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Background: In recent years, with the increase of antibiotic resistance, tigecycline 
has attracted much attention as a new broad-spectrum glycylcycline antibiotic. 
It is widely used in the treatment of complex skin and soft tissue infections, 
complex abdominal infections and hospital-acquired pneumonia by inhibiting 
bacterial protein synthesis. Tigecycline can exhibit significant time-dependent 
bactericidal activity, and its efficacy is closely related to pharmacokinetics. It can 
be evaluated by the ratio of AUC0-24 to the minimum inhibitory concentration 
(MIC) of pathogens. However, tigecycline may cause nausea, vomiting, diarrhea 
and a few patients have elevated serum aminotransferase, especially in critically 
ill patients. The safety of patients still needs further study.

Methods: In this study, the clinical data of 263 patients with pulmonary infection 
in Shengjing Hospital of China Medical University and the Second Affiliated 
Hospital of Dalian Medical University were collected retrospectively, and the 
hepatotoxicity prediction model was established. The potential correlation 
between the toxic and side effects of tigecycline and the number of hospitalization 
days was preliminarily discussed, and the correlation analysis between the 
number of hospitalization days and continuous variables was established. Finally, 
the deep learning model was used to predict the hospitalization days of patients 
through simulated blood drug concentration and clinical laboratory indicators.

Results: The degree of abnormal liver function was significantly correlated with 
AST, GGT, MCHC and hospitalization days. Secondly, the correlation between 
hospitalization time and clinical test indexes and simulated drug concentration 
was analyzed. It was found that multiple clinical laboratory parameters of 
patients (such as EO #, HCT, HGB, MCHC, PCT, PLT, WBC, AST, ALT, Urea), 
first dose (Dose), age and APACHE II score were significantly correlated with 
hospitalization days. The simulated blood drug concentration was correlated 
with the length of hospital stay from 12 h after administration, and reached the 
strongest between 24 and 48 h. The AUC of the liver function prediction model 
can reach 0.90. Further analysis showed that there was a potential correlation 
between hepatotoxicity and hospitalization days. The median hospitalization 
days of patients in the non-hepatotoxicity group, liver function injury group and 
hepatotoxicity group were 20, 23, and 30 days, respectively. Based on these 
results, the length of hospital stay was predicted by the deep learning prediction 
model with an error within 1 day.

Conclusion: In this study, the hospitalization days of infected patients were 
predicted by deep learning model with low error. It was found that it was related 
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to clinical test parameters, hepatotoxicity and dosage after administration. The 
results provided an important reference for the clinical application of tigecycline, 
and emphasized the need to pay attention to its toxic and side effects in use.
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1 Introduction

In recent years, with the increasing resistance of antibiotics, the 
treatment of infection has become more complicated, which further 
highlights the necessity of new antibiotics in clinical application 
(Gupta et al., 2017).

Tigecycline, as a new broad-spectrum glycylcycline antibiotic, 
plays a role by inhibiting bacterial protein synthesis. It is widely used 
in the treatment of complex skin and soft tissue infections, complex 
abdominal infections, and hospital-acquired pneumonia and other 
infections (Bradford et al., 2005; Xie et al., 2017). First, tigecycline has 
obvious time-dependent bactericidal activity, and the efficacy is 
closely related to the relationship between pharmacokinetics (PK) and 
pharmacodynamics (PD). The ratio of AUC0-24 to the minimum 
inhibitory concentration (MIC) of the pathogen can better predict the 
therapeutic effect of the drug (Van Wart et al., 2006; Koomanachai 
et al., 2009; Bhavnani et al., 2012). Tigecycline is mainly excreted 
through bile, and its excretion in the kidney is low, only about 20% of 
the prototype drug, which provides more options for the use of 
patients with renal insufficiency (Ap, 2008; Yamashita et al., 2014).

The most common adverse reactions of tigecycline in clinical 
application are nausea, vomiting and diarrhea, but in phase 2 and 
phase 3 clinical trials, it was found that about 2–5% of patients had 
elevated serum aminotransferase (Babinchak et al., 2005; Ellis-Grosse 
et  al., 2005; Sacchidanand et  al., 2005). Elevated serum 
aminotransferase often suggests abnormal changes in liver function. 
However, so far (Geng et al., 2018), in the field of related research, 
there are few studies on the abnormal liver function caused by the use 
of tigecycline in critically ill patients. This may hinder the 
comprehensive understanding of the safety characteristics of 
tigecycline, and the use of tigecycline may cause serious damage to the 
liver function of critically ill patients, thus affecting the therapeutic 
effect of patients.

Population pharmacokinetic model (PPK) is a mathematical 
model that can describe the typical pharmacokinetic characteristics 
and variability of the population by integrating the plasma 
concentration and individual information of multiple individuals and 
considering the variability between individuals and within individuals. 
The model can effectively capture the influence of covariates such as 
patient’s age, weight, and disease status on pharmacokinetic 
parameters. Through the combination of PPK model and Bayesian 
method, compared with the traditional analysis method, the advantage 
of Bayesian theorem is that it can make full use of prior information 
and improve the accuracy of estimation. Through the dynamic 
feedback mechanism, the continuous optimization of model 
parameters is realized, which is effectively applied to complex and 
changeable situations, so as to accurately simulate the blood 
concentration of individual patients.

In recent years, artificial intelligence technology (Iezzi et al., 2019) 
has gradually shown broad application prospects in pharmacokinetic 

studies. Based on Deep Learning (LeCun et al., 2015), it can not only 
process large-scale biomedical data, but also identify complex 
nonlinear relationships. This ability makes AI a powerful tool in 
pharmacokinetic studies, especially in the fields of drug concentration 
prediction, drug interaction analysis, and risk assessment of adverse 
reactions, thereby providing support for personalized medication and 
clinical decision-making. A 2023 study explored the significant 
development of therapeutic drug monitoring (TDM) and model-
guided precision drug delivery (MIPD) driven by advances in 
computing and mathematical technology (Poweleit et al., 2023). A 
2022 study that combines a physiologically based pharmacokinetic 
(PBPK) model with machine learning (ML) or artificial intelligence 
(AI) techniques to predict ADME parameters using ML/AI, and 
integrates these prediction models into the PBPK model to predict 
pharmacokinetic (PK) statistical results (Chou and Lin, 2023). In 
another study, neural-ODE is applied to PK modeling for the first 
time. The final results show that it has a wide range of applicability and 
may have an important impact on future research (Lu et al., 2021). All 
of these indicate the potential application of artificial intelligence in 
pharmacokinetic analysis.

Therefore, this study aims to explore the potential risk factors for 
hepatotoxicity in patients treated with tigecycline by means of artificial 
intelligence-based technology. By analyzing the correlation between 
abnormal liver function and laboratory parameters, hospitalization 
days, etc., the mechanism of hepatotoxicity of tigecycline and its 
potential relationship with prolonged hospitalization days 
were revealed.

In addition, by exploring the effect of tigecycline hepatotoxicity 
on hospitalization days, a prediction model of hospitalization days was 
established to provide scientific reference for clinical practice, and 
then provide an important reference for optimizing the clinical 
application of tigecycline.

2 Method

2.1 Study population

This study retrospectively collected the clinical data of two 
patients with cardiopulmonary infection. The study was approved by 
the Ethics Committee, Ethics No. (2019 no. 049). Inclusion criteria: 
Patients included in this study should meet the following criteria: (1) 
patients with clinical intravenous use of tigecycline for more than 
three days; (2) Tigecycline is for therapeutic use; (3) Pulmonary 
infection caused by Gram-positive or Gram-negative bacteria, such as 
pneumonia or bronchitis, is diagnosed or highly suspected by 
clinicians. Exclusion criteria: (1) patients with cirrhosis or liver failure; 
(2) Patients died within 24 h after the use of tigecycline; (3) Pregnancy; 
and (4) Other medications that may affect the liver during tigecycline 
treatment. Inclusion and exclusion as shown in Figure 1.
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2.2 Data collection

All enrolled patients were treated with tigecycline, and laboratory 
indicators and basic information were recorded in detail. This study 
collected patient data through the hospital’s electronic medical record 
system and nursing system. The collected laboratory indicators 
included: (1) patient age, initial dose of tigecycline (Dose), and length 
of hospital stay; (2) laboratory examination results of patients during 
medication. Such as EO # (absolute number of eosinophils), EO % 
(percentage of eosinophils), HCT (hematocrit), HGB (hemoglobin), 
MCH (mean corpuscular hemoglobin content), MCHC (mean 
corpuscular hemoglobin concentration), MCV (mean corpuscular 
volume), MPV (mean platelet volume), PCT (platelet hematocrit), 
PLT (platelet count), WBC (white blood cell count), RH 
(hemorheology), A/G ratio (albumin/globulin ratio), ALT (alanine 
aminotransferase), AST (aspartate aminotransferase), GGT 
(γ-glutamyl transferase), TP (total protein), Urea (urea), and 
APACHE II score. (3) Drug-induced adverse reactions, such 
as hepatotoxicity.

The abnormal liver function of tigecycline was defined as the ALT 
value measured twice in a row was between the upper limit of the 
normal value (5–40 U/L) and the upper limit of the normal value by 
3 times, and its hepatotoxicity was defined as the ALT value measured 
twice in a row >3 times the upper limit of the normal value (or blood 
bilirubin >1.5 times the upper limit of the normal value), or greater 
than 1.5 times the baseline value (if the baseline value is abnormal) 
(Fan et al., 2020).

2.3 Blood concentration simulation

In this study, we constructed a population pharmacokinetic model 
based on previous research results (Luo et al., 2023) (Equations 1, 2). 
Bayesian feedback method (Aggelopoulos, 2015) was used to simulate 
the blood concentration of patients at different time points after 
administration. We determined the mathematical form of the model, 
including key kinetic processes such as drug absorption, distribution, 
metabolism, and excretion, taking into account individual differences, 

FIGURE 1

Inclusion and exclusion process of patients in this study. Finally, 263 patients using tigecycline in two centers were retrospectively collected through 
the inclusion and exclusion criteria, and the data were trained in a deep learning model according to the corresponding proportion.
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residual variation, and drug characteristics. The parameter values of 
the model were based on previous research reports, and the Bayesian 
feedback method was used to simulate the corresponding blood 
concentration values at different time points. The final model formula:

 ( ) ( ) 0.065/ 11.30 0.14CL L h APACHE II e= − ∗ ∗  (1)

 ( ) ( ) 0.160105.00 1 0.0059V L AGE e=  ∗ − ∗  ∗   (2)

2.4 Deep learning model

In order to solve the complex problem of hepatotoxicity prediction 
during treatment, we used the latest KAN network (Liu et al., 2024) to 
establish a tigecycline hepatotoxicity prediction model. KAN is derived 
from Kolmogorov-Arnold representation theorem, whose core idea is 
that any continuous function can be represented by a combination of 
one-dimensional functions. We map the blood drug concentration and 
the patient’s clinical laboratory indicators to the input layer of the KAN 
model. Through its specific multi-layer structure, KAN nests these 
multi-dimensional input features into a one-dimensional function 
combination, and then approximates the complex nonlinear 
relationship between drugs and liver function indicators. Based on 
these input characteristics, we established a predictive model that can 
not only predict the number of days of hospitalization, but also further 
predict the possible liver toxicity of patients during treatment, and 
provide support for personalized treatment and clinical decision-
making. The research flow chart of this study is shown in Figure 2.

2.5 Statistical analysis

Statistical analysis was performed using IBM SPSS 26.0 software. 
First, we test the normality of all data using the Kolmogorov–Smirnov 
test. For data that conform to the normal distribution, we use the 
mean ± standard deviation to describe; for data that do not conform 
to the normal distribution, the median (quartile) is used to describe. 
For categorical data, the t test was used for data that conformed to the 
normal distribution, and the Mann–Whitney U test was used for data 
that did not conform to the normal distribution. For continuous 
variables, Pearson correlation analysis was used for data that met the 
normal distribution, and Spearman correlation analysis was used for 
data that did not meet the normal distribution. Differences were 
considered statistically significant at p < 0.05. The statistics chart will 
be drawn using the Python-based matplotlib library.

3 Results

3.1 Baseline

A total of 263 patients from two centers were included in this study: 
200 from Institution I (Shengjing Hospital Affiliated to China Medical 
University) and 63 from Institution II (Second Hospital Affiliated to 
Dalian Medical University). All patients were treated with tigecycline. In 

terms of data, the training, validation and test sets are divided according 
to the proportion of 6: 2: 2 patients, which ensures the rationality of 
model training, tuning and evaluation. This division method helps to 
improve the generalization ability of the model and effectively avoid 
over-fitting. Table 1 lists the baseline information of the included patients.

3.2 Abnormal liver function, toxicity and 
laboratory relevance

Different laboratory indicators are helpful to evaluate the degree 
of liver injury. The overall ALT group, abnormal liver function group 
and hepatotoxicity group were established to explore the relationship 
between these three groups and laboratory indicators. Based on this 
grouping, the effects of different types and degrees of liver injury on 
various test indicators can be  accurately analyzed. As shown in 
Table 2, it was found that there was a significant correlation between 
the number of hospital stays and the ALT group and the abnormal 
liver function group, suggesting that liver function damage may affect 
the length of hospital stay. At the same time, MCHC, AST and GGT 
showed significant correlation with the three groups, indicating that 
poor liver function can indirectly affect the formation and function of 
red blood cells, thus affecting the MCHC value. In addition, liver cells 
are damaged, and AST is released from the liver cells into the blood, 
resulting in an increase in AST, and if the biliary system is damaged, 
GGT levels will increase accordingly.

3.3 Prediction of hepatotoxicity based on 
deep learning

Due to the small sample size of patients with hepatotoxicity in this 
study, there are some challenges in directly predicting hepatotoxicity. 
Therefore, we  indirectly reflect the potential risk of tigecycline-
induced hepatotoxicity by predicting whether the patient has 
abnormal liver function. The training results are shown in Figure 3. 
The model showed high performance in the testing set, with a 
sensitivity of 0.94, a specificity of 0.87, and an AUC value of 0.9, as 
shown in Figure 4. This shows that by predicting the abnormal liver 
function of hospitalized patients, we  can indirectly capture the 
potential risk of hepatotoxicity and provide an early warning model 
for early clinical identification and intervention of possible liver injury.

3.4 Potential association between liver 
function and length of hospital stay

Although we cannot directly analyze the relationship between drug-
induced hepatotoxicity and length of hospital stay, we can preliminarily 
explore whether there is a potential correlation between the degree of 
abnormal liver function after drug treatment and the length of hospital 
stay. Therefore, we divided the patients into three groups according to 
the definition of hepatotoxicity as shown in Table 3: hepatotoxic group, 
liver function injury group (defined as two consecutive ALT values 
between 40 U/L and 120 U/L), and non-hepatotoxic group. Through 
Figure 5, the box diagram visually shows the distribution characteristics 
and abnormal values of hospitalization days in different patient groups. 
The results showed that the length of hospital stay in the non-hepatotoxic 
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group was shorter, with a median of 20 days, but the distribution of 
length of hospital stay was wider, suggesting that there may be extreme 
values of individual length of hospital stay in this group. For the liver 
function injury group, the distribution of hospitalization days was 
relatively concentrated and the variability was small. The median 
(23 days) was located above the box, indicating that the hospitalization 

days of this group of patients were generally longer. Finally, the box of 
the hepatotoxicity group was wider and the overall was higher, 
indicating that the median length of hospital stay in this group was 
higher (30 days), and the overall length of hospital stay was the longest 
among the three groups. In addition, there was no significant extreme 
value or outlier in the length of hospital stay in this group. The overall 

 orrela�on between various 
ators and length of hospital 

stay

FIGURE 2

Overall flow chart of this study. (A) This study retrospectively collected the clinical laboratory indicators of the two centers, and the blood 
concentration simulated by Bayesian feedback method, established the correlation between liver function and clinical test, and based on this, a 
hepatotoxicity prediction model was constructed. (B) Establish the correlation between hospitalization days and clinical experimental indicators and 
simulated blood concentration, and explore and confirm the potential relationship between hospitalization days and hepatotoxicity. By inputting test 
indicators and blood concentration to the KAN network, the hospitalization days were predicted and the hepatotoxicity was indirectly predicted, and 
finally the prediction results with lower errors were obtained.

TABLE 1 Patient baseline information.

Hospital name Total number 
of patients

Number of 
participants in 
the training set 

(60%)

Number of 
people in the 
validation set 

(20%)

Number of 
people in the 
test set (20%)

Average age 
(year)

Age range 
(year)

Institution I 200 120 40 40 66 14–98

Institution II 63 38 13 12 58 18–89

Total 263 158 53 52 62 14–98
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results reflect the significant differences in the number of hospitalization 
days among different patient groups, suggesting that hepatotoxicity may 
have a greater impact on the length of hospitalization, while the liver 
function injury group showed a more uniform hospitalization demand.

3.5 Correlation between hospitalization 
days and clinical laboratory indexes

Table 4 shows the correlation between the length of hospital stay 
and clinical information of the included patients. Among the 
laboratory parameters, EO#, HCT, HGB, MCHC, PCT, PLT, WBC, 
AST, ALT, urea p < 0.05, that is, these indicators may be potential 
factors reflecting hepatotoxicity. The p value of dose was <0.05, 
indicating that higher doses may lead to greater toxic and side effects, 
which in turn leads to longer hospital stay. Similarly, age and 
APACHEII p values <0.05 indicated that tigecycline had a higher risk 
of toxicity in elderly or more severe patients.T
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FIGURE 3

In the 121st round, the training and validation phases achieved the 
best results, and the accuracy of the liver function prediction model 
reached 84.71 and 83.76, respectively.

FIGURE 4

The area under the curve (AUC) was 0.90, indicating that the model 
had a high ability to distinguish whether there was abnormal liver 
function.
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3.6 The correlation between hospitalization 
days and blood drug concentration

The plasma concentration (ng/ml) of patients at 10 time points 
(4, 8, 12, 24, 36, 48, 60, 72, 74, and 78 h) after the first administration 
was simulated by the constructed pharmacokinetic model. The 
results are shown in Table  5. In the correlation analysis of 
hospitalization days and blood drug concentration, as shown in 
Table 6, the correlation began to appear 12 h after administration, 
and reached the strongest between 24 and 48 h. To a certain extent, 
this shows that the residual concentration of the drug is the most 
significant toxic and side effects for patients in the 24–48 h period. 
Therefore, it is recommended to use this time period as an 
important node for clinical testing so that clinicians can make 

corresponding intervention and treatment decisions in a 
timely manner.

3.7 Prediction results of hospitalization 
days based on deep learning

The simulated blood drug concentration and laboratory 
parameters were integrated into the constructed deep learning model. 
The training results are shown in Figure  6. In the training and 
verification stages, we observed that the model loss was maintained 
below 1. This result means that the error between the predicted 
hospitalization days and the actual hospitalization days can 
be effectively controlled within one day, showing the high accuracy 

FIGURE 5

Distribution and difference of hospitalization days in patients with different liver function status. The number of hospitalization days in the non-
hepatotoxicity group was the most widely distributed, and there were more extreme hospitalization days. The distribution of hospitalization days in the 
liver function injury group was more concentrated, and the hospitalization time was longer as a whole; the distribution of hospitalization days in the 
hepatotoxic group was more balanced, and no abnormal value was found. It reflects the difference in hospitalization days among different patient 
groups.

TABLE 3 Descriptive statistics of the number of hospitalization days in the patient group.

Patient group Number of people Average length of 
hospital stay

Median length of 
hospital stay

Standard deviation

No hepatotoxicity 202 25 20 16.37

Liver function injury 50 26 23 16.59

Hepatotoxicity 11 32 30 19.97

The difference was statistically significant (p < 0.05).
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and reliability of the model in predicting hospitalization days 
(Table 6).

4 Discussion

This study first analyzed the effect of liver function injury on test 
indicators. The results showed that the length of hospital stay was 
significantly correlated with ALT group and abnormal liver function 
group, suggesting that liver function injury may prolong the length of 
hospital stay. At the same time, MCHC, AST and GGT were 
significantly correlated with the three groups, reflecting the impact of 
poor liver function on red blood cell function, liver cell damage and 
biliary system damage, and had potential clinical evaluation value.

Secondly, the liver function early warning model established in 
this study has good performance and indirectly captures the potential 
risks of hepatotoxicity. By exploring the potential relationship between 
hospitalization days and tigecycline hepatotoxicity, the results showed 
that the degree of liver function damage was associated with 

TABLE 4 The correlation between continuous variables and hospitalization days.

Indicator Statistic p-value Indicator Statistic p-value

Age 263 0.001* WBC 263 0.001*

EO# 263 0.004* Dose 263 0.048*

EO% 263 0.065 RH 263 0.053

HCT 263 0.001* A/G 263 0.345

HGB 263 0.001* ALT 263 0.027*

MCH 263 0.092 AST 263 0.001*

MCHC 263 0.008* GGT 263 0.367

MCV 263 0.161 TP 263 0.151

MPV 263 0.323 Urea 263 0.048*

PCT 263 0.001* APACHEII 263 0.001*

PLT 263 0.001*

*The difference was statistically significant (p < 0.05).

TABLE 5 Through the constructed pharmacokinetic model, the blood concentration at different time points after the first administration was 
simulated.

Training set/158 Validation set/53 Testing set/52

4.0 h 1568.23 (728.41, 3119.10) 1605.29 (780.61, 2266.90) 1480.72 (762.71，2380.40)

8.0 h 900.72 (432.17, 1881.60) 870.55 (426.39, 1413.80) 886.90 (449.74, 1582.30)

12.0 h 526.26 (216.02, 1425.90) 480.67 (194.17, 881.76) 522.87 (224.83, 1051.80)

24.0 h 371.16 (134.19, 1016.30) 325.21 (115.42, 654.79) 371.71 (140.44, 834.83)

36.0 h 340.65 (124.87, 929.15) 298.69 (107.98, 599.72) 340.84 (363.75, 771.1)

48.0 h 334.30 (123.61, 910.61) 293.87 (107.28, 586.37) 334.27 (128.61, 752.39)

60.0 h 332.91 (123.45, 906.67) 292.95 (107.21, 583.13) 332.81 (128.45, 746.89)

72.0 h 332.58 (123.43, 905.83) 292.76 (107.21, 582.34) 332.48 (128.42, 745.27)

74.0 h 1283.29 (633.02, 2562.00) 1298.10 (641.67, 1895.20) 1245.04 (654.06, 2067.50)

78.0 h 742.19 (349.25, 1578.20) 710.59 (348.88, 1182.00) 731.19 (363.74, 1374.30)

FIGURE 6

In the training and validation stages, the model maintained a good 
consistency in the prediction of hospitalization days, and the error 
could eventually be maintained within 1 day, which confirmed that 
the model established in this study had good prediction 
performance.
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hospitalization days. The hospitalization time of the patients in the 
hepatotoxicity group was longer as a whole, and the hospitalization 
days of the patients in this group showed a large change, which may 
be  related to the severity of hepatotoxicity and the increase of 
treatment needs.

Then, by analyzing the correlation between the actual 
hospitalization days and the patient information and clinical 
indicators, it was found that there was a significant correlation 
between a number of clinical indicators and the actual hospitalization 
days. The actual hospitalization days obtained by the analysis were 
strongly related to the patient’s age, WBC, EO #, Dose, HCT, HGB, 
AST, ALT, MCHC, Urea, PCT, PLT, APACHEII.

Finally, this experiment uses simple and easy-to-obtain 
hospitalization days to replace the clinical index values that need to 
be measured multiple times, and uses the constructed deep learning 
model to predict hospitalization days. The error between the predicted 
results and the actual days is controlled at about one day. However, 
this cannot completely replace the clinical judgment of the liver side 
effects of tigecycline. There is a certain error. As the patient ages, the 
body function and various indicators will gradually decline. According 
to the study of Huang et al., the in-hospital mortality and length of 
stay gradually increased with age (Huang et al., 2023), which was 
consistent with the results of this experiment. However, if we want to 
further explore the relationship between the liver side effects of 
tigecycline and age in this experiment, we need to further collect 
clinical index data for correlation test.

At the same time, it was also found that the liver side effects of 
tigecycline were negatively correlated with the WBC level of the 
patients. As the side effects increased, the WBC and PCT levels of the 
patients decreased. Li et al. found that cefoperazone combined with 
tigecycline in the treatment of ICU infection can effectively improve 
the therapeutic effect of the disease, and significantly enhance the 
bacterial clearance, while reducing serum WBC and PCT levels (Li 
and Zhang, 2022). This suggests that when tigecycline is used alone, 
although there is a certain effect on the infection of patients, the toxic 
and side effects also increase. Whether there is the possibility of 
cefoperazone alleviating the toxic and side effects of tigecycline, which 
also provides a direction for future research and provides evidence for 
this experiment; the toxic and side effects were negatively correlated 
with the levels of HCT, HGB, AST, MCHC, PCT and PLT. With the 
increase of toxic and side effects, the levels of HCT, HGB, AST, 
MCHC, PCT and PLT decreased, which represented the decrease of 
liver function and coagulation function.

In a number of case reports and experiments (Sabanis et al., 2015; 
McMahan and Moenster, 2017; Cui et al., 2019), it is mentioned that the 
use of tigecycline will affect the coagulation system of patients, cause 
coagulation disorders, and produce adverse clinical outcomes. Therefore, 
in this experiment, the use of simple and easy-to-obtain hospitalization 
days can be a good warning for the occurrence of adverse coagulation 
events in patients. At the same time, in the study of Zhang et al., it was 

also found that in patients using tigecycline, renal dysfunction also 
caused tigecycline-induced coagulation-related adverse events (Zhang 
et al., 2020). In this experiment, the toxic and side effects of patients were 
negatively correlated with urea levels. Urea showed the liver function of 
patients to a certain extent, which also provided more evidence sources 
for the clinical manifestations of tigecycline toxicity.

We can find that most clinical indicators point to the decline of 
liver function. In recent studies, the deep learning of pharmacokinetics 
is combined with clinical imaging to empower the metabolic changes 
of pharmacokinetics in various organs, and accurately segment and 
refine the role of organs (Arledge et al., 2022; Ota and Yamashita, 
2022; Dhaliwal et al., 2024). Although this study replaced the toxic and 
side effects of tigecycline and analyzed the correlation with a number 
of laboratory indicators, the experiment can further carry out more 
accurate analysis in the metabolic imaging of the patient’s liver, match 
the number of days of hospitalization, and refer to the number of days 
of hospitalization. More accurate, and in the future, we can try to build 
a liver model to achieve a simulated drug metabolism process, provide 
clinicians with more predictive medication recommendations, and 
avoid excessive or excessive medication.

At the same time, there are still corresponding limitations in this 
experiment. In view of the lack of sample size of patients with 
hepatotoxicity in this study, although the liver function prediction 
model has alleviated the problem of insufficient number of patients with 
hepatotoxicity to a certain extent, it also limits the specific interpretation 
of drug hepatotoxicity prediction. At the same time, further research on 
the correlation between hepatotoxicity and hospitalization days needs 
to verify this conclusion in a larger patient group and other external 
centers in the future to enhance the reliability and generalization of the 
results. As well as the defects that the study did not include the total 
number of patients’ medications and the total amount of medications 
into the experimental data, the patient stratification was not diversified 
enough, resulting in the inability to present a more detailed correlation 
analysis, which will be improved in future research.

5 Conclusion

Tigecycline, as a new type of antibiotic, has shown good clinical 
application potential in the treatment of complex infections. This study 
preliminarily explored the correlation between drug liver dysfunction, 
toxicity and laboratory parameters. By indirectly reflecting the 
potential possibility of hepatotoxicity, an early warning model of liver 
injury that can be  clinically identified and intervened early was 
established. The significant correlation between liver function status 
and hospitalization days, as well as hospitalization days and clinical 
laboratory parameters and simulated dose after the first administration 
was determined. Finally, through the prediction and analysis of drug 
side effects on the simple and easy-to-obtain hospitalization days, it 
provides an important reference for the clinical application of 

TABLE 6 Correlation between blood drug concentration and hospitalization days.

4 h 8 h 12 h 24 h 36 h 48 h 60 h 72 h 74 h 78 h

Hospital 

days

Statistic 263 263 263 263 263 263 263 263 263 263

P-value 0.193 0.111 0.029* 0.010* 0.010* 0.010* 0.012* 0.011* 0.201 0.110

*The difference was statistically significant (p < 0.05).
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tigecycline, and suggests that the side effects of drugs should be paid 
attention to in clinical use, especially in critically ill patients.
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