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China

Introduction: Golden Retrievers have a high risk of obesity, which is prevalent 
in dogs and is associated with inflammation and cancer, impairing the health 
and life expectancy of companion animals. Microbial and metabolite biomarkers 
have been proposed for identifying the presence of obesity in humans and 
rodents. However, the effects of obesity on the microbiome and metabolome 
of Golden Retrievers remains unknown. Therefore, this study was designed 
to evaluate the signatures of serum biochemistry indexes, gut microbiota and 
plasma metabolites in non-obese and obese Golden Retrievers, aiming to 
recognize potential biomarkers of canine obesity.

Methods: A total of 8 non-obese (Ctrl group) and 8 obese (Obe group) Golden 
Retrievers were included in the present study to collect blood and feces samples 
for measurements. The fecal microbiome and plasma metabolome were 
determined using 16S rRNA amplicon sequencing and liquid chromatography-
mass spectrometry, respectively.

Results: Results showed that the alanine aminotransferase activity and total 
bilirubin concentration, which have been measured using serum biochemistry 
analysis, were higher in the Obe group than in the Ctrl group (p < 0.05). Moreover, 
there was a significant difference in gut microbiota composition between the two 
groups (p < 0.05). The phyla Proteobacteria, Fusobacteriota, and Bacteroidota as 
well as genera Fusobacterium, Prevotella, Faecalibacterium, Escherichia-Shigell, 
and Alloprevotella were more abundant, while phylum Firmicutes and genera 
Peptoclostridium, Blautia, Turicibacter, Allobaculum, and Erysipelatoclostridium 
were less abundant in the Obe group compared to the Ctrl group (p < 0.05). Plasma 
concentrations of citrulline and 11-dehydrocorticosterone were significantly higher 
in the Obe group than those in the Ctrl group (p < 0.05). Close correlations between 
serum biochemistry parameters, gut microbiome, and plasma metabolites were 
observed in the current study.

Conclusion: The obesity-induced shifts in serum biochemistry indexes, gut 
microbiota, and plasma metabolites profiles suggest that obese Golden Retrievers 
exhibit a different microbiome and metabolome than non-obese ones, and the 
certain metabolites like citrulline and 11-dehydrocorticosterone could be considered 
as potential biomarkers to recognize obese Golden Retrievers.
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1 Introduction

Obesity has been declared as a major global health problem in 
both human beings and domesticated animals, and it has been most 
commonly observed in companion animals (Chandler et al., 2017). 
Previous studies have showed that approximately 59% of dogs are 
overweight or obese (Courcier et al., 2010). Obese dogs have been 
demonstrated to be  more prone to suffering from a subclinical 
inflammatory state than their lean counterparts, characterized by the 
higher levels of certain inflammatory markers, which are associated 
with a higher risk of cardiovascular illnesses and cancer (Vecchiato 
et  al., 2023). Thus, accurate diagnosis is crucial for early obesity 
treatment in dogs, thereby enhancing their welfare and quality of life. 
The most common tool used by veterinarians to assess the nutritional 
status of dogs is the body condition score (BCS) system (Broome et al., 
2023), which has relatively high accuracy and reproducibility, but it 
still has a certain degree of subjectivity in determining canine obesity 
because the evaluation primarily relies on visual examination and 
palpation (Tesi et  al., 2020; Miller et  al., 2018). Even among 
experienced veterinarians, discrepancies in evaluating BCS for the 
same dog may occur. Therefore, the additional biomarker indicators 
are needed to identify for providing supplementary references in the 
diagnosis of canine obesity by the veterinarians using BCS system.

Serum biochemistry parameters are commonly used to detect the 
metabolic health of humans and animals. Alanine aminotransferase 
(ALT) and total bilirubin (TB) serve as significant potential 
biomarkers in the clinical assessment of liver inflammation-related 
diseases not only in humans, but also in feline and canine populations 
(Dirksen et al., 2017; Kozat and Sepehrizadeh, 2017). Furthermore, 
recent research has demonstrated a positive correlation between ALT 
levels and body weight in humans, highlighting its potential utility in 
evaluating metabolic health (Bekkelund and Jorde, 2019).

Although obesity is highly prevalent in dogs, there are higher 
frequencies of overweight conditions in certain breeds of dogs 
including Golden Retrievers, Pug, Beagle and English Springer 
Spanie than in others (Reddy et al., 2019; Pegram et al., 2021). 
The breed susceptibility of Golden Retriever to obesity is 49.53% 
according to the clinical study (Mounika et al., 2020), implying 
that Golden Retrievers should be paid more attentions on their 
obese status (Pegram et al., 2021; O’Neill et al., 2021). In recent 
years, increasing evidence has shown that gut microbiota 
dysbiosis played a causal role in the early onset of obesity and 
lipid metabolism dysfunction (Yu et al., 2019; Zhang and Gérard, 
2022). On the other hand, obese individuals have harbored a 
distinct gut microbiome from those lean individuals, indicated 
by reduced microbial diversity and altered taxonomic abundances 
in the overweight cohort (Lippert et  al., 2017). The higher 
Firmicutes and Bacteroidetes ratio has been related to obesity in 
some studies, but these observations are inconsistent across 
studies, and it is unknown which specific microbial taxon is 
directly related to the development of obesity (Xie et al., 2012). 
Likewise, overweight Beagle dogs also have exhibited a 
significantly different gut microbiome from the normal ones, 

characterized by higher abundances of genera Faecalibacterium, 
Phascolarctobacterium, Megamonas, Bacteroides, Mucispirillum 
(Kim et al., 2023). These evidences further support the contention 
that gut microbiota may be involved in the metabolic health of 
the host. Owing to the close relationship between gut microbiota 
and host obesity, several attempts have been made to reveal the 
potential microbial biomarkers for detecting dietary 
responsiveness in obese individuals with impaired metabolic 
health. Indeed, some microbial biomarkers have been identified 
to hold the potential to predict obesity, and interventions based 
on these microbial biomarkers might be beneficial to weight loss 
and metabolic risk improvement (Barengolts et  al., 2019). It 
remains unknown the differences in gut microbiota composition 
between non-obese and obese Golden Retriever dogs, and thus it 
is necessary to identify microbial biomarkers of obesity in 
Golden Retrievers.

Gut microbiota dysbiosis in obese individuals has been shown to 
affect host physiology possibly via modulating the metabolism and 
excretion of microbial-derived metabolites including lipids and lipid-
like metabolites, amino acids, bile acids derivatives, and catabolites of 
plant bioactive components, which were also proposed to be predictors 
of overweight or obesity (Machate et al., 2020; Lippert et al., 2017). 
Metabolomics has been enlightened as a useful tool to evaluate 
changes in metabolites due to overweight and obesity at the cellular 
level and body fluid level (Xie et al., 2012). Thus, metabolite profiling 
with metabolomics might represent an opportunity to methodically 
establish biomarkers for obesity diagnosis and control that are 
relatively simple to measure in comparison to traditional approaches 
like the BCS system (Rauschert et al., 2014).

Therefore, the alterations in composition of the gut microbiota 
and the plasma metabolites profile may be informative in predicting 
the obese status of Golden Retrievers. The present study adopted 
microbiome and metabolomics techniques to test the differences in 
gut microbiota and plasma metabolites profile between non-obese and 
obese Golden Retrievers to reveal the potential obesity biomarkers 
from microbiota and/or metabolites.

2 Materials and methods

The experimental protocols related to animal treatment in the 
present study were approved by the Institutional Animal Care and Use 
Committee of Southwest University of Science and Technology (No. 
L2023029).

2.1 Animals and management

The design of the analytical workflow is shown in Figure 1, which 
illustrates the enrollment of groups. Before screening, a total of 77 
Golden Retrievers applicants were registered by the owners to 
participate in the study. Dogs were excluded if they had a history of 
drugs or antibiotics administration within a month. Importantly, 
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dietary history was also considered as a crucial screening factor. 
Only the Golden Retrievers consuming diets with similar nutrient 
levels and ingredients composition over 3 months were kept for the 
further screening procedures. All feeds were formulated primarily 
with duck and chicken meat. In addition, the physical examinations 
of all Golden Retrievers were performed to exclude those with 
obvious inflammatory disease and to assess the BCS according to a 
validated 9-point BCS system. The dogs with a BCS range from 4 to 
5 were the non-obese objects in the present study, with a BCS range 
from 7 to 9 defined as the obese studying objects and their 
counterparts (Broome et al., 2023). Accordingly, those with BCS at 
other scores were excluded as well. After screening, 8 non-obese 
(Ctrl group) and 8 obese (Obe group) adult Golden Retrievers 
(Males = 11; Females = 5) aged between 1 and 7 years were enrolled 
in this study. The average body weight of the Ctrl and Obe groups 
(n = 8) were 27.00 ± 9.16 kg and 39.00 ± 10.38 kg, and the average 
BCS of the Ctrl and Obe groups were 4.9 and 7.2, respectively 
(Table 1). The dietary history and obesity duration details of these 16 
Golden Retrievers were listed in Supplementary Table 1, and the 
nutrient levels of diets for the dogs were presented in Supplementary  
Table 2.

2.2 Sample collection

Spontaneous excreted fecal samples were collected by the owner 
following the procedures under the guidance of veterinarians. After 
the fecal samples were delivered to the laboratory, the samples were 
kept at −20°C until DNA extraction and the following analysis. Blood 
samples were collected by the veterinarians from the forelimb veins 
into vials with or without anticoagulants. After collection, plasma and 
serum samples were obtained by centrifuging the blood at 2,500 × g 
for 15 min. Plasma and serum aliquots were stored at −20°C pending 
metabolomics analysis and biochemical index measurement, 
respectively. All of the collection processes were conducted under the 
supervision of the veterinarians.

2.3 Serum biochemistry analysis

The concentrations of glucose, creatinine, blood urea nitrogen, 
phosphorus, calcium, total protein, albumin, globulin, TB, and 
cholesterol, along with the activities of ALT, alkaline phosphatase, 
glutamyl transferase, amylase, and lipase, were analyzed using a 
veterinary automatic biochemical analyzer (IDEXX Procyte Dx, 
IDEXX Laboratories, USA) by the colorimetric method previously 
used for canine blood biochemistry. Subsequently, the blood urea 
nitrogen/creatinine ratio and the albumin/globulin ratio were  
calculated.

2.4 Fecal analysis

Genomic DNA in feces samples of dogs were extracted using the 
TIANamp Soil DNA Kit DP336 (TIANGE, China) according to the 
manufacturer’s instructions. The quantity and integrity of isolated 
DNA were determined on a NanoDrop ND-1000 instrument and 
evaluated visually by agarose gel electrophoresis, respectively. The V4 
region of the bacterial 16S rRNA gene was amplified using 515F 
(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGG 
GTWTCTAAT). Sequencing libraries were generated and indexes 
were added. The 16S rRNA amplicon sequencing was performed by 
the company (Novogene, China) on the Illumina MiSeq platform 
through NovaSeq6000 PE25. Software FLASH (Version 1.2.11) and 
Fastp (Version 0.23.1) were used to process the raw data to exclude 
low-quality reads. The resulting clean reads were assembled into 
effective tags, which were assigned to the Operational taxonomic unit 
(OTUs) based on 97% similarity by Uparse (Version 7.0. 1,001). 
Taxonomic classification of OTU clusters was performed using the 
Greengenes database with RDP (Version 2.6). The alpha diversity 
indexes were calculated by R studio (Version 4.1) accordingly. The 
Bray-Curtis distance was used to compare the structural difference of 
the microbiota communities across samples and was visualized by 
principal coordinates analysis (PCoA) to demonstrate the clustering 

FIGURE 1

Flow diagram of study design.
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of different samples using a vegan package in R studio (Version 3.4.1). 
The raw sequencing data can be obtained by searching against the 
National Center for Biotechnology Information databases with the 
project number PRJNA1158542.

2.5 Plasma metabolomics analysis

Plasma samples were thawed at room temperature before analysis. 
100 μL of samples were placed into polyethylene tubes, mixed with 400 μL 
of 50% methanol buffer, then vortexed for 30 s, and sonicated for 10 min 
in a 4°C water bath. After that, the samples were vortexed (1 min) and 
centrifuged (14,000 g, 15 min, 4°C) to collect the supernatant for 
nontargeted metabolite profiling. LC–MS/MS analysis was performed on 
an ultra-high performance liquid chromatography system (Vanquish, 
Thermo Fisher Scientific) coupled to an Orbitrap Exploris 120. To 
monitor the stability of the analysis, the QC sample was obtained by 
pooling all the experimental samples with equal volume. The raw data 
were processed through ProteoWizard and BiotreeDB (Version 3.0). The 
metabolites were identified by comparing with the internal database 
mass-to-charge ratio (m/z), retention time, and chromatographic data. 
The partial least-square discriminant analysis (PLS-DA) was performed 
using the MetaboAnalyst 6.0 web-based system. The metabolites with 
p < 0.05 were considered significantly different. The significantly distinct 
metabolites were imported into the MetaboAnalyst 6.0 database for the 
pathway enrichment analysis.

2.6 Statistical methods

The body condition indexes and serum biochemistry parameters 
were analyzed using the student t-test with SAS software (Version 9.4). 
The non-parametric Wilcoxon rank-sum test was adopted to analyze the 

differences in abundances of microbial taxa at the phylum and genus 
levels as well as the alpha diversity indices. The Spearman’s correlations 
between the predominant genera and plasma-differed metabolites or 
serum biochemistry parameters as well as the correlation between 
plasma- differed metabolites or serum biochemistry indexes were 
calculated and demonstrated as heatmaps by R studio (Version 4.0.3). The 
Benjamini–Hochberg method was applied to calculate the false discovery 
rates (FDR) adjusted p-value. Data were expressed as mean ± SEM, and 
significance was declared at p < 0.05.

3 Results

3.1 Body condition and serum biochemistry 
indexes

The results related to body condition and serum biochemistry 
parameters are listed in Table 2. A significant difference in body weight 
and BCS was observed between the Ctrl and Obe groups (p < 0.05). There 
was a tendency toward higher activity of ALT (p = 0.09) in the serum of 
obese dogs compared to their non-obese counterparts. A higher 
concentration of total bilirubin was found in the Obe group than that in 
the Ctrl group (p < 0.05). Moreover, there were no significant differences 
in other indicators between the two groups (p > 0.05).

3.2 Gut microbiota composition

An average of 99,790 high-quality sequences were obtained from 
all samples, with a range of 97,361 to 107,162. These sequences were 
assigned to 265 OTU as the core OTU. Among them, 157 OTU were 
found in both groups, while 35 and 73 OTU were found in Ctrl and 
Obe groups, respectively (Supplementary Figure 2).

TABLE 1 Characteristics of non-obese (Ctrl) and obese (Obe) Golden Retriever dogs included in the present study.

Group Name Gender Age BW (kg) BCS 
(V1)

BCS 
(V2)

BCS 
(Ave)

Diet Calories 
intake (Kcal)

Ctrl

Dada Female 1.00 25.00 5.00 5.00 5.00 Diet 4 1686.00

Fugui Female 5.50 25.00 4.00 4.00 4.00 Diet 3 1777.00

Zhaozhao Female 1.00 23.00 5.00 5.00 5.00 Diet 4 1686.00

Legou Male 6.50 29.00 5.00 5.00 5.00 Diet 2 1764.00

Pipi Male 1.00 23.00 5.00 4.00 4.50 Diet 1 1715.00

Niangao Male 2.00 33.00 5.00 5.00 5.00 Diet 2 1764.00

Jiuyi Female 1.00 30.00 5.00 5.00 5.00 Diet 1 1715.00

Xilin Male 2.00 35.00 5.00 5.00 5.00 Diet 1 1715.00

Obe

Mocha Male 5.00 40.00 7.00 7.00 7.00 Diet 1 1715.00

Dingman Male 4.00 35.50 7.00 7.00 7.00 Diet 3 1777.00

Pangguo Male 3.00 40.00 8.00 7.00 7.50 Diet 3 1777.00

Rouwan Male 5.00 47.00 8.00 8.00 8.00 Diet 4 1686.00

Hanzai Male 3.00 35.00 7.00 7.00 7.00 Diet 1 1715.00

Otto Male 2.00 44.00 8.00 7.00 7.50 Diet 2 1764.00

Nicol Female 2.00 33.00 7.00 7.00 7.00 Diet 2 1764.00

Guolicheng Male 3.50 33.00 7.00 7.00 7.00 Diet 2 1764.00

Ctrl, control group, of which the body condition score (BCS) ranges from 4 to 5; Obe obese group, of which the BCS ranges from 7 to 9; BCS (V1) (V2), body condition score were determined 
by the first veterinarian and the second veterinarian respectively; BCS (Ave), the average body condition scores of two veterinarians BW, body weight.
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No significant differences were detected in α diversity indices 
(Supplementary Figure 1) between Ctrl and Obe groups. The PCoA 
plot showed that the Ctrl and Obe samples could form two distinct 
clusters by treatment (Figure 2A). This indicates that the composition 
of the microbiota of the Ctrl and Obe groups was different.

At the phylum level, Firmicutes, Proteobacteria, Fusobacteriota, 
Actinobacteriota, and Bacteroidota were predominant taxa in the feces 
of dogs. Moreover, the presence of phylum Firmicutes was the most 
dominant taxon in both groups, accounting for 75.12 and 41.21% of the 
fecal microbiota in the Ctrl and Obe groups, respectively (Figure 2B; 
Supplementary Table 3). Besides, Proteobacteria, Fusobacteriota, and 
Bactercidota were found to be more abundant in the feces of the Obe 
group compared to the Ctrl group (p < 0.05) (Figure  2C; 
Supplementary Table 3). Firmicutes/Bacteroidota ratio were 1.55 and 
16.73%, respectively, in Obe and Ctrl group. At the genus level, the most 
predominant taxon in feces of the Ctrl and Obe groups was 
Peptoelostridium and Prevotella, respectively (Figure  2D; 
Supplementary Table 4). Compared to the Ctrl group, the abundances 
of Fusobacterium, Prevotella, Faecalibacterium, Escherichia-Shigell and 
Alloprevotella were higher and the abundances of Peptoclostridium, 
Blautia, Turicibacter, Allobaculum, and Erysipelatoclostridium were lower 
in the feces of Obe group (p < 0.05) (Figure 2E; Supplementary Table 4).

3.3 Plasma metabolic pathways of 
non-obese and obese Golden Retrievers

The PLS-DA score plot (Supplementary Figure 4) from the mass 
spectrometer data showed that the distribution of the quality control 
samples was clustered tightly, demonstrating the accuracy of the 

method for metabolomics data acquisition. In the PLS-DA plot 
(Figure  3A), Ctrl and Obe samples were clustered separately, 
indicating that there was a remarkable difference in plasma 
metabolomics profile between the Ctrl and Obe groups.

A total of 10 significantly different metabolites were 
identified (Table  3). Among them, citrulline, PA (16:0/16:0), 
3-Methoxy-4-Hydroxyphenylglycol sulfate, 11-dehydrocorticosterone, 
ditryptophenaline and N-alpha-Acetyl-L-citrulline were found to 
be more abundant and N-hydroxy-L-isoeucine, pelargonic acid and 
8-iso-15-keto-PGE2 were less abundant in the Obe group compared 
to the Ctrl group (p < 0.05).

The different metabolites were checked against the SMPDB 
database to match the corresponding metabolic pathways and the 
biological pathways (Figure 3B). The differently enriched metabolites 
were mainly involved in glycerolipid metabolism, urea cycle, 
phospholipid biosynthesis, steroidogenesis, aspartate metabolism as 
well as arginine and proline metabolism.

3.4 The correlation between fecal 
microbiota, plasma metabolites and serum 
biochemistry index

The correlation analyses between the altered genera and plasma 
distinct metabolites, which were identified by 16S rRNA sequencing 
and LC–MS-based untargeted metabolomics, respectively, were 
performed and visualized in a heat map (Figure 4). The levels of 
genera Peptoclostridium, Blautia, Allobaculum, and 
Erysipelatoclostridium were positively related to plasma 
concentrations of 8-iso-15-keto-PGE2 and N-Hydroxy-L-isoleucine 

TABLE 2 The differences in body condition and serum biochemistry parameters between the Ctrl and Obe group.

Parameters Ctrl Obe p-value

Body Weight (kg) 27.88 ± 1.62 38.44 ± 1.84 <0.001

Body Condition Score 4.81 ± 0.13 7.25 ± 0.13 <0.001

Glucose (mg/dL) 80.88 ± 7.00 84.38 ± 6.28 0.715

Creatinine (mg/dL) 1.04 ± 0.02 1.09 ± 0.05 0.426

Blood urea nitrogen (mg/dL) 17.5 ± 1.46 17.25 ± 1.25 0.899

Blood urea nitrogen/Creatinine 17.13 ± 1.25 15.29 ± 1.10 0.287

Phosphorus (mg/dL) 3.66 ± 0.23 3.56 ± 0.24 0.754

Calcium (mg/dL) 9.74 ± 0.13 9.54 ± 0.10 0.256

Total protein (g/dL) 6.71 ± 0.16 6.64 ± 0.08 0.688

Albumin (g/dL) 3.31 ± 0.03 3.42 ± 0.07 0.218

Globulin (g/dL) 3.36 ± 0.16 3.18 ± 0.05 0.273

Albumin/Globulin (%) 1.00 ± 0.05 1.10 ± 0.05 0.152

Alanine aminotransferase (U/L) 30.75 ± 2.07 39.88 ± 4.57 0.090

Alkaline phosphatase (U/L) 50.00 ± 7.00 44.38 ± 4.84 0.519

Glutamyl transferase (U/L) 0.01 ± 0.01 0.50 ± 0.38 0.302

Total bilirubin (mg/dL) 0.29 ± 0.02 0.35 ± 0.02 0.011

Cholesterol (mg/dL) 219.63 ± 11.02 220.25 ± 19.83 0.210

Amylase (U/L) 745.63 ± 101.6 721.38 ± 82.15 0.855

Lipase (U/L) 448.25 ± 56.98 598.25 ± 75.72 0.136

Ctrl, control group, of which the body condition score (BCS) ranges from 4 to 5; Obe obese group, of which the BCS ranges from 7 to 9.
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(p < 0.05), while the abundances of genera Prevotella and 
Alloprevotella were negatively related to plasma levels of these two 
metabolites (p < 0.05). The abundance of genus Escherichia-Shigella 
was negatively associated with the plasma content of 8-iso-15-
keto-PGE2 (p < 0.05). Besides, the levels of genera Prevotella and 
Collinsella were in positive connection with the plasma citrulline 

level, while the abundance of genus Blautia was in negative 
connection with its level in plasma (p < 0.05).

The correlation analyses between plasma metabolites and serum 
biochemistry indexes as well as the fecal microbiota and serum 
biochemistry parameters were performed and visualized in heat maps. 
Plasma concentrations of metabolites 8-iso-15-keto-PGE2 and 

FIGURE 2

The beta diversity and taxonomic distribution of fecal microbiota in the Ctrl and Obe dogs. (A) principal coordinates analysis (PCoA) plot of unweighted 
UniFrac distances of fecal microbial communities. (B) The stacked plot of dominant taxa at the phylum level. (C) Significantly different phyla between 
the Ctrl and Obe groups. (D) The stacked plot of dominant taxa at the genus level. (E) Significantly different genera between the Ctrl and Obe groups.
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N-alpha-Acetyl-L-citrulline were negatively related to 
aminotransferase activity (p < 0.05). The content of metabolite 
3-Methoxy-4-Hydroxyphenylglycol sulfate was in a positive relation 
with serum TB level (p < 0.05) (Supplementary Figure  3A). 
Furthermore, the abundances of genera Escherichia-Shigella, 
Clostridium sensu stricto 1, and Catenibacterium were positively 
related to serum aminotransferase activity (p < 0.05). The abundances 
of genera Allobaculum and Faecalibacterium were in a negative and 
positive relation with the serum concentration of TB, respectively 
(p < 0.05) (Supplementary Figure 3B).

4 Discussion

Obesity has reached pandemic proportions in dogs (Courcier 
et al., 2010; Butterwick, 2000), in which has significant implications 
for canine physiology, health and welfare, especially causing gut 
microbiota dysbiosis and metabolism dysfunction. Previous research 

has identified potential microbial and metabolomic biomarkers 
associated with obesity in humans and rodents (Metwaly et al., 2022; 
Wang et  al., 2021; Giudetti, 2023). However, the similar kinds of 
biomarkers for diagnosis of canine obesity remain unclear. 
Accordingly, the present study compares the serum biochemical 
indices, fecal microbiota and plasma metabolites profile of non-obese 
and obese Golden Retrievers to preliminarily reveal the potential 
microbial or metabolic biomarkers for obesity in Golden Retrievers.

Studies in both humans and animals have showed that obesity 
causes the disruption of the homeostasis of lipid metabolism and 
increases fat accumulation not only in adipose tissue but also in the 
liver, resulting in adipose inflammation and hepatic damage (Giudetti, 
2023; Richard et al., 2000). Obesity-associated fatty liver has been 
shown to induce a substantial increase in the activity of ALT, which 
suggests a potential connection between ALT and obesity. A previous 
study has demonstrated that obese dogs exhibited higher activities of 
ALT and gamma-glutamyl transferase (Tribuddharatana et al., 2011). 
Consistently, a tendency toward higher activity of ALT was found in 

FIGURE 3

Plasma metabolomics profile. (A) Partial least-square discriminant analysis plot based on plasma metabolites. (B) Metabolic pathway enrichment 
analysis.

TABLE 3 Significantly different metabolites in plasma between the Ctrl and Obe group.

Parameters Ctrl Obe p-value

Citrulline 0.11 ± 0.01 0.14 ± 0.01 0.038

N-Hydroxy-L-isoleucine 2.06 ± 0.29 1.18 ± 0.18 0.021

Pelargonic acid 2.61 ± 0.14 1.86 ± 0.18 0.006

PA (16:0/16:0) 0.15 ± 0.02 0.25 ± 0.03 0.018

3-Methoxy-4-Hydroxyphenylglycol sulfate 0.79 ± 0.10 1.24 ± 0.15 0.022

11-Dehydrocorticosterone 21.8 ± 3.45 35.97 ± 3.43 0.011

8-is0-15-keto-PGE2 0.21 ± 0.03 0.10 ± 0.02 0.006

Canrenone 12.57 ± 2.00 20.00 ± 2.19 0.025

Ditryptophenaline 19.48 ± 2.87 34.05 ± 3.79 0.008

N-alpha-Acetyl-L-citrulline 0.13 ± 0.01 0.18 ± 0.02 0.045

Ctrl, control group, of which the body condition score (BCS) ranges from 4 to 5; Obe obese group, of which the BCS ranges from 7 to 9.
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the obese Golden Retrievers compared to the control dogs. Besides, 
previous study found that serum TB was associated with an elevated 
risk of obesity-associated metabolic syndrome (Wei et al., 2021). TB 
including direct and indirect bilirubin, the degradation products of 
the heme moiety of hemoglobin and other hemoproteins, is potentially 
toxic to the liver where it is detoxified (Roy-Chowdhury et al., 2020). 
Bilirubin has been proposed as a biomarker to monitor hepatic 
function and of which the high level in blood was the consequences 
of liver dysfunction according to the previous study (Guerra Ruiz 
et  al., 2021). In the present study, a significantly higher level of 
bilirubin was found in the Obe group, indicating the potential liver 
impairment in overweight dogs.

Gut microbiota play a crucial role in host metabolism and 
physiology, but the pathophysiological mechanisms and clinical 
outcomes were still unclear. On one hand, the presence of obesity has 
been associated with the imbalance of gut microbiota, which has been 
demonstrated to play a causal role in the induction of metabolic 
dysfunction (Le Chatelier et al., 2013; Stanislawski et al., 2019). On the 
other hand, several studies observed significant differences in the 
abundance and biodiversity of gut microbiota between non-obese and 
obese individual (Pinart et al., 2021; Yun et al., 2017). The Firmicutes/
Bacteroidota ratio was considered as a microbial indicator for obesity 
by some studies, as the higher abundance of phylum Firmicutes and 
increased ratio of Firmicutes/Bacteroidota were observed in obese 
individuals or animals than their lean counterparts. However, others 
hold the different opinion that there is a weak connection between 

obesity and the Firmicutes/ Bacteroidota ratio (Schwiertz et al., 2010). 
Previous studies showed that the most predominant taxa at the 
phylum level in dogs were Firmicutes (You and Kim, 2021), which is 
also the most abundant phylum in the feces of Golden Retrievers. In 
addition, phylum Firmicutes has been found more abundant in 
non-obese dogs than the obese ones (Macedo et al., 2022; Park et al., 
2015; Kim et al., 2023). Consistent with these findings, non-obese 
Golden Retrievers exhibited the higher level of phylum Firmicutes in 
feces than the Obe group, implying that phylum Firmicutes might 
be negatively correlated with the presence of obesity in dogs, which 
needs to be further verified in the future study. Genus Fusobacterium 
was found related to the whole-body inflammation state and has been 
more abundant in the fecal microbiota of children with obesity as well 
as in the feces of type 2 diabetes subjects (Sedighi et al., 2017; Yuan 
et al., 2021; Chen et al., 2020; Lee et al., 2018). In agreement with these 
findings, the increased abundance of genus Fusobacteria was observed 
in the Obe group in the present study. A previous study showed that 
fat pigs had significantly higher proportions of Prevotella. copri (Chen 
et al., 2021). However, a higher abundance of genus Prevotella has 
been associated with enhanced insulin sensitivity in rodents. These 
contradictory results might stem from the inter-study difference in the 
genetic background of studying animals, which has been proved as a 
determinant factor for the microbiota composition. A previous study 
on dogs showed that the abundance of Prevotella. copri in fecal 
microbiota elevated with increasing BCS (You and Kim, 2021). 
Consistently, in the present study, obese Golden Retrievers exhibited 

FIGURE 4

The correlation analysis between the altered genera and plasma distinct metabolites.
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higher levels of genus Prevotella in feces. Likewise, another study also 
demonstrated that high carbohydrate diet-fed obese dogs exhibited 
higher abundance of Prevotella. copri in feces than dogs with normal 
weight (Li et  al., 2017). Previous study compared the microbiota 
differences between dogs with differed degree of overweight have 
found that highly overweighed dogs had higher abundance of 
Prevotella in feces compared to their counterparts (Forster et  al., 
2018). Therefore, the abundance of Prevotella might be  used as a 
potential biomarker for the detection of obesity in Golden Retrievers, 
but its effects on and reasons for its abundance in obese dogs should 
be examined in the future study. A higher level of Peptoclostridium was 
found in dogs with normal BCS compared to those with high BCS in 
a previous study on Beagle dogs (Kim et al., 2023). Consistently, in this 
study, the obese Golden Retrievers exhibited a lower abundance of 
Peptoclostridium in feces. Genus Blautia has been reported to exhibit 
beneficial effects on intestinal health and metabolic disorders (Liu 
et al., 2021). A previous study showed that oral administration of 
Blautia can ameliorates obesity and type 2 diabetes by increasing the 
production of short chain fatty acids (SCFAs) and activating SCFAs-
related signaling pathways (Patel and Preedy, 2017). In the present 
study, non-obese Golden Retrievers had higher levels of genus Blautia 
in feces, implying that increasing the colonization of genus Blautia 
might be helpful for weight management in dogs, which needs to 
be studied in future research. The alterations in abundances of genus 
Ruminococcus_gnavus_group might the unique response of Golden 
Retrievers to obesity, because overweight had no effects on the 
abundances of these genera in other dog breeds like Beagle dogs (Kim 
et al., 2023). Therefore, the verification of the application of the genus 
as a biomarker indicator of obesity should be further studied.

The metabolite profiling via metabolomics is frequently used to 
reveal metabolic biomarkers for obesity and associated metabolic 
syndrome. In the present study, the plasma metabolite profile in 
obese Golden Retrievers differed from the non-obese dogs, which 
was consistent with previous findings that the presence of obesity 
significantly altered the whole-body metabolism in humans and 
rodents (Lai et al., 2014). Citrulline was produced by the hydrolysis 
of peptidyl arginine catalyzed by protein arginine deiminases, of 
which high activity was observed in a host of human diseases 
including metabolic syndrome and inflammation (Allerton et al., 
2018). The conversion process of peptidyl arginine into citrulline also 
called protein citrullination, has been demonstrated to be  an 
inflammation-dependent process since it is upregulated in various 
inflammatory states (Makrygiannakis et al., 2006). In this study, the 
plasma level of citrulline was higher in obese Golden Retrievers than 
in the control ones, suggesting that the presence of obesity might 
activate this posttranslational process, namely protein citrullination, 
in tissues of Golden Retrievers dogs. Besides, a previous study found 
that chronic administration of 11-dehydrocorticosterone to mice 
increased the circulating glucocorticoid level and downregulated the 
expression of genes related to the hypothalamic–pituitary–adrenal 
axis, leading to insulin resistance, adiposity and an elevation of body 
weight (Marzolla et  al., 2014). In the current study, a higher 
concentration of 11-dehydrocorticosterone in plasma was observed 
in obese Golden Retrievers, indicating that the elevated cortisol 
secretion might contribute to the pathogenesis of obesity in Golden 
Retrievers (Abraham et al., 2013).

The catabolites of prostaglandin E2 (PGE2), including 15-keto-
PGE2 and 8-iso-15-keto-PGE2, have been shown to alleviate hepatic 

inflammation in diet-induced obesity mouse model, indicative of lower 
activities of ALT and aspartate transferase and inhibited macrophage 
infiltration (Hee et  al., 2023). Consistently, lower plasma levels of 
8-iso-15-keto-PGE2 in obese dogs and the negative correlation between 
8-iso-15-keto-PGE2 and aminotransferase activity were observed in the 
current study, suggesting that the approaches increasing the levels of 
catabolites of PGE2 might be effective for the treatment of obesity in 
Golden Retrievers. N-hydroxy-L-isoleucine is a derivative of L-isoleucine 
which has been shown to enhance muscle growth, inhibit fat deposition, 
and exhibit anti-inflammation activity (Patil et al., 2012). Given the 
beneficial effects of L-isoleucine on the metabolism and inflammation of 
the host, it can be speculated that N-hydroxy-L-isoleucine might exhibit 
similar effects as well. In the present study, obese dogs exhibited lower 
concentrations of N-hydroxy-L-isoleucine, implying that the intake of 
L-isoleucine and its derivatives might be useful for controlling overweight 
in dogs.

Overall, obesity significantly altered the concentrations of certain 
serum biochemistry parameters, which might be associated with the 
changes in gut microbiota and plasma metabolites profile. The 
verification of these possible biomarkers for diagnosing obesity in 
Golden Retrievers and the dietary intervention approaches targeting 
the microbiome and metabolome for weight management in dogs 
need to be further studied and explored.

5 Conclusion

In summary, obesity notably modified the levels of specific serum 
biochemical markers, which may correlate with alterations in gut 
microbiota and plasma metabolite profiles. Further investigation and 
exploration are necessary to validate these potential biomarkers for 
diagnosing obesity in Golden Retrievers, alongside dietary 
intervention strategies aimed at the microbiome and metabolome to 
manage weight in dogs.
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