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Objective: To develop a machine learning-based prediction model to assist 
clinicians in accurately determining whether the detection of Klebsiella 
pneumoniae (KP) in sputum samples indicates an infection, facilitating timely 
diagnosis and treatment.

Research methods: A retrospective analysis was conducted on 8,318 patients 
with KP cultures admitted to a tertiary hospital in Northeast China from January 
2019 to December 2023. After excluding duplicates, other specimen types, 
cases with substandard specimen quality, and mixed infections, 286 cases 
with sputum cultures yielding only KP were included, comprising 67 cases in 
the colonization group and 219 cases in the infection group. Antimicrobial 
susceptibility testing was performed on the included strains, and through 
univariate logistic regression analysis, 15 key influencing factors were identified, 
including: age > 62 years, ESBL, CRKP, number of positive sputum cultures for 
KP, history of tracheostomy, use of mechanical ventilation for >96 h, indwelling 
gastric tube, history of craniotomy, recent local glucocorticoid application, 
altered consciousness, bedridden state, diagnosed with respiratory infectious 
disease upon admission, electrolyte disorder, hypoalbuminemia, and admission 
to ICU (all p < 0.05). These factors were used to construct the model, which was 
evaluated using accuracy, precision, recall, F1 score, AUC value, and Brier score.

Results: Antimicrobial susceptibility testing indicated that the resistance rates 
for penicillins, cephalosporins, carbapenems, and quinolones were significantly 
higher in the infection group compared to the colonization group (all p < 0.05). 
Six predictive models were constructed using 15 key influencing factors, including 
Classification and Regression Trees (CART), C5.0, Gradient Boosting Machines 
(GBM), Support Vector Machines (SVM), Random Forest (RF), and Nomogram. 
The Random Forest model performed best among all indicators (accuracy 
0.93, precision 0.98, Brier Score 0.06, recall 0.72, F1 Score 0.83, AUC 0.99). 
The importance of each factor was demonstrated using mean decrease in Gini. 
“Admitted with a diagnosis of respiratory infectious disease” (8.39) was identified 
as the most important factor in the model, followed by “Hypoalbuminemia” 
(7.83), then “ESBL” (7.06), “Electrolyte Imbalance” (5.81), “Age > 62 years” (5.24), 
“The number of Positive Sputum Cultures for KP > 2” (4.77), and being bedridden 
(4.24). Additionally, invasive procedures (such as history of tracheostomy, use of 
ventilators for >96 h, and craniotomy) were also significant predictive factors. 
The Nomogram indicated that CRKP, presence of a nasogastric tube, admission 
to the ICU, and history of tracheostomy were important factors in determining 
KP colonization.
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Conclusion: The Random Forest model effectively distinguishes between infection 
and colonization status of KP, while the Nomogram visually presents the predictive 
value of various factors, providing clinicians with a reference for formulating 
treatment plans. In the future, the accuracy of infection diagnosis can be further 
enhanced through artificial intelligence technology to optimize treatment 
strategies, thereby improving patient prognosis and reducing healthcare burdens.
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1 Introduction

Klebsiella pneumoniae (commonly referred to as KP) is a 
frequently encountered opportunistic pathogen in clinical settings, 
typically colonizing the human gut and upper respiratory tract 
(Podschun and Ullmann, 1998). KP colonization can be detected in 
more than 40% of the population (Guilhen et al., 2019). At the same 
time, this bacterium is the third most common bacterial cause of 
hospital-acquired pneumonia (Jones, 2010). KP infections are also 
common in ventilator-associated pneumonia (VAP) (Alnimr, 2023). 
With the emergence of multi-drug resistant (MDR) strains, it has been 
classified by the World Health Organization (WHO) as a priority 
pathogen for which urgent new therapies are needed (Antimicrobial 
resistance: global report on surveillance, n.d.). Sputum culture is an 
important method for identifying respiratory tract infection pathogens 
in clinical practice; however, for the opportunistic pathogen KP, 
clinicians often find it challenging to distinguish between colonization 
and infection. Colonization refers to the adherence and growth of 
microorganisms on the surface of host tissues, while infection 
describes the process by which microorganisms invade host cells or 
tissues, leading to pathological conditions. Colonization and infection 
are closely related (Vornhagen et al., 2024). When the host’s immune 
response is suppressed or there are other risk factors present, 
colonizing Klebsiella pneumoniae may begin to proliferate and invade 
surrounding tissues, leading to severe infection (Cai et  al., 2024). 
Misclassifying colonization as infection can lead to overtreatment in 
clinical settings, increasing the incidence of adverse reactions and 
promoting the development of antibiotic resistance. This includes 
mechanisms such as enzymatic antibiotic inactivation and 
modification (e.g., ESBLs, AmpC, and NDM), spread of resistance 
genes, absence of outer membrane porin expression, and 
overexpression of active efflux pump systems, among others (Li et al., 
2023) (as shown in Figure 1, which illustrates the main resistance 
mechanisms of KP). Conversely, misclassifying infection as 
colonization can delay clinical treatment and increase patient 
mortality rates. Therefore, there is a need for a tool to assist clinicians 
in better differentiating between KP colonization and infection.

Previous studies have typically used logistic regression analysis to 
identify risk factors associated with infection and colonization (Wang 
X. et  al., 2024). However, logistic regression struggles to capture 
complex nonlinear relationships between features and lacks intuitive 
clarity. In recent years, artificial intelligence and machine learning 
have shown great potential in the diagnosis and treatment of bacterial 
infections. They can effectively handle complex data, integrate various 
patient characteristics to construct predictive models, and help 
doctors understand more intuitively how different clinical features 

influence the occurrence of diseases, providing more reliable support 
for clinical decision-making (Deo, 2015; Jiang et  al., 2022; Seyer 
Cagatan et al., 2022). Therefore, the aim of this study is to develop a 
predictive model that can accurately identify colonization versus 
infection of KP in sputum cultures. This model is intended to provide 
clinicians with scientific evidence to optimize treatment strategies and 
reduce the risk of misdiagnosis and inappropriate use of 
antimicrobial agents.

2 Methods

2.1 Setting and participants

A retrospective analysis was conducted on 8,318 patients with 
microbiological cultures identified as KP admitted to a tertiary hospital 
in Northeast China from January 2019 to December 2023. After 
excluding duplicate cases, other types of specimens, cases with 
substandard specimen quality, and mixed infections, a total of 286 
cases were included, which consisted of patients with sputum cultures 
yielding only Klebsiella pneumoniae. Among these, 67 cases were 
classified as the colonization group and 219 cases as the infection group 
(Figure 2). This study has been reviewed and approved by the Ethics 
Committee of the First Affiliated Hospital of China Medical University 
[Ethics ID(2023)2023-142-2]. Infectious disease specialists confirmed 
the diagnosis of KP infection or colonization (diagnostic criteria are 
shown in Table 1). (In Figure 3 we show the CT lung images and 
sputum cultures of a relatively typical case of pneumonia due to KP).

2.2 Microbiological methods

Clinical data for the included cases were collected through the 
hospital’s electronic medical record system. Using a case–control study 
design, a retrospective analysis of the clinical data from all patients 
was conducted. Antimicrobial susceptibility testing was performed on 
the KP (KP) strains obtained from the included cases. Identification 
of all pathogens and antimicrobial susceptibility testing were carried 
out using the VITEK 2 automated bacterial identification and VITEK 
2 Compact antimicrobial susceptibility testing system from 
bioMérieux, France. The results of the antimicrobial susceptibility tests 
were categorized as susceptible, intermediate, and resistant according 
to the standards set by the Clinical and Laboratory Standards Institute 
(CLSI) (CLSI, 2023; Vornhagen et al., 2024). Extended spectrum beta-
lactamase (ESBL) strains were detected through double disk synergy 
tests and phenotypic confirmation tests (antimicrobial susceptibility 
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test disks were purchased from Oxoid, United  Kingdom). In this 
study, carbapenem-resistant bacteria were defined as those resistant 
to either imipenem or meropenem.

2.3 Statistical method

Statistical analysis was conducted using SPSS 27.0 software. 
Categorical data were expressed as counts and percentages. The 
Chi-square test was used to compare the differences in resistance 
rates between the KP colonization group and the infection group 
(p < 0.05 was considered statistically significant). Univariate binary 
logistic regression analysis was performed to identify factors with 
statistically significant differences between the two groups (p < 0.05 
was considered statistically significant), and these factors were 
included as predictive variables in the model. Predictive models to 
distinguish between KP colonization and infection were constructed 
using R 4.4.1 software, including Classification and Regression 
Trees (CART), C5.0, Gradient Boosting Machine (GBM), Support 
Vector Machine (SVM), Random Forest (RF), and Nomogram 
models. The function set.seed(42) was used to ensure the 

reproducibility of the random process, allowing the same data to 
yield identical training and test set divisions. The trainControl 
function was employed to set the model training control parameters 
for 10-fold cross-validation. The performance of each model was 
evaluated using accuracy, precision, recall, F1 Score, AUC value, 
and Brier score.

3 Results

3.1 Antimicrobial susceptibility testing of 
KP

Antimicrobial susceptibility testing was performed on strains 
isolated from sputum cultures of the final 286 enrolled cases 
(Figure 4). Compared with the colonization group, the infection group 
exhibited generally higher resistance rates to various antibiotics, with 
all differences being statistically significant (p < 0.05) (see 
Supplementary Table S1 for detailed results). A total of 141 CRKP 
strains were isolated, including 17 strains from the colonization group 
and 124 strains from the infection group.

FIGURE 1

Major resistance mechanisms of KP. In clinical practice, sputum culture is an important tool for diagnosing respiratory tract infections. However, 
misinterpreting colonizing Klebsiella pneumoniae as an infectious pathogen may lead to unnecessary antimicrobial treatment. In such cases, this could 
contribute to the development of resistance in Klebsiella pneumoniae. We have illustrated several common resistance mechanisms of Klebsiella 
pneumoniae in the figure.
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3.2 Clinical characteristics of the 
participants

The clinical data of the included cases were collected (Table 2), 
and univariate logistic regression analysis revealed the following 
important factors influencing colonization and infection: 
age > 62 years, ESBL positivity, CRKP positivity, number of positive 
sputum cultures for KP, history of tracheostomy, use of ventilator for 
>96 h, presence of indwelling gastric tube, craniotomy, recent history 
of topical glucocorticoid use, altered consciousness, bedridden status, 
diagnosis of respiratory infectious disease upon admission, electrolyte 

disturbances, low serum protein levels, and admission to ICU (all 
p < 0.05).

3.3 Construction and evaluation of 
predictive models

The 15 important influencing factors obtained from univariate 
logistic regression analysis were used to construct models including 
Classification and Regression Trees (CART), C5.0, Gradient Boosting 
Machine (GBM), Support Vector Machine (SVM), Random Forest 

FIGURE 2

Case selection process.

TABLE 1 Inclusion, exclusion, and diagnostic criteria.

Inclusion criteria Diagnostic criteria

 • Sputum culture positive for KP

 • Sample quality meets standards

The diagnosis of KP infection or colonization was confirmed by infectious disease specialists based on the 

“Diagnostic Criteria for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia in Chinese 

Adults” (2018 Edition) (Subspecialty Group of Infectious Diseases, Respiratory Society, Chinese Medical 

Association, 2018) and the “Guidelines for the Diagnosis and Treatment of Adult Community-Acquired 

Pneumonia” (Practical Edition, 2018) (Chinese Medical Association, Chinese Medical Association Journal, 

Chinese Medical Association General Medicine Society et al., 2019).

Duplicate strains

 • Non-sputum samples

 • Samples of unsatisfactory quality

 • Cases with mixed viral, other bacterial, or fungal infections
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(RF), and Nomogram. These models were designed to differentiate 
between colonization and infection status of KP. The performance of 
the models was evaluated using several metrics, including accuracy, 
precision, recall, F1 Score, Area Under the Curve (AUC), and 
Brier Score.

In this study, the predictive models were evaluated, and the 
Random Forest model demonstrated the best performance across all 
metrics: accuracy of 0.93, precision of 0.98, Brier Score of 0.06, recall 
of 0.72, and F1 Score of 0.83, indicating excellent predictive 
performance. The C5 model also performed well, with an accuracy of 
0.87, precision of 0.92, and an F1 Score of 0.65, suggesting its reliability 
in predicting KP infections. The CART model achieved an accuracy 
of 0.85, precision of 0.76, and an F1 Score of 0.61, showing 

performance similar to that of the C5 model. Although both C5 and 
CART effectively distinguished between colonization and infection, 
their recall rates were relatively low, and their Brier Scores were higher, 
indicating slightly insufficient predictive performance. The SVM 
model had an accuracy of 0.84 and effectively identified infection 
samples, reducing the risk of false negatives; however, its overall 
performance was still inferior to that of the C5 and CART models. The 
GBM model performed relatively weakly across all metrics, 
particularly in recall (0.35) and F1 Score (0.46), suggesting a higher 
probability of missed detections. The AUC (Area Under the Curve) is 
an important metric for measuring a model’s discriminative ability. In 
this study, the Random Forest model achieved an AUC of 0.99, while 
the Nomogram model also exhibited a high AUC of 0.85. In contrast, 

FIGURE 3

CT imaging and sputum culture of a typical case of pneumonia due to KP.

FIGURE 4

Comparison of drug resistance rates. It shows the rates of resistance to common antimicrobial agents in the colonized and infected groups. The X-axis 
represents the antimicrobial agents (Ampicillin, Cefuroxime, Ceftazidime, Ceftriaxone, Cefepime, Ampicillin/Sulbactam, Piperacillin/Tazobactam, 
Aztreonam, Imipenem, Meropenem, Gentamicin, Amikacin, Levofloxacin, Nitrofurantoin, Sulfamethoxazole/Trimethoprim), and the Y-axis represents 
the resistance rate. Yellow indicates the colonized group and green indicates the infected group. Detailed information can be found in 
Supplementary Table S1.
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TABLE 2 Clinical characteristics of cases with KP colonization and infection and univariate logistic regression analysis.

Clinical characteristics/influencing factors Colonization 
[n = 67, Strains(%)]

Infection 
[n = 219, 

Strains(%)]

Univariate logistic 
regression analysis

p 95%CI

Basic information

Sex
Male 53(79.10) 163(74.43)

0.437 0.396–1.491
Female 14(20.90) 56(25.57)

Agea >62 26(38.8) 124(56.62) 0.011 1.176–3.601

ESBL 19(28.36) 149(68.04) <0.01 2.944–9.822

CRKP 17(25.37) 124(56.62) <0.01 2.082–7.078

The number of Positive Sputum 

Cultures for KP > 2b
5(7.46) 81(36.99) <0.01 2.810–18.849

Underlying disease

Smoking for ≥ 10 Years 15(22.39) 46(21.00) 0.809 0.476–1.784

Hypertension 17(25.37) 64(29.22) 0.541 0.652–2.263

Diabetes 15(22.39) 61(27.85) 0.782 0.702–2.553

Coronary heart disease 9(13.43) 20(9.13) 0.310 0.280–1.499

Cerebrovascular disease 11(16.42) 62(28.31) 0.054 0.988–4.090

Gastrointestinal bleeding 2(2.99) 10(4.57) 0.575 0.332–7.279

Invasive procedure

Tracheal intubation 31(46.27) 110(50.23) 0.571 0.677–2.028

Tracheostomy 11(16.42) 65(29.68) 0.034 1.058–4.364

Ventilator 32(47.76) 132(60.27) 0.071 0.957–2.878

Ventilator use > 96 h 11(16.42) 85(38.81) 0.01 1.602–6.511

Bronchoscope 7(10.45) 27(12.33) 0.678 0.500–2.907

Peripherally inserted central catheter 20(29.85) 73(33.33) 0.595 0.649–2.128

Gastric tube indwelling 31(46.27) 137(62.56) 0.019 1.116–3.372

Recent surgery 25(37.31) 70(31.96) 0.416 0.446–1.397

Craniotomy 4(5.97) 36(16.44) 0.039 1.061–9.050

Medication history in 

the last 2 weeks

History of proton pump inhibitor (PPI) 

use
38(56.72) 148(67.58) 0.104 0.909–2.785

History of systemic steroid use 12(17.91) 73(33.33) 0.18 1.155–4.545

Recent history of topical glucocorticoid 

usec
19(28.36) 98(44.75) 0.018 1.129–3.707

Others

Dysbiosis 12(17.91) 50(22.83) 0.394 0.674–2.730

Disturbance of consciousness 10(14.93) 78(35.62) 0.002 1.525–6.521

Bedridden status 43(64.18) 190(86.76) <0.01 1.940–6.894

Admitted with a diagnosis of 

respiratory infectious disease
13(19.40) 97(44.29) <0.01 1.704–6.40

Moderate to severe anemia 13(19.40) 51(23.29) 0.505 0.638–2.493

Electrolyte imbalance 27(40.30) 144(65.75) <0.01 1.621–4.991

Hypoalbuminemia 22(32.84) 149(68.04) <0.01 2.429–7.805

Liver dysfunction 24(35.82) 107(48.86) 0.062 0.973–3.013

Kidney dysfunction 8(11.94) 37(16.89) 0.332 0.661–3.400

Heart Failure 4(5.97) 20(9.13) 0.418 0.522–4.804

Admitted to the ICU 32(47.76) 145(66.21) 0.007 1.23–3.734

Prognosis Die 7(10.45) 40(18.26) 0.136 0.815–4.502

aThe average age of the subjects in this study is 62 years, which is used as the cutoff value.
bThe number of KP sputum cultures: the average number of KP sputum cultures in all cases was 2, which was the critical value.
cRecent history of topical glucocorticoid use was defined as nebulized glucocorticoid inhalation.
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the AUC values for the CART, GBM, and C5 models ranged from 0.75 
to 0.80, indicating moderate discrimination ability. In summary, the 
Random Forest model performed best in distinguishing between 
colonization and infection of KP, while the Nomogram model also 
proved to be a reliable choice, suitable for the accurate identification 
of colonization and infection states in clinical applications (see 
Figure 5 and Table 3).

3.4 Evaluation of feature importance in the 
Random Forest model

To better understand the relationship between the model and the 
data, we visually analyzed the best-performing Random Forest model 
using Mean Decrease Gini. The X-axis represents the “Mean Decrease 
Accuracy” values for each feature; higher values indicate a more 
significant decline in model performance when that feature is 
removed. The influencing factors are ranked according to their 
importance, with features at the top contributing the most to the 
model. The most important factor in the model is “Admitted with a 
diagnosis of respiratory infectious disease” (8.39). The second most 
important feature is “Hypoalbuminemia” (7.83), followed by “ESBL” 
(7.06), “Electrolyte Imbalance” (5.81), “Age” (5.24), and “The number 

of Positive Sputum Cultures for KP > 2” (4.77). In contrast, factors 
such as “Craniotomy” (1.97), “Nasogastric Tube Placement” (2.62), 
and “ICU Admission” (2.99) contributed relatively little to 
determining whether the sputum culture for KP indicated infection 
(see Figure 6).

3.5 Nomogram model

Due to the good performance of the Nomogram, which is more 
intuitive than the Random Forest model, we also presented the drawn 
Nomogram (Figure 7). It clearly shows that “Admitted with a diagnosis 
of respiratory infectious disease” is the most important factor, followed 
by “bedridden status,” “the number of positive sputum cultures for 
KP > 2,” ESBL, and craniotomy. Additionally, CRKP, nasogastric tube 
placement, ICU admission, and tracheostomy are all important factors 
for determining KP colonization.

4 Discussion

In this study, the resistance rates of various antimicrobial 
drugs in the infection group were generally higher than those in 

FIGURE 5

ROC curves for the six models. Here are the ROC (receiver operating characteristic) curves for six different models, with the horizontal axis of each plot 
representing specificity, the vertical axis representing sensitivity, and the diagonal as the baseline for random guesses. AUC is an important indicator of 
ROC curve, which is used to evaluate the classification performance of the model. The values of AUC range from 0 to 1 and are explained as follows: 
AUC = 1: perfect. 0.7 ≤ AUC < 0.8: good. 0.6 ≤ AUC < 0.7: general. AUC < 0.6 was considered poor. In the figure, the closer the curve is to the upper 
left corner, the higher the AUC value, indicating better model performance (the specific AUC values can be found in Table 3).
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the colonization group, with statistically significant differences 
(p < 0.05). The proportion of ESBL and CRKP in the infection 
group was significantly higher than that in the colonization group, 
indicating that the infection status is highly likely associated with 
the extensive use of antimicrobial drugs. Previous studies have 
shown that the use of broad-spectrum antimicrobial agents and 
carbapenems are independent risk factors for the occurrence of 
ESBL and CRKP (Lou et al., 2022; Zhu et al., 2023; Lopera et al., 
2024). High resistance rates will place significant pressure on the 
selection of antimicrobial agents in clinical practice. Infection 
status not only increases the demand for antimicrobial drugs 
among patients but may also accelerate the proliferation and 
transmission of resistant strains. Previous studies have indicated 
that colonizing strains of KP (KP) have a high degree of homology 
with infecting isolates, with 50% of KP infections arising from the 
patient’s own microbiota (Gorrie et al., 2017). However, this study 
found that there was a significant difference in the resistance rates 
of the strains isolated from the colonization group and the 
infection group. From the host’s perspective (Gonzalez-Ferrer 
et al., 2021), during an infection, the patient’s immune system may 

be compromised, and the transmission of resistant strains through 
cross-infection in healthcare environments, such as hospitals 
(Córdova-Espinoza et al., 2023), may result in the strains in the 
infection group being more resistant. In contrast, the strains in the 
colonization group may not experience a significant increase in 
resistance due to the pressure from antimicrobial agents, as they 
exist in a relatively stable colonization state. From a 
microbiological perspective (Gomez-Simmonds and Uhlemann, 
2017), Colonized strains may convert to infection by acquiring 
additional resistance genes through mechanisms such as 
horizontal gene transfer, gene mutation, and so on. In summary, 
the resistance rates in the infection group are significantly higher 
than those in the colonization group, indicating that we should 
enhance the monitoring and research of resistant strains in clinical 
practice. Particularly, preventing and controlling the spread of 
resistant bacteria will be an important focus for future research 
and practice.

In this study, we constructed Classification and Regression 
Trees (CART), C5.0, Gradient Boosting Machine (GBM), Support 
Vector Machine (SVM), Random Forest (RF), and Nomogram 

TABLE 3 Evaluation measures of the model.

CART GBM C5 SVM Nomogram Random forest

Accuracy 0.85 0.78 0.87 0.84 0.84 0.93

Precision 0.76 0.67 0.92 0.73 0.72 0.98

Recall 0.51 0.35 0.51 0.49 0.51 0.72

F1 score 0.61 0.46 0.65 0.59 0.60 0.83

AUC 0.77 0.75 0.80 0.84 0.85 0.99

Brier score 0.12 0.17 0.11 6.56 0.12 0.06

FIGURE 6

Evaluation of feature importance in the random forest model. This bar chart shows the importance of different clinical factors in the random forest 
model. The X-axis represents the “Mean Decrease Gini,” while the Y-axis lists the clinical factors, arranged in order of their importance to the outcome 
from high to low. ≥ 8.0, High; 5.0–7.9, Medium-High; 3.0–4.9, Medium; 1.0–2.9, Low; 0.0–0.9, Very Low or None.
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models through univariate logistic regression analysis. All six 
models achieved AUC values above 0.75, indicating that our 
research can provide a reference for differentiating between KP 
colonization and infection in clinical settings. The Random Forest 
model performed the best across all metrics, with an AUC of 0.99, 
an accuracy of 0.93, effectively distinguishing between KP 
colonization and infection status while significantly reducing the 
probability of misclassification. The precision was 0.98, indicating 
that nearly all samples predicted as infections were correct, thus 
reducing the occurrence of false positives. The Brier Score was 
0.06, reflecting excellent predictive performance. In many 
practical scenarios, Random Forest has demonstrated outstanding 
performance, and this powerful ensemble learning 
algorithm is particularly well-suited for clinical data analysis 
and prediction (Jin et  al., 2024; Mendapara, 2024; Wang 
Y. et al., 2024).

To better understand the relationship between the model and 
the data, we performed a visual analysis of the Random Forest 
model, which exhibited the best performance, by examining the 
importance of different factors using Mean Decrease Gini. These 
factors hold significant clinical relevance. Specifically, “Admitted 
with a diagnosis of respiratory infectious disease” is identified as 
the primary predictor of KP infection. The significant increase in 
infection risk for patients diagnosed with respiratory infectious 
diseases upon admission highlights the importance of early 
infection identification. This is particularly crucial as a large 
proportion of KP infections originate from the community, and 
studies have shown a strong correlation between KP-CAP (KP 
Community-Acquired Pneumonia) infections and higher, earlier 
mortality rates (Grosjean et  al., 2024). This suggests that 
clinicians should promptly conduct pathogen detection and 
identification when seeing patients with respiratory infection 

symptoms, ensuring early detection, diagnosis, and treatment. 
Hypoalbuminemia, electrolyte imbalance, ESBL presence, and 
bedridden status are all important influencing factors for KP 
infection, closely related to the patient’s overall health status and 
immune function. Being bedridden indicates that the patient’s 
mobility is limited, which may lead to a series of health issues, 
such as muscle atrophy, venous thromboembolism, and 
complications like pneumonia. Hypoalbuminemia can result in 
malnutrition, reduced immunity, and poor healing capacity 
(Wang et al., 2023). This highlights the potential contribution of 
a patient’s nutritional and metabolic status to the risk of infection. 
For bedridden patients, it is crucial to regularly monitor serum 
albumin and electrolyte levels. An age greater than 62 years has 
been identified as an important risk factor, which is consistent 
with previously published studies indicating that nearly half of 
KP infections (45.7%) occur in the elderly population (Liu and 
Guo, 2019). This may be  related to the decreased immune 
function and the prevalence of underlying diseases in the elderly 
population. The number of positive sputum cultures for KP 
(greater than 2) indicates a higher probability of infection, 
suggesting that multiple cultures are crucial for improving 
diagnostic accuracy in clinical practice. Invasive procedures such 
as tracheostomy and the placement of nasogastric tubes are also 
significant factors in KP infections. These invasive interventions 
can partially disrupt the normal structure of the upper respiratory 
tract, affecting the cleanliness and protective functions of the 
airway, making infections more likely. When the duration of 
mechanical ventilation exceeds 96 h, the risk of infection 
significantly increases. This may be related to the formation of 
respiratory biofilms, which can serve as breeding grounds for 
bacteria and elevate the risk of infection (Mishra et al., 2024). 
Craniotomy is also an important influencing factor, which may 

FIGURE 7

Nomogram model. The Y-axis of the nomogram represents various clinical factors, with each axis line corresponding to an input variable. The figure 0 
on the axis indicates colonization, while the figure 1 indicates infection. The scale value on the X-axis represents the points or measurements of that 
clinical factors, and the corresponding point can be found to determine the contribution of that factor in the total score.

https://doi.org/10.3389/fmicb.2024.1508030
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2024.1508030

Frontiers in Microbiology 10 frontiersin.org

be because craniotomy is often difficult and lasting for a long 
time, and some patients are critically ill and need immediate 
surgery. Inadequate preoperative preparation and non-standard 
use of prophylactic antibiotics can lead to an increased probability 
of infection (He et al., 2024). Recent use of local corticosteroids 
can suppress local immune responses, reducing the body’s 
defenses against infections and making it easier for infections to 
develop. This immunosuppressive effect can lead to an increased 
risk of KP infections, particularly in patients who may already 
be  vulnerable due to other underlying health conditions or 
invasive procedures (Fernández Peláez et al., 2000). Patients with 
disorders of consciousness usually lack the cough reflex to 
effectively clear respiratory secretions, and at the same time, the 
probability of aspiration is increased, which increases the risk of 
KP infection (Kobata, 2023).

Although the Random Forest model demonstrated good 
overall performance, it is not very intuitive. In contrast, a 
Nomogram is an intuitive visual tool used to display the risks or 
outcomes of multivariable prediction models. It is easy to use and 
understand, and it clearly illustrates the relative contributions of 
various factors to the outcome, making it particularly suitable for 
personalized decision-making in clinical practice (Yang et al., 
2022; Gao et al., 2024; Luo et al., 2024). This study found that 
certain factors can serve as important criteria for assessing 
whether KP is colonized. When a patient’s sputum culture results 
indicate CRKP (Ceftazidime-Resistant KP), or if the patient has 
a nasogastric tube in place, is undergoing tracheostomy, or is in 
the ICU, we must exercise greater caution and thoroughness in 
assessment and judgment rather than blindly initiating 
antimicrobial therapy. Only by comprehensively considering the 
patient’s specific circumstances can clinicians develop more 
rational treatment plans, significantly improving the targeting 
and effectiveness of treatment while minimizing the misuse of 
medications and the emergence of resistance.

Although this study provides important insights into the 
diagnosis and management of KP infections, several limitations 
remain, which we hope to overcome in future research. First, the 
study included only 286 cases of KP positivity, and the data were 
sourced from a single center. Future studies should aim to expand 
the sample size and conduct multi-center collaborative research 
to enhance the generalizability and reliability of the findings. 
Moreover, the determination of colonization and infection relies 
on clinicians’ judgments and experiences, which may vary among 
different doctors and affect the accuracy of the results. We look 
forward to the development of more standardized clinical 
guidelines to reduce subjective differences among physicians and 
improve diagnostic consistency. Although this study identified 
15 influencing factors, the occurrence of infections in clinical 
practice may be affected by other potential factors, such as the 
composition of the microbiome, environmental factors, and the 
psychological state of the patient. Additionally, molecular 
mechanisms, such as the development of bacterial resistance and 
the host’s immune response, are also important influencing 
factors. However, due to limitations in laboratory conditions and 
funding, we were unable to include these factors in this study. 
We hope that future research can develop a more comprehensive 
clinical model to provide clinicians with a more scientific and 
accurate basis for their judgments. Additionally, we anticipate 

integrating our constructed model into a clinical decision support 
system (CDSS) in the future. Regular evaluation of the model’s 
performance, along with the collection of feedback from 
healthcare professionals and patients, will be critical. This will 
allow us to update the data and retrain the model, continuously 
improving its usability and accuracy.

5 Conclusion

In this study, we  successfully constructed six predictive 
models. Among them, the Random Forest model performed the 
best, achieving an area under the curve (AUC) of 0.99, with an 
accuracy of 0.93 and a precision of 0.98. This model effectively 
distinguishes between KP (KP) infection and colonization status, 
significantly reducing the rate of misjudgment. The Brier Score 
was 0.06, further validating the model’s excellent predictive 
performance. Key factors such as being diagnosed with 
respiratory infections upon admission and the number of positive 
sputum cultures underscore the importance of early diagnosis 
and repeated cultures. Additionally, factors closely related to the 
overall health status of patients, such as being bedridden, 
electrolyte imbalances, and hypoalbuminemia, significantly 
impact the risk of KP infection. To enhance the model’s 
applicability in clinical practice, we  employed an intuitive 
nomogram, making it easier for clinicians to understand and 
utilize multivariable predictions. When faced with patients whose 
sputum cultures test positive for CRKP, or who have nasogastric 
tubes, tracheostomies, or are receiving ICU treatment, it is crucial 
to conduct a more cautious evaluation rather than initiating 
antimicrobial therapy blindly. This approach allows for more 
precise decision-making in patient management. We  look 
forward to applying artificial intelligence technologies in future 
research to improve the accuracy of infection diagnoses, optimize 
antimicrobial treatment strategies, reduce unnecessary use of 
antibiotics, and thereby enhance patient outcomes and decrease 
the burden on healthcare systems.
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