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Introduction: The integration of artificial intelligence (AI) in pathogenic microbiology 
has accelerated research and innovation. This study aims to explore the evolution and 
trends of AI applications in this domain, providing insights into how AI is transforming 
research and practice in pathogenic microbiology.

Methods: We employed bibliometric analysis and topic modeling to examine 
27,420 publications from the Web of Science Core Collection, covering the 
period from 2010 to 2024. These methods enabled us to identify key trends, 
research areas, and the geographical distribution of research efforts.

Results: Since 2016, there has been an exponential increase in AI-related 
publications, with significant contributions from China and the USA. Our analysis 
identified eight major AI application areas: pathogen detection, antibiotic 
resistance prediction, transmission modeling, genomic analysis, therapeutic 
optimization, ecological profiling, vaccine development, and data management 
systems. Notably, we found significant lexical overlaps between these areas, 
especially between drug resistance and vaccine development, suggesting an 
interconnected research landscape.

Discussion: AI is increasingly moving from laboratory research to clinical 
applications, enhancing hospital operations and public health strategies. It plays a 
vital role in optimizing pathogen detection, improving diagnostic speed, treatment 
efficacy, and disease control, particularly through advancements in rapid antibiotic 
susceptibility testing and COVID-19 vaccine development. This study highlights 
the current status, progress, and challenges of AI in pathogenic microbiology, 
guiding future research directions, resource allocation, and policy-making.
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1 Introduction

Pathogenic microorganisms, including viruses, bacteria, fungi, and parasites, cause 
infections and diseases in hosts. Since the 1960s, the widespread use of antibiotics has driven 
the evolution of these microorganisms through natural selection, gene recombination, and 
horizontal gene transfer (HGT), leading to antibiotic resistance (AMR).
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AMR results in millions of deaths annually worldwide, posing 
a severe threat to public health (Saha and Sarkar, 2021; Uddin et al., 
2021). Traditional culture-based methods fail to address the 
increasing genetic diversity and resistance of pathogens. In the era 
of big data, research on pathogenic microorganisms heavily relies 
on high-throughput sequencing, metagenomics, proteomics, and 
targeted techniques (Lewis et al., 2021; Wani et al., 2022). Effectively 
organizing, analyzing, and interpreting the vast amounts of 
biomedical data generated has emerged as a new challenge.

AI, a field that simulates and extends human intelligence through 
computational devices, provides powerful tools to address these 
challenges. Machine learning (ML) improves computer performance 
through pattern recognition and analysis, enabling precise microbial 
classification, biomarker identification, small molecule compound 
library screening, and novel anti-infective drug discovery.

Deep learning (DL), comprising multilayer neural networks, boosts 
data generation capabilities for pathogenic microorganisms through 
neural networks, generative models, and variational autoencoders (Huo 
and Wang, 2024; Wong et  al., 2023). Computer vision (CV) rapidly 
detects pathogens in microscope or fluorescence sensor images (Zhao 
et  al., 2024; Matias et  al., 2021). Natural language processing (NLP) 
automatically identifies information from scientific literature on pathogen 
research (Jimeno-Yepes and Verspoor, 2023) and analyzes bacteriophage 
genomes to predict their life cycles (Tynecki et al., 2020).

The application of AI in pathogenic microbiology has been 
widely explored, with many scholars evaluating its use in related 
research. Literature reviews date back to 2014. Specifically, Nourani 
et al. studied ML, homology prediction, and structural prediction in 
predicting pathogen-host protein interactions (PHI) between 2009 
and 2014, crucial for understanding infection mechanisms (Nourani 
et al., 2015). Rondon-Villarreal et al. reviewed ML in antimicrobial 
peptide design, a potential new class of antimicrobial drugs to 
combat AMR (Rondon-Villarreal et  al., 2014). Qu et  al. 
comprehensively reviewed ML in microbiology, covering microbial 
classification from high-throughput sequencing data, environmental 
and host phenotype prediction, and microbial-disease association 
analysis (Qu et al., 2019). Agany et al. explored data mining and ML 
in understanding vector-host-pathogen relationships from 2012 to 
2020, highlighting advances in DL and association rule analysis 
(Agany et  al., 2020). Peiffer-Smadja et  al. studied ML in clinical 
microbiology, identifying 97 ML systems aimed at assisting clinical 
microbiologists with bacterial, parasitic, viral, and fungal infection 
analysis and antimicrobial sensitivity assessment up to 2020 (Peiffer-
Smadja et al., 2020). Pillai et al. summarized various AI models (e.g., 
logistic regression, random forests, support vector machines, neural 
networks, ensemble methods) in predicting zoonotic disease 
outbreaks and identifying risk factors (Pillai et al., 2022). He et al. 
introduced AI’s role in infectious disease drug delivery, including 
drug development, resistance prediction, dose optimization, and 
drug combination selection (He et al., 2021). Hu et al. discussed ML’s 
broad applications in protozoan pathogen and infectious disease 
research, covering detection, diagnosis, monitoring, host–parasite 
interactions, drug discovery, and vaccine development (Hu et al., 
2022). Kaur et  al. reviewed AI techniques in predicting and 
monitoring vector-borne diseases and their pathogens, noting 
significant progress in disease prediction, vector identification, and 
outbreak monitoring through ML and DL (Kaur et al., 2022).

Despite several studies exploring the application of AI in specific 
areas of pathogenic microbiology, a systematic analysis of the overall 

development trends and knowledge structure of the field is lacking. 
Previous literature reviews have primarily focused on AI’s performance 
in specific application scenarios. These studies provide important 
references for understanding AI’s value in specific applications but fail to 
offer a comprehensive grasp of the overall development landscape of AI 
in pathogenic microbiology research.

In this context, bibliometrics and topic modeling offer powerful 
methods to explore and understand scientific research in this 
domain. Bibliometrics, a statistical method widely used to analyze 
publication trends and relationships in the medical field, includes 
evaluative and relational bibliometrics. The latter reveals hidden 
relationships and research status by analyzing metadata from authors, 
papers, and journals (Ninkov et al., 2022). Topic modeling, a natural 
language processing technique, identifies latent semantic patterns in 
document collections, helping researchers discover cross-disciplinary 
themes and research trends. Latent Dirichlet Allocation (LDA) is the 
most widely utilized technique for this purpose (Vayansky and 
Kumar, 2020). This study aims to conduct a large-scale quantitative 
analysis of AI applications in the field of pathogenic microbiology 
through bibliometrics and topic modeling methods. Compared to 
existing studies, this paper has the following innovations and 
contributions: (1) By utilizing 27,420 publications spanning 2010 to 
2024, the study conducts a comprehensive quantitative analysis of the 
field for the first time, covering a wide scope; (2) The integration of 
bibliometrics and topic modeling techniques not only reveals 
research hotspots and trends but also deeply explores the potential 
knowledge structure; and (3) A systematic review of AI’s 
advancements in eight major application areas within pathogenic 
microbiology provides a scientific basis for future research directions 
and resource allocation.

2 Methods

2.1 Data collection

To ensure the scientific rigor and authority of the literature review, 
we retrieved data from the Web of Science Core Collection (WoSCC), 
the oldest and most widely used research publication and citation 
database globally (Birkle et al., 2020). The citation index includes various 
versions of WoSCC, such as the Science Citation Index Expanded 
(SCI-EXPANDED), Social Sciences Citation Index (SSCI), Current 
Chemical Reactions (CCR-EXPANDED), and Index Chemicus (IC).

The search terms were derived from key phrases mentioned in 
previous review articles on AI applications in pathogenic microbiology 
(Table 1). The final search string was: TS = (“Pathogen-host protein–
protein interactions” OR Host OR Pathogen OR “Drug Resistance” 
OR “Antimicrobial Peptides” OR Viruses OR Bacteria OR Fungi OR 
“Vector-Host-Pathogen Relationships” OR Vector OR Parasites OR 
“Infectious Diseases” OR “Pathogenic Microbes”).

AND TS = (“Deep Learning” OR “Association Rule Mining” OR 
“Artificial Neural Network” OR “Support Vector Machine” OR 
“K-nearest Neighbors” OR “Decision Trees” OR “Regression Trees” 
OR “Classification Trees” OR “Gradient Boosting” OR “Adaptive 
Boosting” OR “eXtreme Gradient Boosting” OR “Long Short Term 
Memory network” OR “Generative Adversarial Network” OR “Auto-
Encoder” OR “Convolutional Neural Networks” OR “Ensemble 
Classifiers” OR “Support Vector Machine”). This search yielded 
151,593 results.
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2.1.1 Screening criteria
Inclusion and exclusion criteria were established to filter the 

results. The inclusion criteria focused on research articles related to AI 
and pathogenic microorganisms. Exclusion criteria were set for 
outdated articles, non-English literature, irrelevant disciplines, 
conference abstracts, and duplicate documents. The screening was 
performed independently by two authors to ensure accuracy and 
consistency. The specific steps were:

 1. Year Limitation: Restricting the publication years to 2010–
2024 eliminated 4,858 articles. This timeframe was selected 
because the rapid advancements in AI and pathogenic 
microbiology, particularly the widespread application of 
metagenomics and high-throughput sequencing, began around 
2010 (Sheetal Ambardar et al., 2016; Park et al., 2016).

 2. Language Restriction: Non-English articles (163) were 
removed to ensure the inclusion of high-impact research and 
important results published in major journals.

 3. Disciplinary Focus: Articles from non-medical fields (78,574), 
such as engineering or computer science, were excluded. These 
fields often focus more on technical developments and 
algorithm optimization, which could introduce noise into the 
bibliometric analysis.

 4. Document Type: Only “Article” and “Review Article” 
categories were included, eliminating 40,457 documents from 
other types like proceeding papers, book chapters, letters, and 
news items.

 5. Duplicate Removal: Using Endnote software, 121 duplicate 
documents were automatically removed to ensure data 
uniqueness and completeness.

TABLE 1 Sources of search terms for this study.

Author Paper title Keywords related to 
AI

Keywords related to pathogenic 
microorganisms

Year

Nourani Computational approaches for prediction 

of pathogen-host protein–protein 

interactions

Homology-based prediction

Structure-based prediction

Pathogen-host protein–protein interactions

Host

Pathogen

2015

Rondon-Villarrea Machine Learning in the Rational Design 

of Antimicrobial Peptides

Machine learning Drug Resistance

Antimicrobial Peptides

2014

Qu Application of Machine Learning in 

Microbiology

Supervised Learning

Unsupervised Learning

Support Vector Machine

Naïve Bayes

Random Forest

K Nearest Neighbor

Viruses

Bacteria

Fungi

2019

Agany Assessment of vector-host-pathogen 

relationships using data mining and 

machine learning

Data Mining

Deep Learning

Association Rule Mining

Vector-Host-Pathogen Relationships

Vector

2020

Peiffer-Smadja Machine learning in the clinical 

microbiology laboratory: has the time 

come for routine practice?

Artificial Neural Network

Support Vector Machine

Logistic Regression

K-nearest Neighbors

Decision\Regression\

Classification Trees

Gradient Boosting

Adaptive Boosting

Parasites 2020

Pillai Artificial Intelligence Models for Zoonotic 

Pathogens: A Survey

eXtreme Gradient Boosting

Long Short Term Memory 

network

Generative Adversarial Network

Auto-Encoder

2020

He Artificial intelligence and machine learning assisted drug delivery for effective 

treatment of infectious diseases

Infectious Diseases 2021

Hu Machine Learning and Its Applications for 

Protozoal Pathogens and Protozoal 

Infectious Diseases

Convolutional Neural Networks 2022

Kaur Artificial Intelligence Techniques for 

Predictive Modeling of Vector-Borne 

Diseases and its Pathogens: A Systematic 

Review

Ensemble Classifiers

Support Vector Machine

Pathogenic Microbes 2022
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The final dataset comprised 27,420 articles for analysis (Figure 1).

2.2 Bibliometric analysis

The data was exported in plain text format, including full records 
and cited references. The clean dataset was imported into three 
software programs for visualization analysis: R-Bibliometrix 4.3.1, 
CiteSpace 6.1.R6 (64-bit) Advanced, and VOSviewer 1.6.19.

2.2.1 Bibliometrix
This R-based bibliometric analysis package, launched in 2017, 

offers robust data processing and multi-dimensional chart generation 
capabilities (Aria and Cuccurullo, 2017; Arruda et al., 2022). We used 
Bibliometrix 4.3.1 to analyze annual publications, author H-indices, 
productivity over time, high-impact journals, and highly cited papers.

2.2.2 CiteSpace
Developed by Professor Chaomei Chen in 2004, CiteSpace is a 

Java-based scientific literature analysis software capable of document 
co-citation, collaboration network, and burst term analysis (Chen, 
2018). We  used CiteSpace 6.1.R6 (64-bit) Advanced to generate 
co-occurrence maps of institutions.

2.2.3 VOSviewer
Launched in 2010, VOSviewer is a software tool for creating and 

exploring maps based on network data, offering network, overlay, and 

density visualizations (Arruda et al., 2022). We used VOSviewer for 
author and country co-occurrence collaboration analysis.

2.3 Topic modeling analysis

Compared to traditional bibliometric keyword clustering methods, 
topic modeling offers more precise and detailed research classifications, 
uncovering the underlying structures and dynamic trends within 
research fields. In our study, we employed Latent Dirichlet Allocation 
(LDA) for topic modeling using the Python Gensim library. LDA is a 
generative model that leverages unsupervised machine learning to 
analyze large volumes of unstructured data, eliminating the need to 
divide data into training and test sets. It assumes that documents 
comprise multiple topics, each represented by a probability distribution 
over words (Chauhan and Shah, 2021; Yang et al., 2024).

Initially, we conducted text preprocessing, including the removal 
of stopwords and punctuation, as well as stemming, to ensure data 
consistency and cleanliness. Subsequently, we set the parameters for 
the topic modeling. Optimization of topics was performed through 
perplexity and coherence evaluation. Finally, we generated the topic-
word distribution and a topic-term relationship network graph.

The specific hyperparameter choices for the LDA model were as 
follows: alpha = “symmetric” (symmetric prior), and eta = None 
(default prior). These parameters control the prior beliefs regarding 
the document-topic and topic-word distributions. The chunksize was 
set to 2000, meaning that the corpus of 27,420 documents was divided 

FIGURE 1

Flow chart of literature search and selection.
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into approximately 14 chunks for processing, thereby avoiding the 
necessity of loading all documents into memory simultaneously. The 
passes parameter was set to 1 since the model’s performance was 
satisfactory with a single pass through the corpus. The model was 
trained using the LdaModel class provided by Gensim, which 
implements an online LDA algorithm that enables streaming and 
incremental training of the corpus, thereby effectively handling large-
scale text data. The save and load methods were used for model 
persistence, ensuring the reproducibility of the experimental results.

3 Results

3.1 Publication trends analysis

Polynomial regression analysis (Figure 2) from 2010 to 2023 reveals a 
significant upward trend in the number of publications, with exponential 
growth evident since 2016. The number of publications is projected to 
reach approximately 4,500 by 2024. This growth is primarily attributed to 
the increase in interdisciplinary collaboration, the impact of global health 
challenges such as the COVID-19 pandemic, and the rapid advancements 
in AI and computational technologies, particularly breakthroughs in deep 
learning algorithms, convolutional neural networks, and disease prediction 
models since 2016 (Jelodar et al., 2019).

3.2 Authors

Figure 3A presents the metrics for the top four contributing authors. 
Wang Wei leads with 69 publications and an H-index of 25, signifying 
that at least 25 publications have been cited at least 25 times (Zhang 
et al., 2022). Wang Jing was notably prolific in 2018, publishing 11 
papers and achieving a Total Citations per Year (TCpY) score of 98.67 
(Figure 3B). VOSviewer analysis (Figures 3C,D) of 70 authors, each with 
a minimum of 5 publications and 1,000 citations, reveals three primary 
collaborative groups centered around Li Hao, Zhang Wei, and Wang Lie. 
Notably, Zhang Wei’s collaborative network is the largest, comprising 13 
members. The collaboration between Li Hao and Chen Wei is the most 
frequent, with 28 co-authored papers (Bihari et al., 2023).

3.3 Institutions

Figure  4 illustrates that there are 917 collaborative interactions 
among 776 institutions. Although the overall network density is low 
(0.003), certain institutions display frequent and intensive collaborations. 
This phenomenon can be  attributed to the high specialization in 
pathogenic microbiology and AI technologies, which leads collaborations 
to be concentrated among a select few capable institutions. As shown in 
Table 2, the Chinese Academy of Sciences leads with 486 publications, 
while the Universitair Medisch Centrum Utrecht demonstrates 
significant research impact with a betweenness centrality of 0.49.

3.4 Countries

Figure 5A indicates that China and the United States have been 
leading in pathogenic microbiology research. Notably, China’s 

publication volume significantly decreased in 2021, likely due to the 
impact of the COVID-19 pandemic. However, since 2022, China’s 
publication rate has grown exponentially, surpassing other 
countries. VOSviewer analysis (filtering for countries with at least 
*100 publications) revealed an international collaboration network 
comprising 32 countries. The thickness of the connecting lines 
indicates collaboration strength, with China and the U.S. exhibiting 
the tightest cooperation (link strength = 974). This suggests 974 
instances of collaboration between researchers from these two 
countries, reflecting their central role and significant advantages in 
knowledge and resource sharing, which are crucial for advancing 
pathogenic microbiology research and addressing global health 
challenges (Figure 5B).

3.5 Journals

In analyzing the evolution and trends of AI in pathogenic 
microbiology research, we identified the top ten journals in this 
field, including their H-index, impact factor, and JCR indicators 
(Table  3). These metrics reflect the research activity and the 
journals’ influence within the academic community. “Computers in 
Biology and Medicine” has the highest number of publications in 
this field, while “Clinical Infectious Diseases,” the only Q1 journal 
among the top ten by publication volume, is the most cited, 
demonstrating its authority. Notably, four of the top ten journals are 
Q2, indicating that research outcomes are increasingly being 
published in higher-quality journals.

3.6 Topic modeling

To determine the optimal number of topics, we undertook the 
following steps: First, we trained LDA models with varying numbers 
of topics (2 to 15) and calculated their perplexity scores on the test 
set. Lower perplexity indicates a better model fit (Figure 6A). Second, 
we  computed the topic coherence score for each model, which 
measures the semantic consistency of words within a topic; higher 
values indicate more coherent topic structures (Figure 6B). Finally, 
we  plotted perplexity and coherence scores on a scatter plot 
(Figure 6C). The top-right region of the plot shows data points for 8, 
9, 10, and 12 topics, which performed well in balancing perplexity 
and coherence. Further manual analysis revealed that although 9, 10, 
and 12 topics offered higher model performance, they led to overly 
fine and dispersed classifications, which are impractical for real-
world applications. An 8-topic model provided an efficient and 
practical classification structure, laying a solid foundation for further 
interpretation. Consequently, we selected the 8-topic model. The 
resulting themes include AI in pathogen detection, drug resistance, 
transmission and control, genomics, treatment optimization, 
ecology, vaccine development, and data analysis and management 
(Table 4). A word cloud was then utilized to visually represent the 
intrinsic connections between different research themes, with each 
cluster marked in different colors. The clusters were interconnected 
through shared keywords (red nodes), and the size of each node 
reflected keyword frequency, while the thickness of connecting lines 
indicated the distribution strength of words within specific topics 
(Figure 7).
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4 Discussion

4.1 Eight major topics

This section summarizes the eight topics identified through topic 
modeling and discusses the research advancements within 
each domain.

4.1.1 Application of artificial intelligence in 
pathogen detection

Traditional diagnostic methods, such as microbial culture and 
isolation, are often time-consuming and prone to false-negative 
results (Daim et  al., 2006). The application of multi-modal data 
fusion techniques in pathogen detection has gained significant 
attention in recent years. These techniques integrate image data with 
genetic data to provide more comprehensive and accurate diagnostic 
outcomes. For instance, Khan et al. (2019) developed models using 
automated image capture technology and convolutional neural 
networks (CNN), successfully classifying and identifying Gram-
stained blood cultures. Their model achieved a classification accuracy 
of 94.9% for both Gram-positive cocci and Gram-negative bacteria. 
By integrating microbial genome sequencing data with the 
capabilities of CNNs, researchers can further subtype pathogens 
based on pattern recognition. This multi-modal fusion approach 
significantly enhances sensitivity and specificity in diagnostics by 
simultaneously analyzing the visual and genetic characteristics of 
pathogens, thus making pathogen diagnosis more efficient 
and precise.

Additionally, machine learning models can rapidly analyze 
complex data patterns, thereby improving diagnostic speed and 
accuracy (Smith et al., 2018). For instance, models used for DNA 
sequencing can quickly process the genomes of bacteria and viruses 
(Ali et al., 2023).

4.1.2 Application of artificial intelligence in 
antimicrobial resistance research

Artificial intelligence has been effectively utilized in the analysis 
and prediction of microbial drug resistance, marking a significant 
advancement in antimicrobial resistance research. The increasing 

prevalence of resistant bacteria underscores the critical importance of 
analyzing genomic and sequence data. Traditional antibiotic 
susceptibility testing (AST) methodologies require a minimum of 
4 days, which is excessively time-consuming for urgent clinical 
scenarios where swift decision-making is crucial, especially in the face 
of rapidly spreading infections (Mardis, 2008). This predicament 
underscores the urgent need for innovative diagnostic techniques that 
can adapt to the rapid evolution of antibiotic resistance.

The integration of techniques like MALDI-TOF MS with 
sophisticated data analysis algorithms has been shown to expedite the 
identification of resistant strains (Garcia et al., 2024). A retrospective 
clinical case study involving 63 patients revealed that adopting such 
methodologies would have altered the clinical management of nine 
patients, benefiting eight of them (89%). Consequently, machine 
learning based on MALDI-TOF mass spectrometry emerges as an 
essential new tool for therapy optimization and antibiotic stewardship 
(Theodosiou and Read, 2023). Deep learning algorithms, such as 
Convolutional Neural Networks (CNN) and Long Short-Term 
Memory (LSTM) networks, can perform rapid and accurate antibiotic 
susceptibility testing by classifying bacteria into active or non-active 
strains (Weis et al., 2022).

AI technologies, encompassing machine learning and natural 
language processing, enable the processing of vast quantities of 
genomic data, which leads to the identification of resistance-associated 
genetic mutations and evolutionary patterns (Yu et al., 2018). This 
capability not only enhances our understanding of how bacteria 
develop drug resistance but also provides invaluable insights for novel 
drug development (Zhou and Troyanskaya, 2015). Furthermore, 
machine learning models have the potential to predict mutational 
trends and resistance to specific drugs, thereby aiding clinicians in 
selecting the most effective treatment regimens (Gupta et al., 2021).

4.1.3 Application of artificial intelligence in 
pathogen transmission and control

Artificial intelligence demonstrates significant potential in 
monitoring and controlling pathogen transmission. By employing 
machine learning to recognize transmission patterns, it provides vital 
decision support for public health authorities, enabling the 
implementation of more effective outbreak control strategies (Májek 
et al., 2021). AI can analyze historical epidemic data to predict future 
disease transmission (Ren et al., 2023). Additionally, AI technologies 
are utilized for real-time monitoring of infection trends, allowing 
rapid responses to outbreaks. AI-driven warning systems enhance the 
predictive capacity for future outbreaks, improving resource allocation 
and management strategies (Vahedi et al., 2021). These technologies 
provide scientific evidence for disease control and prevention, 
bolstering the resilience of public health systems.

4.1.4 Application of artificial intelligence in 
pathogen genomics

Deep learning, as a crucial AI technology, offers new perspectives 
and tools for analyzing diversity and evolution in pathogen genomics 
research. Xu et al. employed deep learning algorithms to efficiently 
identify various antimicrobial peptides from metagenomic data, 
significantly advancing the development of next-generation 
antimicrobials (Wang et al., 2024). AI’s ability to analyze large volumes 
of genomic sequence data allows it to identify and compare genetic 
characteristics of diverse microorganisms, revealing their evolutionary 

FIGURE 2

Article quantity trend analysis.
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relationships and functional traits (Xu et  al., 2020). This robust 
potential for genome annotation and functional prediction provides 
vital support for microbial ecology and functional research (Angly 
et al., 2006). Furthermore, constructed databases allow for in-depth 
exploration of complex interactions between microorganisms and 
environmental contexts (Sun et  al., 2023). This provides valuable 
insights for research in microbial genomics, ecological analysis, and 
disease prevention.

4.1.5 Application of artificial intelligence in 
optimization of treatment strategies

Artificial intelligence is playing an increasingly important role 
in optimizing treatment strategies for pathogens. By analyzing 
clinical data, AI can predict the efficacy of various treatment 
regimens and adjust strategies in real-time according to individual 
patient condition changes. Li Jinquan utilized AI to identify 
differences in high-dimensional features of antimicrobial 
candidate proteins, discovering the best-in-class lytic enzyme 
LLysSA9, effective in treating bovine mastitis and combating 
Staphylococcus aureus infections (Hirose et  al., 2024). This 
personalized medicine approach not only enhances treatment 
outcomes but also reduces unnecessary treatments and potential 
side effects. AI-powered decision support systems integrate 
medical literature, patient data, and clinical trial results to provide 
scientific foundations for optimizing treatment plans (Wong 
et al., 2023).

Moreover, AI excels in drug repurposing and new drug 
development, using models to simulate the effects of different 
drugs on pathogens, thereby advancing personalized treatment 
(Zhang et  al., 2024). Liu G et  al. highlighted challenges in 
discovering new antibiotics against Acinetobacter baumannii 
through traditional screening methods, while James J. Collins and 
colleagues utilized machine learning to screen approximately 7,500 
molecules, swiftly identifying those inhibiting A. baumannii 
growth in vitro (Melo et  al., 2021). Khaledi et  al. predicted 
antimicrobial susceptibility based on genomic and transcriptomic 
markers, enhancing diagnostic performance by identifying 
resistance characteristics early in disease progression (Liu 
et al., 2023).

4.1.6 Application of artificial intelligence in 
ecology studies of pathogens

The application of artificial intelligence in ecological studies of 
pathogens opens up new avenues for understanding the ecological 
roles of microorganisms in various environments (Khaledi et  al., 
2020). Neural network technology, in particular, demonstrates 
remarkable performance in this domain. For instance, the vedoNet 
neural network algorithm, developed by Ananthakrishnan et  al., 
integrates microbiome and clinical data and achieves superior 
classification capability for clinical remission in inflammatory bowel 
disease (IBD). Detailed research indicates that early trajectories of 
microbiome changes can serve as markers for treatment response 

FIGURE 3

(A) Total number of publications and H-index of top 4 authors; (B) Authors’ production over time; (C) Network visualization of author co-authorship 
analysis; (D) Density visualization of author co-authorship analysis.

https://doi.org/10.3389/fmicb.2024.1510139
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Tian et al. 10.3389/fmicb.2024.1510139

Frontiers in Microbiology 08 frontiersin.org

(Lopatkin and Collins, 2020). Additionally, machine learning and data 
mining techniques are extensively applied to model and predict 
microbial community behavior under various environmental 
conditions, thus helping to reduce disease incidence associated with 
environmental changes (Ananthakrishnan et  al., 2017). This 
interdisciplinary research not only enhances the understanding of 

microbial ecology but also provides a scientific foundation for 
formulating effective environmental management strategies.

4.1.7 Application of artificial intelligence in 
vaccine development

Traditional vaccine development has largely relied on 
laborious experimental methods that, while effective, are often 
time-consuming and have limited success rates (Ai et al., 2020). 
Recently, data mining and big data analytics have paved new 
pathways for vaccine development, with artificial intelligence (AI) 
revolutionizing the field as a tool for antigen selection and 
immunogen design (Brisse et  al., 2020). By utilizing advanced 
algorithms, AI extracts crucial data from extensive genomic 
datasets, protein structure information, and immune system 
interactions, quickly identifying potential vaccine candidate 
antigens (Aswathy and Sumathi, 2024). For example, AI-driven 
neural network prediction models trained on a large dataset of 
over 24,000 peptides can accurately recognize key epitopes 
detected by the immune system. Prioritizing these epitopes and 
recommending experimental validation allows AI to significantly 
shorten the discovery time while minimizing resource investment 
(Olawade et al., 2024).

By integrating AI algorithms with experimental validation and 
clinical trials, the vaccine development process is substantially 
accelerated. This data-driven approach enhances vaccine development 
efficiency and demonstrates significant potential during global health 

FIGURE 4

Institution co-occurrence map (node labels: by centrality).

TABLE 2 The top five institutions by number of publications and 
intermediate centrality.

Number of publications Institution

486 Chinese Acad Sci

397 Fudan Univ

383 Capital Med Univ

371 Zhejiang Univ

369 Shanghai Jiao Tong Univ

BC (betweenness centrality) Institution

0.49 Univ Med Ctr Utrecht

0.35 German Canc Res Ctr

0.28 Second Mil Med Univ

0.28 Univ Amsterdam

0.26 Chinese Acad Sci
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crises (Ward et al., 2021). During the COVID-19 pandemic, AI played 
a crucial role in quickly identifying novel antigens through detailed 
data mining, providing essential support for the rapid development of 
vaccines (Brisse et al., 2020). In mRNA-based COVID-19 vaccines, AI 
not only optimized vaccine sequences but also effectively screened 
delivery vectors, improving overall research and development 
efficiency (Federico et al., 2023).

4.1.8 Application of artificial intelligence in data 
analysis and management of pathogens

With the explosion of data volume, the application of AI in 
image data processing technology for pathogen detection becomes 
increasingly critical (Zhang et  al., 2023). Traditional detection 
methods, such as nucleic acid and immunological assays, are often 
time-consuming and complex (Haymond and McCudden, 2021). 
Through the incorporation of machine learning, particularly deep 
convolutional neural network (CNN)-based image processing 
algorithms, AI can rapidly process and analyze microscopic image 
data, automatically identifying pathogens, thus significantly 
reducing diagnostic time. For instance, Rahman et al. utilized the 
DenseNet CNN model to classify 89 fungal genera from 
microscopic images, achieving a prediction accuracy of 65.35% 
(Whiley and Taylor, 2016), marking a notable enhancement in 

detection efficiency. Tao Chenglong integrated the HMI system 
with Buffer Net, developing a CNN-based AI-assisted system for 
rapid and automatic bacterial identification (Rahman et al., 2023). 
Additionally, Devan et al. employed a transfer learning method 
based on CNN, requiring minimal preprocessing to detect HCMV 
nucleocapsids in TEM images (Tao et al., 2022). In tuberculosis 
detection, Kuok et  al. attained an 86% detection rate using a 
region-refined Faster R-CNN algorithm to automatically detect 
acid-fast bacilli on slides, significantly outperforming the 
traditional support vector machine (SVM) method, which had a 
detection rate of 70.93% (Shaga Devan et al., 2021). Chung et al. 
combined MALDI-TOF MS (matrix-assisted laser desorption 
ionization-time of flight mass spectrometry) with CNN technology 
for the rapid identification of hemolytic streptococci, quickly 
pinpointing infection sources, effectively preventing epidemic 
spread, and providing robust technical support for public health 
management (Kuok et al., 2019).

4.2 Interconnections among topics

As illustrated in Figure 7, there is significant lexical overlap 
among the various research topics, reflecting a strong 

FIGURE 5

(A) Top 5 countries’ production over time; (B) Country network visualization.

TABLE 3 Top 10 journals.

Source Document Citation IF JCR

Computers in Biology and Medicine 455 14,681 7 Q2

BMC Bioinformatics 371 10,308 2.9 Q3

Clinical Infectious Diseases 333 16,107 8.2 Q1

Computer Methods and Programs in Biomedicine 318 10,240 4.9 Q2

Diagnostics 318 2,447 3 Q3

IEEE Computational Intelligence Magazine 302 2,815 10.3 Q2

Frontiers in Oncology 272 2,546 3.5 Q3

IEEE Journal of Biomedical and Health Informatics 228 8,545 6.7 Q2

Bioinformatics 223 10,347 4.4 Q4

Medicine 212 2079 1.3 Q4
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interconnection and a trend towards interdisciplinary integration 
in the field. In the topic modeling analysis, drug resistance (Topic 
1) and vaccine development (Topic 6) exhibited the highest 
weights (0.226 and 0.195, respectively). The growing global 
challenge of bacterial drug resistance and the threat from emerging 
infectious diseases in recent years have heightened the need for 
large-scale immunization efforts. AI contributes to the rapid 
development of vaccines by accelerating antigen identification and 
predicting immune responses.

Genomics research (Topic 3) and drug resistance research 
(Topic 1) are closely linked through shared genetic analysis 
methods. Genomics plays a critical role in drug resistance 
research; AI can swiftly analyze genomic sequencing data to 
identify and classify antibiotic resistance genes (Qu et al., 2019), 
and this genomic data can be integrated into machine learning 
models to predict antibiotic sensitivity and resistance phenotypes 
(Chung et al., 2019).

The word cloud also reveals a synergy between transmission 
control (Topic 2) and ecological research (Topic 5), particularly in 
environmental monitoring. For example, combining AI algorithms to 
develop predictive models can forecast high- and low-risk areas for 
pathogen outbreaks under future climate conditions. This approach is 
especially effective when linking climatology research (analyzing 
factors such as temperature and precipitation) with ecological studies 
(focusing on pathogen vectors or hosts), thereby significantly 
enhancing the predictive accuracy and interpretability of these 
models, enabling precise control and prevention (Melo et al., 2021; 
Farooq et al., 2022).

Data analysis and management (Topic 7) appears to be  a 
crucial link across all research topics. Data analysis and 
management is not merely an independent theme but rather a key 
element throughout the pathogen research process. AI algorithms 
heavily depend on the quality of pathogen data and metadata to 
enhance research accuracy and reliability. From pathogen 

FIGURE 6

(A) Perplexity for topics 2–15; (B) Coherence for topics 2–15; (C) Topic model optimal parameter selection diagram.
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detection to predicting antibiotic resistance and optimizing 
treatments, substantial amounts of genomic sequencing data, 
electronic health records, and other clinical data are collected, 
processed, and analyzed, forming the training datasets for 
machine learning models.

4.3 Practical applications

The application of artificial intelligence in pathogen research is 
gradually transitioning from laboratory research to clinical practice, 
with official approval in certain regions. For example, the U.S. Food 
and Drug Administration (FDA) has approved Clever Culture 
Systems’ APAS Compact system for the automated assessment of 
plates in clinical microbiology laboratories, demonstrating high 
sensitivity and specificity in detecting urine cultures (Peiffer-Smadja 
et al., 2020).

Many hospitals have already implemented AI for pathogen 
detection. Taiwan’s Tri-Service General Hospital, along with four 
secondary hospitals, has successfully deployed a solution powered 
by an AI clinical decision support system (AI-CDSS) to expedite 
the detection of carbapenem-resistant Klebsiella pneumoniae 
(KP). This system integrates MALDI-TOF MS technology with 
machine learning algorithms, accelerating the prediction of 
bacterial resistance—particularly to carbapenems and colistin—by 
1 day compared to traditional antibiotic susceptibility tests (AST). 
It provides healthcare professionals with resistance probability 
scores through a web interface, enabling rapid and informed 
treatment decisions (Ali et  al., 2024). Massachusetts General 
Hospital employs AI to assess the risk of Clostridium difficile 
infections. In a multicenter study involving at least nine hospitals, 
Dascena’s machine learning algorithms have been used for early 
sepsis detection and stratification, antimicrobial prescription 
recommendations, and resistant microorganism colonization 
predictions, demonstrating the potential to reduce hospital 

mortality rates, shorten hospital stays, and decrease 30-day 
readmission rates (Jian et  al., 2024; Shimabukuro et  al., 2017; 
Burdick et al., 2020).

AI and machine learning (ML) technologies are also extensively 
applied in addressing healthcare-associated infections (HAIs). AI 
systems are capable of predicting surgical site infections (SSIs), 
hospital-acquired pneumonia (HCAP), and hospital-acquired urinary 
tract infections (HA-UTI) (McCoy and Das, 2017). For instance, a 
machine learning model monitoring SSI in colon surgeries has 
reduced manual workload by 83.9% (Radaelli et al., 2024). A new 
AI-based training and monitoring system (AITMS) has improved 
personal protective equipment (PPE) wearing and doffing skills, 
successfully reducing pathogen infection rates from 1.31 to 0.58% in 
a Japanese hospital (Cho et al., 2024). The University of Iowa Hospitals 
and Clinics utilized machine learning to decrease surgical site 
infection rates by 74%, while Philips’ “Connected Care” system 
reduced detection time for nosocomial infections by 87% (Huang 
et al., 2023).

Artificial intelligence has also played a practical role in global 
public health. Systems like HealthMap utilize natural language 
processing to analyze online news and professional resources, 
providing global alert information for outbreaks such as the Middle 
East respiratory syndrome coronavirus (MERS-CoV) and severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Agrebi 
and Larbi, 2020; Ali et al., 2023). The U.S. CDC employs machine 
learning models to predict influenza trends (Hossain and Househ, 
2016). During the COVID-19 pandemic, AI technologies were 
implemented in genomic classification, lineage mapping, and 
optimization of testing strategies. The ZOE COVID Study collected 
symptom data via a smartphone app, offering invaluable insights 
for public health (Reich et al., 2019). Singapore airport implemented 
thermal imaging for temperature monitoring of potential 
infections, combining physiological parameters with advanced 
analytical methods to classify high-risk influenza patients (Menni 
et al., 2020).

TABLE 4 Topic-word distribution (manually screened).

Theme Intensity Distribution

Topic0 0.043646 Recognition, detection, microorganisms, diagnosis, sensitivity, specificity, algorithms, models, deep learning, rapid, 

automation, pathogens

Topic1 0.225899 Resistance, drugs, genes, sequences, mutations, evolution, prediction, analysis, antibiotic resistance, bacteria, 

experimental data, antibiotics

Topic2 0.082465 Transmission, infection, control, epidemic, prediction, monitoring, public health, transmission routes, risk assessment, 

early warning systems, spread

Topic3 0.089147 Genome, sequencing, genes, analysis, microorganisms, diversity, evolution, comparative, database, functional 

prediction, gene expression

Topic4 0.174416 Treatment, optimization, plans, personalized, efficacy, prediction, assessment, therapeutic outcomes, decision support, 

patient data, medical protocols

Topic5 0.107509 Ecology, microorganisms, environment, interactions, communities, ecosystems, analysis, monitoring, modeling, 

biodiversity

Topic6 0.195139 Vaccine, development, antigens, immune response, prediction, experimental data, simulation, efficacy, protection rate, 

bioinformatics, clinical trials

Topic7 0.08178 Data, analysis, management, databases, informatics, storage, big data, data mining, computation, statistics, automated 

processing
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4.4 Opportunities and challenges

The real-world application of artificial intelligence (AI) in 
pathogen research is still in its infancy; however, it reveals immense 
potential for development while facing numerous challenges and 
obstacles. The following are four key directions for enhancing AI 
application in this field:

Advanced Machine Learning Algorithms: With the increase in 
computational power and data accumulation, more sophisticated and 
accurate deep learning models can be applied to pathogen research to 
improve the accuracy of disease prediction and enhance the capability 
to handle multidimensional data.

Richer Sample Data: By collecting additional sample data from 
diverse clinical settings worldwide, AI systems can improve their 
generalization ability, thereby increasing their robustness across varied 
medical environments.

User-Friendly Interface Design: Developing intuitive and easy-
to-use interfaces, along with providing adequate training for 
healthcare professionals, can significantly promote the widespread 
application of AI technologies in clinical practice.

Application of Extreme Value Theory: Integrating extreme value 
theory with robust statistical methods in epidemiology and public 
health can aid in the early detection of anomalies in transmission 
dynamics. This is particularly beneficial for the early warning of rare 

FIGURE 7

Topic-word relationship diagram.
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infectious events, such as emerging infectious diseases, providing 
strong support for public health interventions.

However, several challenges must be  overcome to advance 
AI applications:

High Costs: The development, deployment, and maintenance of 
AI models are capital-intensive. Solutions include utilizing open-
source AI tools and models and creating government subsidy policies 
to lower the barrier to technology access.

Training and Talent Shortage: Healthcare professionals require 
appropriate training to effectively use AI tools. This issue can 
be addressed by implementing targeted AI training programs and 
cultivating more medical professionals with expertise in AI.

Data Quality and Accessibility: High-quality data is crucial for 
training AI models. Challenges can be  tackled by establishing 
standardized data-sharing mechanisms, improving data collection and 
annotation methods, and enhancing data security and 
privacy protections.

Ethical and Legal Issues: The use of AI in medical decision-
making involves ethical and legal responsibilities. This necessitates the 
development of ethical guidelines and legal regulations for AI 
applications, clearly defining accountability and establishing effective 
oversight mechanisms to ensure lawful and compliant use of 
AI systems.

Model Explainability: The “black box” nature of AI models affects 
their applicability and acceptance in clinical practice. Therefore, 
developing more interpretable AI models can help clinicians 
understand their decision processes, thereby increasing trust and 
encouraging their use (Sun et al., 2015; Hassija et al., 2024).

5 Conclusion

In this study, we conducted a comprehensive analysis of the 
application of artificial intelligence (AI) in pathogenic 
microbiology research using bibliometrics and topic modeling. 
We  examined 27,420 relevant publications from 2010 to 2024, 
uncovering an exponential growth trend in publications since 
2016, primarily focused on eight key areas: pathogen detection, 
antibiotic resistance prediction, transmission and control, genomic 
analysis, therapeutic optimization, ecological studies, vaccine 
development, and data management systems.

The results from topic modeling indicate that the application 
of AI in pathogen research has become diverse and specialized. 
For instance, in pathogen detection, AI has significantly 
improved diagnostic speed and accuracy through the integration 
of multimodal data fusion technologies. In the realm of antibiotic 
resistance prediction, machine learning and deep learning 
models have expedited the identification and analysis of 
resistance genes. In vaccine development, AI has facilitated rapid 
progress in antigen recognition and immunogen design, thus 
playing a critical supportive role in the development of 
COVID-19 vaccines.

Despite AI’s substantial potential in pathogenic microbiology 
research, its practical implementation remains in the early stages and 
faces numerous challenges. Key factors limiting effective AI 
application include the acquisition and sharing of high-quality data, 
AI system interpretability, ethical and legal responsibilities, and the 
high cost of development. To foster further advancements in this 

field, we recommend strengthening interdisciplinary collaboration to 
enrich AI model training data, enhancing the user-friendliness of AI 
tools to promote their adoption and application in clinical practice, 
and supporting policies to reduce the economic barriers to AI 
utilization. Addressing these issues collaboratively will enable a fuller 
realization of AI technologies in tackling challenges in the field of 
pathogenic microbiology, ultimately contributing to the resilience of 
health management and public health systems and providing 
unprecedented opportunities to address global public 
health challenges.
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