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Introduction: The global rise of extended-spectrum beta-lactamase-
producing Enterobacterales (ESBL-PE) challenges resource-limited countries 
with insufficient laboratory infrastructure. This study investigates fecal carriage 
and risk factors for ESBL-PE and carbapenemase-producing organisms among 
patients with urinary tract infection (UTI) in rural Tanzania.

Methods: This cross-sectional study was conducted at St. Francis Regional 
Referral Hospital, Ifakara, Tanzania, from October 2021 to August 2023, 
involving 326 UTI patients. Demographic data and resistance risk factors were 
collected via structured questionnaires. Stool samples collected pre-antibiotic 
treatment were screened for ESBL-PE and carbapenemase locally. Positive 
samples underwent further analysis in Switzerland using MALDI-ToF, Vitek MS, 
and whole-genome sequencing. Multivariable analysis assessed predictors 
associated with ESBL-PE carriage for risk factors with p < 0.05.

Results: We enrolled 326 UTI patients (median age: 35.5 years, range: 25–52) 
and 189 (58.0%) were females. Fecal ESBL-PE colonization was detected in 
70.9% of patients, predominantly E. coli (62.8%) and K. pneumoniae (33.0%). 
Whole-genome sequencing identified diverse phylogroups and sequence types, 
with CTX-M-15 being the most common ESBL gene. IncF plasmids were the 
primary carriers. Younger age (aOR: 0.98, 95% CI: 0.97–0.99; p = 0.0239) and 
inpatient status (aOR: 1.77, 95% CI: 1.08–2.91; p = 0.0036) were significant risk 
factors for ESBL-PE carriage.

Conclusion: The high prevalence of ESBL-PE fecal carriage in rural Tanzania 
highlights the need for improved infection control and further research into 
community transmission dynamics.
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Background

Antimicrobial resistance (AMR) is a major global health challenge 
with significant consequences for public health and healthcare 
systems. In 2024, the Global Research on Antimicrobial Resistance 
(GRAM) project estimated that by 2050, there will be 1.91 million 
annual deaths globally attributable to AMR, with 6.63 million deaths 
attributable to AMR in sub-Saharan Africa. Without effective 
prevention measures, AMR will lead to a cumulative total of 39·1 
million deaths attributable to AMR from 2025 to 2050 (Global Burden 
of Disease 2021 Antimicrobial Resistance Collaborators, 2024).

Reports indicate that the widespread fecal carriage of Extended-
spectrum beta-lactamase producing Enterobacterales (ESBL-PE) is an 
emerging public health concern, contributing to infections in both 
community and hospital settings. Even in the absence of active 
infection, colonization with ESBL-PE remains a significant cause for 
concern (Godonou et al., 2022).

The high prevalence of fecal carriage of resistant pathogens 
facilitates the global transmission of resistance genes through travel, 
trade, and migration (Bokhary et al., 2021; Zamudio et al., 2024). In 
resource-limited settings with inadequate sanitation and hygiene 
infrastructure, the spread of resistance genes is exacerbated through 
contaminated food, water, and direct contact. This one health dynamic 
extends to animal populations via zoonotic spillover, cycling resistance 
genes back to humans through the environment or food chain (Aslam 
et  al., 2021; Gebreyes et  al., 2014). These mechanisms not only 
challenge effective treatment options but also contribute to increased 
morbidity and mortality due to limited therapeutic options (Iskandar 
et al., 2021).

The fecal carriage of ESBL-PE varies geographically, with 
prevalence ranging from 6 to 20% in Europe and North America, 
approximately 20% in the Eastern Mediterranean and Africa, and 
24.5–27% in the Western Pacific and Southeast Asia in community 
and hospital settings (Bezabih et al., 2021; Pilmis et al., 2018; Islam 
et al., 2017).

In Africa, studies conducted in Chad and Rwanda have 
demonstrated a higher prevalence of ESBL-PE carriage in hospital 
settings than in the community (Ouchar Mahamat et al., 2019; Kurz 
et al., 2017). This pattern may be attributed to antibiotic use, antibiotic-
induced gut dysbiosis, and reduced colonization resistance, which 
might promote ESBL-PE transmission through various routes, 
including person-to-person, contaminated food and water, and 
environmental exposure (Mai and Espinoza, 2023; Djuikoue 
et al., 2016).

In Eastern Africa specifically, ESBL-PE prevalence ranges from 6 
to 17% in community settings and 38–83% in hospital environments 
(Storberg, 2014). A study conducted in East African hospitals has 
documented an overall pooled proportion of ESBL-PE at 42% with 
variation among countries: 61.7% in Uganda, 45.8% in Kenya, 38.8% 
in Tanzania and 30.9% in Ethiopia (Sonda et al., 2016).

Despite the growing concern about ESBL-PE in Tanzania, there 
is a notable lack of comprehensive studies on carriage of ESBL-PE 
across diverse age groups and clinical presentations (Silago et al., 

2022; G et  al., 2017; Ngowi et  al., 2021; Mlugu et  al., 2023). The 
available studies primarily focus on specific subpopulations or 
environments, leaving a fragmented understanding of the broader 
distribution of ESBL-PE. For instance, a study conducted among 
pregnant women reported a high prevalence of ESBL carriage rate of 
64.3% (Mwandigha et al., 2020). Another study in urban informal 
settlements found that over 24% of ESBL-producing E. coli were 
isolated from private and shared latrines, indicating these facilities 
act as reservoirs for ESBL-PE transmission (Erb et  al., 2018). 
Similarly, studies targeting hotel employees (Büdel et al., 2019) and 
healthcare settings (Manyahi et al., 2020) have provided valuable 
insights but are limited in scope. Most of these studies are urban-
centric focus leaving rural communities underrepresented resulting 
in an incomplete picture of the epidemiology and dissemination of 
ESBL-PE in Tanzania. To address this knowledge gap, our study aims 
to evaluate the fecal carriage rate of and risk factors for multidrug-
resistant Enterobacterales in patients presenting with symptoms of 
urinary tract infection at St. Francis Regional Referral Hospital 
(SFRRH) in Ifakara, a rural area in Tanzania. This research will 
contribute to the understanding of ESBL-PE epidemiology in the 
region and inform strategies for antimicrobial stewardship and 
infection control.

Methodology

Study design and study setting

The study was conducted at St. Francis Regional Referral Hospital 
(SFRRH) in Ifakara, Tanzania, from October 2021 to August 2023. 
SFRRH is a 371-bed hospital with approximately 16,480 in-patient 
admissions, and 100,000 out-patient visits yearly serving a population 
of close to 1 million people in the Kilombero Valley. It is the main 
teaching hospital in South-Central Tanzania, playing a key role in 
promoting health and training human resources in that area 
(Figure 1).

The map was created using Quantum GIS v3.26 open source 
(Congedo, 2021).

Patient recruitment

The study included in- and outpatients aged 18 years or older who 
presented with clinical evidence of urinary tract infection (UTI) 
according to the Infectious Diseases Society of America (IDSA) 
guidelines (Nicolle et  al., 2019). All participants provided written 
informed consent. Ethical approval was granted by the National 
Health Research Committee of the Tanzania National Institute for 
Medical Research (certificate number NIMR/HQ/R.8a/Vol. IX/3759). 
Consent was obtained in Kiswahili. For illiterate individuals, clinicians 
or registered nurses provided detailed study explanations in the 
presence of a chosen witness, and willing participants indicated their 
consent with a thumbprint.
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Sample collection

Patients were instructed by a clinician or registered nurse to 
collect stool (Stool container, Mshale, Dar-es-Salaam, Tanzania). The 
samples were taken to the Microbiology laboratory at SFRRH 
within 2 h.

Data collection and management

Structured questionnaires gathered socio-demographic and 
clinical data. Variables included age, gender, residence, history of past 
UTI, pregnancy status, history of diabetes, antibiotic use in the past 
2 months, and companion animals. Data management and analysis 
plans were developed at SFRRH in Tanzania and Kantonsspital St. 
Gallen (KSSG) in Switzerland, respectively.

Laboratory procedures

In Tanzania
Mid-stream urine of all patients who fulfilled the definition of 

UTI were collected aseptically and streaked on Blood, Cystine Lactose 
Electrolyte Deficient agar (CLED), and/or MacConkey agar 
[Liofilchem, Roseto degli Abruzzi (Te), Italy] using a calibrated 
0.01 mL inoculating loop. Cultures underwent incubation for 18–24 h 
at 37°C. Agar plates exhibiting pure growth equivalent to or exceeding 

105 colony-forming units (CFU/mL) were categorized as having 
significant growth. Plates with no visible colonies were reported as 
having no bacterial growth. Results showing bacterial growth 
≥102 CFU/mL but below the threshold for significant bacterial growth 
of 105 CFU/mL were considered insignificant. Cultures displaying 
more than two types of organisms were classified as mixed growth. 
The pure bacterial isolates underwent further identification based on 
colonial characteristics, microscopic features following Gram’s stain, 
and biochemical tests.

Stool samples underwent screening for extended-spectrum 
cephalosporin and carbapenem-resistant Enterobacterales. Briefly, the 
stool samples were enriched overnight, incubated for 18 h at 37°C, in 
Mueller Hinton broth containing cefuroxime (30 μg), and 
subsequently plated on CHROMagar™ ESBL and CHROMagar™ 
mSuperCARBA (CHROMagar, Paris-France). All colonies exhibiting 
variations in color and/or morphology were carefully selected and 
further inoculated on nutrient agar slants. These inoculated slants 
were then incubated for 18 h at 37°C and subsequently preserved in 
trypticase soy broth (TSB) containing 20% glycerol at −80°C.

For retrieval, bacteria were scraped from frozen bacterial glycerol 
stocks using a sterile loop. Subsequently, they were streaked onto 
nutrient agar plates and incubated for 24 h at 37°C. Following this 
incubation period, bacterial colonies were picked and inserted into a 
swab within the Stuart transport system (Trust lab, China). Tubes 
were labeled with specimen source and packed for shipment 
following the International Air Transport Association (IATA) 
regulations. A shipment was made after obtaining the Material 

FIGURE 1

Map showing the location of St. Francis Regional Referral Hospital, Ifakara-Tanzania.
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Transfer Agreements (MTAs) and other shipping permits from the 
responsible authorities and were then shipped at room temperature 
to the Laboratory of Experimental Infectious Diseases at 
Kantonsspital St. Gallen (KSSG) in Switzerland for further analysis. 
Upon arrival at the laboratory, biosafety procedures for BSL-2 
pathogens were followed. The isolates were processed in a Class II 
biosafety cabinet, workspaces and tools were disinfected before and 
after processing, and personal protective equipment gloves and lab 
coats were worn during handling. The isolates were kept frozen at 
−80°C for further use.

In Switzerland

Bacterial storage, identification, and susceptibility testing
The isolates were streaked on Luria Bertani agar (Sigma Aldrich, 

USA) and incubated at 37°C for 24 h. The following day, individual 
colonies were selected and then suspended in separate 1.5 mL tubes 
containing 1 mL of Luria Broth (Sigma Aldrich, USA) with 10% 
glycerol and stored in a − 80°C freezer for future experiments. The 
bacteria were retrieved for identification by using a sterile loop to 
scrape them off from a frozen bacterial glycerol stock.

The identification of isolates from urine was performed at the 
species level using MALDI-ToF mass spectrometry (MALDI Biotyper 
Smart System, Bruker Daltonics, Bremen, Germany). Based on the 
susceptibility test patterns obtained from the BD Phoenix™ M50 
system (Becton Dickinson, Sparks, MD, USA), additional 
confirmation tests were performed E-test ESBL confirmation with 
specific E-test stripes, Carba-NP carbapenemase detection kit, all 
purchased from BioMérieux, Marcy l’Etoile, France and Carba-5 
carbapenemase detection kit (NG Biotech, France).

For identification and antimicrobial susceptibility testing of 
isolates from stool, the VITEK® MS PRIME MALDI-TOF (Matrix 
Assisted Laser Desorption Ionization-Time of Flight) system was 
employed. Additionally, the VITEK MS VITEK® 2 COMPACT 
instrument, along with the VITEK® 2 PC software and ready-
to-use bacteria identification (ID) cards, as well as antibiotic 
susceptibility testing (AST) VITEK® 2 ID/AST cards (N283, N240, 
P655), were utilized for the identification and antimicrobial 
susceptibility testing of the bacterial isolates (BioMérieux, Marcy 
L’ É toile, France). Additional susceptibility testing to confirm the 
presence of ESBL resistance mechanisms was conducted using the 
disk diffusion method in accordance with and interpreted 
according to European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) guidelines (version 13.1, valid from 2023-06-
29). Confirmation of carbapenemase producers was performed on 
a GeneXpert® System (Cepheid, CA 94089, USA), utilizing the 
Xpert® Carba-R test.

Nucleic acid extraction
Genomic DNA (gDNA) was extracted from all ESBL and 

carbapenemase-producing bacterial isolates derived from single 
colonies on plates. The QiaAMP Mini Kit (QIAGEN, Hilden, 
Germany) was employed for DNA extraction, following the 
manufacturer’s instructions, and the concentration was determined 
using the Nanodrop OneC spectrophotometer (Thermo Fisher 
Scientific, Massachusetts, United  States). The extracted DNA was 
eluted in 50–100 μL of sterile water, and the DNA templates were 
stored at −20°C until further analysis.

Whole genome sequencing

Library preparation
A total 1 ng of DNA from each sample was tagmented using 

Illumina Nextera XT according to standard protocol. Nextera adapters 
containing Unique Dual Indices (UDI) were added by PCR. The 
libraries were double-sided size selected and the quality and quantity 
of the libraries were validated using the Fragment Analyzer (Agilent, 
Santa Clara, California, USA). The libraries were normalized to 
10 nM in Tris-Cl 10 mM, pH8.5 with 0.1% Tween 20 and 
pooled equimolar.

Cluster generation and sequencing
After library quantification, libraries were prepared for loading 

according to the NovaSeq workflow with the NovaSeq6000 Reagent 
Kit (Illumina, Catalog no. 20012865). Cluster generation and 
sequencing were performed on a NovaSeq6000 System with a run 
configuration of paired-end at 2 × 150 bp.

Illumina paired-end (PE) reads underwent quality checks using 
FastQC (v0.11.9) (Chen et al., 2018; Wingett and Andrews, 2018). 
Adapter sequences and low-quality read ends (identified with a sliding 
window of 4 bp and a base quality lower than Q20) were trimmed 
away using Fastp (v0.20.0). Trimmed reads were quality (Q20) and 
length (18 bp) were filtered using the same tool. Trimmed and filtered 
reads were mapped to the reference genome (Ensembl Escherichia_coli 
K12 MG1655 ASM584v2) using bowtie2 (v2.4.2). Variants were 
identified using samtools (v1.11)/bcftools (v1.11) (Li, 2012). A 
hierarchical cluster dendrogram based on pairwise identity-by-state 
(IBS) values from SNP data for all samples was computed using 
SNPRelate (v1.30.1) (Zheng et al., 2012). A phylogeny tree from SNP 
data was constructed using mashtree (v1.4.6) and combined with 
metadata using itol (v6).

Trimmed and filtered reads were assembled using Spades (v3.15.5) 
(Bankevich et al., 2012). Assembled contig sequences were annotated 
using prodigal (v2.6.1) (Hyatt et  al., 2010). Annotated protein 
sequences were compared to the Swiss-Prot (downloaded on 
2023/02/10) (Bairoch and Apweiler, 2000; Altschul et  al., 1990). 
Phylogroups of assembled genomes were determined using the 
Clermont Typing pipeline (v20.03) and Ridom SeqSphere (v10.0.2) 
(Jünemann et al., 2013).

E. coli Achtman MLST database was downloaded from pubmlst 
(Roer et al., 2017). Annotated gene sequences were compared to the 
MLST database (downloaded on 2023/03/15 and 2023/08/30) using 
blastn (ncbi-blast v2.12.0+). A customized perl script was used to 
identify the MLST profile, associated ST, and clonal complex. In silico 
serotyping was performed using SerotypeFinder (v2.0.1). Fim type 
was determined using FimTyper (v1.1) (Jolley et  al., 2018) by 
comparing assembled contig sequences against the FimTyper database 
using blast (2.12.0+). Antibiotic-resistant genes were predicted using 
fARGene (Fragmented Antibiotic Resistance Gene iENntifiEr) (v0.1) 
(Berglund et al., 2019) and blastp (2.12.0+) comparison against the 
Comprehensive Antibiotic Resistance Database (CARD v3.2.6) 
(Alcock et al., 2023). Contigs of plasmid origin were predicted using 
plasmid finder (v2.1.6) and plaScope (v1.3.1) (Carattoli and 
Hasman, 2020).

Klebsiella pneumoniae isolates and their related species complex 
phylogroups, sequence type (ST) assignment, and antibiotic resistance 
gene detection were performed using Kleborate (Lam et al., 2021). 
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Plasmid replicons were identified using the PathogenWatch platform,1 
an online global database for genomic surveillance of K. pneumoniae 
isolates (Argimón et  al., 2021). Enterobacter cloacae isolates were 
analysed using Ridom SeqSphere (v10.0.2) (Jünemann et al., 2013).

Data analysis

Categorical variables were summarized as frequencies with their 
percentages and compared between patients with ESBL and non-ESBL 
Enterobacterales using Fisher’s exact test.

Age was presented as mean ± standard deviation (SD) and median 
[interquartile range] and compared with the presence or absence of 
ESBL Enterobacterales using the student t-test. Results with p < 0.05 
were considered statistically significant. Those risk factors that were 
statistically significant with p < 0.05 were included in a multivariable 
regression model assessing which predictors are associated with ESBL 
Enterobacterales when controlling for other factors. Odds ratios (ORs) 
and their 95% confidence intervals (95% CIs) of the unadjusted and 
adjusted models and their p-values were reported. Statistical analyses 
were performed using R (version 4.2.2) (R Core Team, 2022).

Results

We enrolled 326 eligible patients meeting IDSA criteria for 
UTI. Out of these, 166 (50.9%) were outpatients, 189 (58.0%) were 
female, and the median age was 35.5 years [IQR: 25–52]. The collective 
prevalence of ESBL-PE in stool was 70.9% (231/326 patients). A total 
of 860 phenotypically distinct bacterial isolates were obtained from 
the 326 stool samples. Among these, 347 (40.3%) were ESBL-
producing Enterobacterales. E. coli accounted for the majority of all 
ESBL-producing Enterobacterales 219 (62.8%) followed by 
K. pneumoniae 115 (33.0%), details in Table 1.

Additionally, bacterial growth in urine was 3.7% (12 out of 326 
patients). The bacterial isolates detected in urine included: four 
(Zamudio et al., 2024) E. coli, four (Zamudio et al., 2024) P. aeruginosa, 
three (Bokhary et al., 2021) K. pneumoniae and one (1) P. mirabilis. 
ESBL was only detected in one E. coli urinary isolate but was not 
identical to the concomitant ESBL E. coli detected in stool.

1 https://pathogen.watch

Geographical distribution of ESBL 
Enterobacterales at the patient level

The distribution of ESBL-PE carriers based on their 
geographical origin is illustrated in Supplementary Figure S1. The 
figure displays the number of patients who are carriers of ESBL in 
different villages.

Genomic diversity of ESBL 
Enterobacterales

 a Genomic diversity of ESBL E. coli (n  = 219, Figure  2; 
Supplementary Table S1)

The ESBL-E. coli mainly belonged to phylogroup A (79/219, 
36.0%), followed by phylogroup B1 (50/219, 23.0%) and B2 
(29/219, 13.0%).

Multilocus sequence typing (MLST) using the Achtmann scheme 
revealed 61 distinct sequence types (STs). The predominant STs 
identified were B2-ST131 (18/219, 8.2%), B1-ST 3580 (17/219, 7.7%), 
C-ST410 (14/219, 6.4%), A-ST167 (12/219, 5.5%), and A-ST 617 
(12/219, 5.5%).

In silico serotyping revealed the presence of 76 distinct serotypes. 
The predominant serotypes were O8:H12 (17/219, 7.7%), O9a: H30 
(15/219, 6.8%), H9 (9/219, 4.1%), and O16:H5 (8/219, 3.7%). 
Additionally, a total of 41 different fimH alleles were identified. The 
primary fimH alleles detected included fimH27 (18/219, 8.2%), 
fimH24 (17/219, 7.7%), fimH54 (16/219, 7.3%) and fimH30 
(12/219, 5.5%).

Antimicrobial resistance and plasmid replicon 
content (Supplementary Table S2)

Among the 219 ESBL E. coli isolates, CTX-M-15 (189/219, 86.3%) 
emerged as the predominant ESBL gene, followed by CTX-M-27 
(15/219, 6.8%). The quinolone resistance gene qnrS1 was predominant 
among isolates (97/219, 44.3%) 0.3.7% of the E. coli were 
carbapenemase producers, all harboring OXA-181 (8/219). Plasmid 
analysis in the 219 ESBL-E. coli isolates showed diversity in replicons, 
with IncFIB (AP001918) being the most common (122/219, 55.7%), 
followed by IncFIA (74/219, 33.8%).

 b Genomic diversity of ESBL K. pneumoniae and related species 
(n = 115, Supplementary Table S3)

Of 115 K. pneumoniae 90 isolates (78.2%) were identified as 
K. pneumoniae / phylogroup Kp1, (19/115, 16.5%) Klebsiella 
quasipneumoniae / phylogroup Kp2, (4/115, 3.5%) Klebsiella variicola 
/ Kp3 and (2/115, 1.7%) Klebsiella quasivariicola/Kp6. Remarkably, 
among 115 K. pneumoniae isolates, MLST using Pasteur scheme 
highlighted 61 different STs. The top four most common STs identified 
were ST 110 (6/115, 5.2%), ST 334 (6/115, 5.2%), ST 3717 (6/115, 
5.2%) and ST 17 (5/115, 4.3%).

Antimicrobial resistance and plasmid replicon 
content (Supplementary Tables S4, S5)

ESBL genes were identified among 115 K. pneumoniae and its 
related species with CTX-M-15 (106/115, 92.2%) being predominant. 
Carbapenemase KPC-2 was detected in 1.7% (2/115). The quinolone 
resistance gene qnrS1 was predominant among isolates 84 (73.0%) 
(84/115, 73.0%) followed by qnrB6 (9/115, 7.8%).

TABLE 1 ESBL Enterobacterales detected in stool.

ESBL bacteria Frequency N = 347 n (%)

E. coli 219 (62.8%)

K. pneumoniae 115 (33.0%)

E. cloacae 5 (1.4%)

M. morganii 5 (1.4%)

K. aerogenes 1 (0.3%)

P. vulgaris 1 (0.3%)

S. marcescens 1 (0.3%)
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Plasmid analysis showed diversity in replicons, with IncFIB (K) 
being the most common (95/115, 82.6%), followed by IncY (44/115, 
38.3%), IncR (42/115, 36.5%) and IncFII (K) (39/115, 33.9%).

 c Genomic diversity of ESBL E. cloacae (n  = 5, 
Supplementary Table S6)

Out of five E. cloacae, three different ST were detected ST1, ST171, 
and ST 922. Four had CTX-M-15.

Factors associated with fecal carriage of 
ESBL-PE

Of the 326 patients, 312 (95.7%) indicated to not have used 
antibiotics in the past 2 months, 317 (97.2%) had history of UTI and 
324 (99.4%) had no history of diabetes.

No statistically significant associations were found between a 
history of UTI, history of diabetes, past antibiotic use, pregnancy, 
animal interaction and ESBL carriage.

Following the results of the associations presented in Table 2, the 
following explanatory variables were selected to include in a 
multivariable model assessing ESBL-PE risk: age and patient status. In 

the multivariable analysis, the odds of ESBL-PE carriage decreased 
with increasing age (OR: 0.98, 95% CI: 0.97–0.99) and were higher in 
inpatients (OR: 1.77, 95% CI: 1.08–2.91) than in outpatients (Table 3).

Discussion

This study found that more than two-third (70.9%) of patients 
presenting with UTI were ESBL-PE carriers. This high prevalence of 
carriage in rural Tanzania serves as an important indicator of 
antibiotic resistance in the area. Prevalence rates for ESBL-PE 
colonization vary substantially among different populations in 
Tanzania (Manyahi et  al., 2020). Geographical distribution data 
revealed potential hotspots of ESBL-PE carriage rates across villages, 
with some showing higher prevalence. These findings highlight areas 
with potentially elevated transmission risk, which could guide future 
studies and inform targeted intervention strategies.

Previous studies have reported lower carriage rates in the urban 
area of Dar es Salaam, with rates of 32.6% in HIV patients and 34.3% 
in children (Manyahi et al., 2020; Tellevik et al., 2016). Additionally, a 
rate of 59.7% has been observed in adult patients (Kibwana et al., 

FIGURE 2

SNP-based phylogenetic tree of 219 ESBL-E. coli. From center to periphery, the layers correspond to the isolate name, phylogroup, sequence type 
(according to the Achtman scheme), serotype, the fimH allele, the quinolone resistance gene, and beta-lactamase genes.
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2020). In contrast, other research has found much higher (91.5%) 
colonization rates among hotel employees on the island of Zanzibar 
(Büdel et al., 2019). Furthermore, most studies have linked risk factors 
such as sharing of toilets (Erb et al., 2018), poor working environments 
and hygienic practices (Mwanginde et  al., 2021), use of third-
generation cephalosporins (Manyahi et al., 2020), history of antibiotic 

use (Moremi et al., 2018), old age (Kibwana et al., 2020) with increased 
ESBL fecal carriage.

These findings highlight the diverse distribution of ESBL-PE 
colonization within Tanzania, suggesting potential differences 
between urban and rural settings, as well as among various 
demographic groups.

TABLE 2 Bivariable analysis of risk factors for ESBL carriage.

Variable ESBL negative
(N = 95)
n (%)

ESBL positive
(N = 231)
n (%)

Total
(N = 326)

n (%)

p-value

Age

Mean (SD) 43.8 (18.4) 37.4 (16.8) 39.3 (17.5)

Median [Min, Max] 40.0 [18.0, 86.0] 33.0 [18.0, 99.0] 35.5 [18.0, 99.0] 0.004

IQR [25th, 75th] [29.0, 58.0] [24.0, 48.0] [25.0, 52.0]

Gender

Female 52 (54.7%) 137 (59.3%) 189 (58.0%) 0.461

Male 43 (45.3%) 94 (40.7%) 137 (42.0%)

Patient status

Inpatient 37 (38.9%) 123 (53.2%) 160 (49.1%) 0.021

Outpatient 58 (61.1%) 108 (46.8%) 166 (50.9%)

Past antibiotic use (2 months)

No 92 (96.8%) 220 (95.2%) 312 (95.7%) 0.765

Yes 3 (3.2%) 11 (4.8%) 14 (4.3%)

Pregnant

No 48 (50.5%) 120 (51.9%) 168 (51.5%) 0.445

Yes 4 (4.2%) 17 (7.4%) 21 (6.4%)

UTI history

No 2 (2.1%) 5 (2.2%) 7 (2.1%) 0.999

Yes 93 (97.9%) 224 (97.0%) 317 (97.2%)

Diabetes history

No 94 (98.9%) 230 (99.6%) 324 (99.4%) 0.292

Yes 1 (1.1%) 0 (0%) 1 (0.3%)

Contact with cats

No 65 (68.4%) 160 (69.3%) 225 (69.0%) 0.875

Yes 19 (20.0%) 43 (18.6%) 62 (19.0%)

Contact with dogs

No 59 (62.1%) 140 (60.6%) 199 (61.0%) 0.778

Yes 24 (25.3%) 63 (27.3%) 87 (26.7%)

Contact with cattle

No 64 (67.4%) 140 (60.6%) 204 (62.6%) 0.253

Yes 20 (21.1%) 63 (27.3%) 83 (25.5%)

Contact with chickens

No 44 (46.3%) 96 (41.6%) 140 (42.9%) 0.440

Yes 40 (42.1%) 107 (46.3%) 147 (45.1%)

Other animal contact

No 64 (67.4%) 138 (59.7%) 202 (62.0%) 0.360

Yes 17 (17.9%) 50 (21.6%) 67 (20.6%)
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Notably, this study highlights that younger individuals and 
inpatients were associated with an increased risk of being ESBL 
carriers. Inpatients exhibited a higher ESBL carriage rate than 
outpatients, consistent with literature identifying prolonged 
hospitalizations and extensive antibiotic treatments as key predictors 
for ESBL carriage (Mai and Espinoza, 2023; Moremi et al., 2021).

Our study did not reveal significant associations between ESBL 
carriage and factors such as previous antibiotic use, or animal contact. 
However, patients might not have reported previous antibiotic use on 
the one hand, on the other hand the relatively small sample size limits 
our ability to draw definitive conclusions. Further research with larger 
cohorts may be necessary to fully elucidate the relationships between 
these variables and ESBL carriage in this population.

Despite the high prevalence of patients with a history of UTI 
(97.2%), our study did not find an association between this factor and 
ESBL carriage. This disparity can be attributed to most individuals 
delaying seeking medical treatment, which may result in recurrent 
UTIs. Furthermore, patients frequently self-medicate using over-the-
counter antibiotics (Torres et al., 2021; Maldonado-Barragán et al., 
2024) or use traditional remedies, such as herbal medicines. This 
practice often results in a common history of UTIs among those who 
do not seek medical attention. In addition, in rural settings, poor 
sanitation, limited access to clean water, and inadequate hygiene 
infrastructure increase the risk of UTIs and their recurrence 
(Mwambete and Msigwa, 2017). We understand that the 97.2% figure 
might differ from patient populations in other settings. However, this 
difference highlights the challenges faced in rural health care due to 
the factors outlined earlier.

ESBL-producing E. coli emerged as the dominant colonizing 
species, followed by K. pneumoniae, with the CTX-M-15 enzyme 
being the most prevalent ESBL. The ubiquity of CTX-M-15 genes in 
both E. coli (86.3%) and K. pneumoniae (92.2%) aligns with global 
trends as well as with studies from Tanzania (Bevan et  al., 2017; 
Moremi et al., 2017; Onduru et al., 2021; Slown et al., 2022; Sonda 
et  al., 2018). Highly mobile genetic elements are responsible for 
carrying the predominant CTX-M genes between bacterial strains. 
The scenario is further supported by the established association 
between CTX-M enzymes and E. coli IncF resident plasmids, which 
are particularly well-adapted to E. coli strains and can readily transfer 
between them (Woerther et al., 2013).

Carbapenemases were only detected in a minority of cases, such 
as OXA-181 in 3.7% of E. coli and KPC-2 in 1.7% of K. pneumoniae. 
This low prevalence of carbapenemases suggests that carbapenems are 
likely to remain an effective treatment option for the time being. 
However, continued vigilance is essential to uphold infection control 
measures and prevent the potential rise of carbapenem-resistant 
isolates in our setting. We observed a phylogenetic diversity among 
the ESBL-producing E. coli, with the majority belonging to 
phylogenetic group A, followed by B1 and B2. ST-131 was the most 
common sequence type in the latter phylogroup. This finding aligns 
with earlier studies that have shown considerable phylogenetic 

diversity within ESBL-producing E. coli populations (Bevan et al., 
2017). We  also observed a notable diversity in sequence types, 
serotypes, and fimH alleles.

The diverse phylogroups and sequence types observed among 
ESBL-PE isolates, suggest complex transmission dynamics. Our 
research underscores the need for further research into community 
transmission patterns in resource-limited settings.

Limitations of the study include reliance on short-read sequencing 
data and the lack of environmental sampling, which restricted the 
comprehensive investigation of plasmid population structures and 
environmental transmission factors.

In addition, we  were not able to investigate the relationship 
between fecal ESBL carriage and urinary tract infections, as most 
urinary cultures remained negative or showed only insignificant 
growth. The negative urine cultures could be  due to (a) some 
symptoms may have been caused by conditions other than a UTI, 
such as sexually transmitted infections (STIs) which cannot 
be diagnosed by urine cultures, (b) medical incompliance, patients 
might be consuming antibiotics but hide this information from the 
clinician these consumed antibiotic agents may inhibit in-vitro 
culture growth of bacteria in the urine in this study we  did not 
perform any inhibitory test to detect the presence of any previous 
antibiotic therapy in our urine samples (c) there may have been 
improper collection, handling and processing of urine samples in our 
setting. Our results challenge the assumption that all patients 
presenting with UTI symptoms will have positive urine cultures but 
it underscores the importance of including differential diagnoses in 
patients presenting with UTI-like symptoms. In future, further 
studies are needed to investigate the causes of these symptoms and 
the role of non-UTI infections and antibiotic stewardship in our 
settings. Without correlating fecal ESBL carriage to urine culture 
results, we  cannot definitively establish the gut as a reservoir for 
invasive UTIs in this population.

In this study, we observed a low rate of history of antibiotic use. 
This might be  because certain patients were unaware/ cannot 
accurately recall when last they used antibiotics. Additionally, we did 
not capture self-treatment with non-prescribed antibiotics or the use 
of traditional remedies in our setting. We recognize the potential for 
recall bias, given the reliance on self-reported information.

We recognize other ESBL risk factors such as history of surgery, 
hospitalization in the last 6 months, urinary catheterization, history 
of ESBL colonization, travel to other countries, and number of people 
living in the same house are under-recorded. In this study, due to 
limited access to patient records, we could not have details for these 
risk factors. Additionally, some factors, such as international travel 
history, may have been less applicable in our study population 
compared to urban settings.

Our study included all patients who met UTI IDSA criteria, which 
introduces selection bias and explains why we had a high proportion 
of patients with a history of UTI. The model selection for our 
multivariable model was prone to bias given that we used a p-value 

TABLE 3 Multivariable analysis of risk factors for ESBL carriage.

Predictors of ESBL Unadjusted ORs 95% CIs p-value Adjusted ORs 95% CIs p-value

Age 0.980 0.967–0.993 0.0030 0.980 0.967–0.993 0.0239

Patient status (Inpatient) 1.785 1.101–2.921 0.0196 1.765 1.082–2.907 0.0036
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cutoff from the bivariate associations to determine which variables to 
include, however, this was chosen due to limited data availability and 
unbalanced groupings for other categorical factors. Statistical 
significance should be taken with caution due to the observational 
nature of the study.

In conclusion, this study reveals a high fecal carriage rate of ESBL 
Enterobacterales, especially among younger individuals in Tanzania, 
underscoring the need to investigate transmission dynamics beyond 
hospital settings. Although only one ESBL-positive isolate was 
identified as a cause of UTI, the high fecal carriage rate indicates a 
significant potential for infections with resistant organisms. This 
suggests a broader reservoir of resistant pathogens, particularly in 
areas with limited infection control measures.

Our findings stress the importance of understanding local 
epidemiology and highlight the need for healthcare interventions in 
rural areas to ensure proper treatments, appropriate antibiotic use, 
and education on personal hygiene. These results have significant 
implications for empirical treatment strategies and infection 
prevention policies in similar contexts.
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