultures were monitored at 
30-min intervals (Mutiskan™ GO Microplate Spectrophotometer, 
Thermo Scientific). Using the same growth protocol, an eight-hour 
growth course with the same strains was conducted in a separate 
experiment (Supplementary Figure S1).

Extracellular samples of the cultures were taken at the start and 
end of the growth course, and then diluted in HPLC (high-
performance liquid chromatography)-grade methanol at a 1:1 ratio 
and frozen at −80°C. Additionally, at the end of the growth course, the 
cultures were plated on MH agar plates (except for S. agalactiae 
cultures that were plated on Columbia blood agar instead) at 105 and 
106 dilutions. The agar plates were incubated overnight at 37°C, and 
then the resultant colonies were counted.

2.3 Liquid chromatography-mass 
spectrometry analysis

LC–MS analysis was conducted at the Calgary Metabolomics 
Research Facility. In preparation for metabolomics analysis, 
extracellular samples collected from urine cultures were thawed at 
room temperature, centrifuged (4,200 × g, 10 min), and diluted 10-fold 
with 50% HPLC-grade methanol before undergoing LC–MS analysis. 
Our LC–MS methods has been described in detail elsewhere (Groves 
et al., 2022; Rydzak et al., 2022). Briefly, metabolites in the samples were 
resolved with a Syncronis™ Hydrophilic Interaction Liquid 
Chromatography (HILIC) Column (2.1 mm × 100 mm × 1.7 μm, 
Thermo Scientific) on a Vanquish™ Ultra-High-Performance Liquid 
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Chromatography (UHPLC) platform (Thermo Scientific) using a 
15-min two-solvent gradient method (20 mM ammonium formate at 
pH 3.0 in HPLC-grade water and HPLC-grade acetonitrile with 0.1% 
formic acid). Mass spectrometry data were acquired in full scan in both 
positive and negative modes on a Q Exactive™ HF Hybrid 
Quadrupole-Orbitrap™ Mass Spectrometer (Thermo Scientific). All 
acquired LC–MS data were analyzed with El-MAVEN v0.12.0 software 
(Agrawal et al., 2019).

Metabolites were assigned using an in-house library of chemical 
standards on the basis of exact mass and chromatographic retention 
time. Each assignment was verified using a commercial standard 
from Sigma-Aldrich. Chemical standards were also used to prepare 
a concentration calibration reference mixture for absolute 
quantification, and metabolite concentrations were computed 
following established methods (Ponce et  al., 2024). Metabolic 
activity exhibited by each species was identified based on the 
consumption or production of metabolites. These were defined as 
threshold differences relative to uninoculated urine controls. 
Significantly consumed or secreted metabolites were identified using 
Welch’s two-sample t-test followed by Bonferroni correction 
(α = 0.00625).

2.4 Characterization of a cohort of clinical 
polymicrobial urine samples

To establish the frequency of which certain species co-segregated 
in polymicrobial UTIs, we  acquired the species information of a 
cohort of patient urine samples sent to Alberta Precision Laboratories 
over the course of a week. The demographics of UTIs from the Calgary 
health region has been previously described (Laupland et al., 2007; 
Gregson et al., 2021). A total of 1,462 urine samples were identified as 
growth-positive (>107 CFU/L), which is defined as a UTI based on 
clinical guidelines (Alberta Precision Laboratories, 2021). Within this 
cohort, only 81 samples contained two causative species, and these 
causative organisms were identified to the species level. To determine 
if the observed species distribution was expected by chance, the top 
three pairs of species underwent individual chi-square goodness-
of-fit tests.

3 Results

3.1 Metabolic composition of human urine

The chemical composition of human urine can vary considerably 
between individuals and over time (Rasmussen et al., 2011; Bouatra 
et al., 2013; Virgiliou et al., 2021). Thus, to minimize variability, urine 
samples were pooled into one stock and this stock was used for all 
experiments. As expected, metabolomics analysis of our pooled urine 
stock revealed that it contained high concentrations of amino acids 
and relatively low concentrations of carbohydrates and nucleic acids 
(Supplementary Table S2). The concentrations of individual 
metabolites in our pooled urine stock were within the normal ranges 
reported in the literature, with a few exceptions including isoleucine, 
leucine, cystine, 4-hydroxyproline, uracil, and succinate, which were 
approximately 10 μM more or less abundant than published normal 
ranges (Bouatra et al., 2013).

3.2 Metabolomics analysis and 
identification of metabolic clades

For each species, six distinct isolates were seeded at 1 × 105 CFU/
mL in pooled human urine and grown for 4 h, reaching 3.0 × 106 to 
3.6 × 108 CFU/mL (Supplementary Figure S2). The metabolic profiles 
observed in the cultures over time were captured by LC–MS using our 
previously established strategy (Rydzak et  al., 2022; Lewis, 2024) 
(Figure 1). The metabolite abundances in the cultures were compared 
to those in the urine controls to determine changes in metabolite 
concentration and identify metabolites that were consumed or 
produced (Supplementary Figure S3; Supplementary Table S3). As 
expected, many of the metabolic phenotypes that we observed were 
consistent with those reported in the literature. For example, E. coli is 
well-known for utilizing glucose as its preferred carbon source and 
secreting succinate (Holms, 1996; Thakker et al., 2012), a phenotype 
which we  also observed when it was grown in urine 
(Supplementary Table S3). Similarly, tyramine production is well-
characterized in E. faecalis (Connil et al., 2002; Perez et al., 2015), and 
we  also observe its production in E. faecalis urine cultures 
(Supplementary Table S3).

Our metabolomics approach enabled us to capture a more 
comprehensive transect of metabolites across our panel of 
microorganisms. As reported previously (Rydzak et  al., 2022), 
bacterial strains of the same species showed consistent metabolic 
phenotypes (Figure  1). However, each species exhibited a unique 
metabolic profile of consumed versus secreted metabolites 
(Supplementary Figure S3). Multivariate analyses of the metabolic 
profiles observed in these uropathogens showed that although 
individual species-related clusters occurred, broader phenotypes were 
also observed across groups of species (Figure 2). As expected, the 
most significant metabolic differences were between Gram-negative 
species (E. coli, K. pneumoniae, and P. mirabilis) and Gram-positive 
species (E. faecalis, S. agalactiae, S. aureus, and S. saprophyticus) with 
P. aeruginosa being a notable exception that occupies a unique 
metabolic space distinct from all other uropathogens (Figure 2A). 
Based on similarities and differences in metabolic profiles, 
uropathogens were generalized into four metabolic clades: (1) serine 
consumers, (2) glutamine consumers, (3) amino acid abstainers, and 
(4) amino acid minimalists (Figure  2B). Each of these labels are 
proxies to describe a complex suite of metabolic phenotypes that 
generally clusters these uropathogenic species.

The cluster of “serine consumers” included E. coli, K. pneumoniae, 
and P. mirabilis. All of these Gram-negative Enterobacterales species 
consumed between 90 and 98% of urinary serine (Figure 3A). Within 
the serine consumers, P. mirabilis metabolically deviated from E. coli 
and K. pneumoniae, which aligned with the separation observed in the 
genetic phylogenetic tree (Figure  2). A few distinct metabolic 
phenotypes drove this separation, including thymine production and 
arginine consumption (Supplementary Figure S4). P. aeruginosa is an 
outlier with regards to the Gram-negative group as it failed to consume 
serine (Figure 3A). P. aeruginosa was also the only species not to 
consume glucose, instead consuming higher concentrations glutamine 
(95%) and hypoxanthine (97%) (Figure 3A). Due to its distinct profile, 
P. aeruginosa was categorized into a metabolic clade of its own as a 
“glutamine consumer,” despite displaying a few shared phenotypes 
with P. mirabilis, such as high arginine and succinate consumption 
(Supplementary Figure S4).
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The clusters of “amino acid abstainers” and “amino acid 
minimalists” were exclusively made up of Gram-positive organisms 
that consumed very few amino acids compared to Gram-negative 
species (Figure 3B). Of these, the amino acid abstainers (E. faecalis and 
S. agalactiae) only consumed between 1 and 2 amino acids out of the 
19 amino acids detected, while other species across our cohort 
consumed between 8 and 14 (Figure 3B). Whereas, the amino acid 
minimalists (S. saprophyticus and S. aureus) consumed a broader 
range of amino acids than amino acid abstainers but at a lower 
quantity than the Gram-negative bacteria (Figure 3B).

Most of the bacterial species evaluated consumed 319.50–
664.10 μM of the total amino acids present (Supplementary Table S3). 
The exceptions were the amino acid abstainers (E. faecalis and 
S. agalactiae), which only consumed 22.04 μM and 6.24 μM of amino 
acids, respectively (Supplementary Table S3). Nearly all observed 
amino acids (16/19 amino acids) were consumed by at least one 
bacterial species (Supplementary Table S3). Urinary arginine, 
asparagine, glutamine, isoleucine, methionine, serine, threonine, 
tryptophan, tyrosine, and valine were consumed by over half of all 
species assessed (≥4/8 species) (Supplementary Table S3). Neither 

glycine nor histidine were consumed by any species, despite being the 
top two most abundant amino acids in urine (Supplementary Table S3). 
In contrast, the next two most abundant amino acids, serine and 
glutamine, were consumed by six out of eight species 
(Supplementary Table S3). As noted previously, K. pneumoniae, 
P. mirabilis, and E. coli consumed higher quantities of serine (90–98%), 
while P. aeruginosa consumed higher quantities of glutamine (95%) 
relative to other species (Supplementary Table S3).

As expected, urinary glucose was consumed by seven out of the 
eight species, each consuming between 84 and 96% 
(Supplementary Table S3). P. aeruginosa was the only exception, which 
did not significantly consume glucose (Figure 3A). Another prevalent 
carbon source in urine was succinate, and between 86 and 99% was 
consumed by P. aeruginosa and P. mirabilis (Supplementary Figure S4; 
Supplementary Table S3). Interestingly, succinate was also produced 
by E. coli (1003.44 μM), S. saprophyticus (47.74 μM), and S. aureus 
(184.60 μM) (Supplementary Figure S4; Supplementary Table S3).

Nearly all available urinary nucleosides (9/11 nucleosides) were 
taken up by most species (≥5/8 species), including adenosine, 
cytidine, deoxyadenosine, deoxyguanosine, guanosine, inosine, 

FIGURE 1

Metabolic phenotypes of uropathogens when grown in human urine. Metabolite concentrations in in vitro cultures were quantified by LC–MS after 
four-hour incubation in pooled human urine. For each species, six distinct isolates were used to assess phenotypic diversity. Differences in metabolite 
concentrations across species are depicted as z-scores. Metabolite classes are listed (right) and metabolic phenotypes are clustered according to 
hierarchical clustering (left). The heatmap scale is in row-normalized z-scores; red indicates higher metabolite concentration and blue indicates lower 
metabolite concentration.
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thymidine, and uridine (Supplementary Table S3). In contrast, 
nucleobases were rarely consumed (2/6 nucleobases), except for 
hypoxanthine and xanthine (Supplementary Table S3). A few species 
secreted nucleic acids, and the most pronounced example of this was 
the unique thymine production phenotype observed in P. mirabilis 
(203.62 μM) (Supplementary Figure S4; Supplementary Table S3). 
This metabolic phenotype appeared to be specific to P. mirabilis urine 
culture, as it was not observed when it was grown in other growth 
media such as MH broth (Supplementary Figure S5).

3.3 Prevalence of species in polymicrobial 
UTIs

A significant fraction of UTIs are polymicrobial (Gaston et al., 
2021). Given the distinct metabolic clades observed in this study, 

we speculated that polymicrobial infections may be more prevalent in 
species with complimentary metabolic niches. To test this hypothesis, 
we collected the species breakdown of all polymicrobial infections 
observed in the Calgary health zone over a one-week period, and in 
this cohort, 5.5% were identified as polymicrobial (81/1,462). The top 
three most frequent pairings in this cohort were E. coli and E. faecalis 
(32.1%), E. coli and K. pneumoniae (8.6%), and E. coli and Streptococcus 

FIGURE 2

Clustering of the metabolic profiles of uropathogens. (A) Clustering 
of uropathogens according to their genomic and metabolic 
phylogenies. Genomic phylogenies were derived from phyloT v2 
(https://phylot.biobyte.de/) and were compared to the metabolic 
classifications derived from hierarchical clustering. (B) Clusters of 
metabolic phenotypes from principal component analysis (PCA). 
Score plot distributions of eight species were shown with the 
metabolic clades illustrated by circles. PCA-biplot distribution of 
important metabolites that are contributing to the segregation of the 
scores. Red metabolites denote phenotypes that were identified as 
significant after Bonferroni correction in univariate analyses.

FIGURE 3

Prominent metabolic features that defined each metabolic clade. 
Metabolic phenotypes distinctive to the metabolic clades are 
displayed. (A) The concentrations of serine, glucose, glutamine, and 
hypoxanthine differentiated Gram-negative species into SC and GC. 
(B) The total amino acid concentration consumed and the number 
of different amino acids consumed differentiated Gram-positive 
species into AAA and AAM. Statistical significance is denoted by an 
asterisk (*, two-sample t-test with Bonferroni correction 
α = 0.00625). Error bars represent one standard deviation. SC, serine 
consumers; GC, glutamine consumers; AAA, amino acids abstainers; 
AAM, amino acids minimalists.
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FIGURE 4

Schematic representation of metabolic pathway activities that distinguish the four metabolic clades. The most prominent consumed and secreted 
metabolites, and their respective metabolic pathways are shown for serine consumers, glutamine consumers, amino acid abstainers, and amino acid 
minimalists. The red crosses indicate the absence of the metabolic phenotype and red downward arrows indicate lower activity. Created in BioRender.
com. Chan (2024) https://BioRender.com/t93o312.

viridans (8.6%) (Supplementary Table S4). To better understand if the 
co-segregation of these species followed the expected distribution 
based on their individual prevalence, we  conducted chi-square 
goodness-of-fit tests on the top three pairs (Supplementary Table S4). 
The E. coli and E. faecalis pair (p = 0.0026) and the E. coli and 
S. viridans pair (p = 0.014) occurred significantly more frequently 
than expected, while the prevalence of the E. coli and K. pneumoniae 
pair (p = 0.48) followed the distribution expected by chance 
(Supplementary Table S4).

4 Discussion

The primary goal of this study was to provide empirical evidence 
for the metabolic preferences of common uropathogens when grown 
in human urine. To the best of our knowledge, this is the first study 
that provides the foundational metabolic data needed to understand 
the diverse nutritional strategies used by these uropathogens. Our 
metabolomics data showed that the eight most common 
uropathogens followed four nutritional strategies which 
we characterized as serine consumers, glutamine consumers, amino 
acid abstainers, and amino acid minimalists (Figure  2B). These 
categorical designations are not exhaustive lists of the metabolic 
differences between the clades but serves as convenient descriptors 
of the most distinctive metabolic features in each group (Figure 3). 
The nutritional strategies generally unique to each metabolic clade 
are illustrated in Figure 4.

As reported in similar studies (Rydzak et  al., 2022), our 
metabolomics analysis showed that the metabolic features within 

strains of the same species were minimal relative to interspecific 
differences (Figure 1). The metabolic distinctions between species 
tended to co-segregate according to phylogeny (Figure 2A). The most 
dramatic metabolic distinction observed in this dataset were those 
that separated Gram-negative (E. coli, K. pneumoniae, P. mirabilis, and 
P. aeruginosa) and Gram-positive species (E. faecalis, S. agalactiae, 
S. aureus, and S. saprophyticus) (Figure 2B). Gram-negative species are 
evidently well-adapted to using a wide range of urinary amino acids, 
while the Gram-positive species appear to use little to no amino acid 
catabolism to support their growth (Figure 3B). Few studies have 
performed metabolomics analysis on clinical urine samples, but one 
study quantified amines and amino acids in clinical urine specimens 
and reported lower concentrations of serine and asparagine in UTI 
patients with E. coli compared to healthy individuals (Puebla-Barragan 
et al., 2020), which aligned with our findings.

Divergence in nutritional strategies may provide a selective 
advantage for uropathogens, especially when competing against 
fast-growing organisms such as E. coli. This may be relevant in the 
context of polymicrobial infections, wherein two or more species 
co-exist in the urinary tract (Azevedo et al., 2017; De Vos et al., 
2017; Gaston et al., 2021). Our analysis of the species breakdown of 
polymicrobial infections in the Calgary health zone appears to 
support this hypothesis. We observed significant co-segregation of 
E. coli and E. faecalis (p = 0.0026, chi-square goodness-of-fit test) 
(Supplementary Table S4) and this pairing was the most prevalent 
in other documented cohorts as well (Cardone et  al., 2018; 
Folaranmi et  al., 2022; Nye et  al., 2024). This significant 
co-segregation may occur because E. coli and E. faecalis occupy 
compliment metabolic niches with E. coli as a serine consumer and 
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E. faecalis as an amino acid abstainer. E. coli depends heavily 
on amino acid catabolism, consuming 14 out of 19 amino acids 
totaling to 643.43 μM, whereas E. faecalis does not, consuming 
only two amino acids totaling to 22.04 μM (Figure  3B; 
Supplementary Table S3). This metabolic distinction may allow 
E. faecalis to establish infections in the urinary tract without 
competing in the same metabolic niche as E. coli. There is evidence 
to support this hypothesis. Previous studies co-cultured E. coli and 
E. faecalis in artificial urine medium and found that co-culturing 
either had a neutral or positive effect on bacterial viability (Galván 
et al., 2016; Nye et al., 2024).

One interesting application of our dataset is as a tool to help refine 
artificial urine. Artificial urine is used routinely to create a more 
physiological environment for in vitro studies of urinary tract diseases 
(Grases et al., 1996; Jacobs et al., 2001; Jones et al., 2007; Ma et al., 
2018; Juarez et  al., 2020). However, we  note that the metabolic 
compositions in current artificial urine formulations are neither 
defined nor reflective of the metabolite abundances observed in 
human urine (Brooks and Keevil, 1997; Chutipongtanate and 
Thongboonkerd, 2010; Ipe et al., 2016; Sarigul et al., 2019). This is 
problematic because many of the metabolites we observed as preferred 
nutrients (outlined in Supplementary Table S2) are absent or not 
chemically defined in established formulas. Therefore, supplementing 
artificial urine with these key metabolites can potentially help bring 
these formulas closer to physiological relevance.

In summary, we conducted a systematic metabolomics survey of 
the eight most common uropathogens and identified four distinct 
metabolic clades that differentiate uropathogens. We  observed 
significant differences in nutritional styles that may help explain the 
co-segregation of species in polymicrobial infections and pave the 
way for creating a more precisely defined artificial urine media. 
Overall, this dataset provides a foundation for future metabolomics 
analyses of uropathogens and clearly demonstrated that the 
nutritional strategies of uropathogens should be considered in future 
UTI studies.
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