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Deformable multi-level feature
network applied to nucleus
segmentation

Shulei Chang, Tingting Yang, Bowen Yin, Jiayi Zhang, Liang Ma,

Yanhui Ding and Xiaodan Sui*

School of Information Science and Engineering, Shandong Normal University, Jinan, China

Introduction: The nucleus plays a crucial role in medical diagnosis, and accurate

nucleus segmentation is essential for disease assessment. However, existing

methods have limitations in handling the diversity of nuclei and di�erences in

staining conditions, restricting their practical application.

Methods: A novel deformable multi-level feature network (DMFNet) is proposed

for nucleus segmentation. This network is based on convolutional neural

network and divides feature processing and mask generation into two levels. At

the feature level, deformable convolution is used to enhance feature extraction

ability, and multi-scale features are integrated through a balanced feature

pyramid. At themask level, a one-stage framework is adopted to directly perform

instance segmentation based on location.

Results: Experimental results on the MoNuSeg 2018 dataset show that the

mean average precision (mAP) and mean average recall (mAR) of DMFNet reach

37.8% and 47.4% respectively, outperforming many current advanced methods.

Ablation experiments verified the e�ectiveness of each module of the network.

Discussion: DMFNet provides an e�ective solution for nucleus segmentation

and has important application value in medical image analysis.

KEYWORDS

nucleus segmentation, pathology images, deep learning, convolutional neural network,

deformable multi-level feature network

1 Introduction

The nucleus plays an important role in the examination of hematoxylin and eosin

stained tissue sections.Nuclear morphometric features and appearance, including the

color of the surrounding cytoplasm, also help in identifying various types of cells,

such as epithelial (glandular), stromal, or inflammatory cells, which in turn, provide an

understanding of the glandular structure and disease presentation at low power (Kumar

et al., 2017). In disease diagnosis, nuclear characteristics are key indicators. For example,

abnormal morphological and structural changes in cancer cell nuclei, such as nuclear

enlargement and nuclear-cytoplasmic ratio imbalance, can assist doctors in determining

the type and stage of cancer. Moreover, nuclear segmentation can also contribute to

pathological research by enabling the understanding of cellular level changes during the

development of diseases.Therefore, accurate nucleus segmentation is critical in the field

of medicine.
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Owing to the importance of nuclear information in

medicine, numerous researchers have proposed pathology

image segmentation methods (Xinpeng et al., 2020; Liu et al.,

2021), including level sets (Peifang et al., 2016), graphbased

segmentation (Fuyong and Lin, 2016), mathematical morphologies

(Wang et al., 2016), and pixel classification (Liu et al., 2019).

However, such methods fail to generalize across a wide spectrum

of tissue morphologies due to inter- and intra-nuclear color

variations in crowded and chromatin sse nuclei (Kumar et al.,

2017). Traditional methods face numerous limitations, and under

these circumstances, machine learning techniques have gradually

become a new hope for solving the nuclear segmentation problem

due to their unique advantages.Techniques based on machine

learning can provide better results for challenging cases of nucleus

segmentation because they can be trained to recognize nucleus

shapes and color variations (Yiming et al., 2018; Xieli et al., 2019).

However, automatic nucleus segmentation continues to be very

challenging owing to variations in the nuclei, ambiguous borders,

and differences in staining conditions. Nucleus segmentation tasks

are challenging in three respects. Firstly, the shapes of the nuclei

in the pathology images vary in shapes; however, the convolution

kernel of the convolutional neural network (CNN) modules is a

fixed geometric structure. In other words, the CNN modules do

not possess the internal mechanism to handle nuclei of different

shapes. Secondly, deep high-level features in the backbones have

more semantic meanings, while shallow low-level features are more

content descriptive (Zeiler and Rob, 2014). For example, high-

level information can provide many semantic details, like staining

conditions. Low-level information can provide content, such as

the location of the nucleus. Thirdly, most instance segmentation

methods based on CNN comprise two stages, which are complex

and have room for improvement in accuracy.

Over the past dozen years, deep learning has emerged as a

prominent category of machine learning algorithms, including

natural language processing, computer vision, and more. One

of the most representative models in deep learning models is

CNN. In computer vision, different locations on images may

correspond to objects with different scales or deformation (Jifeng

et al., 2017); for example, fully convolutional networks (FCNs)

(Jonathan et al., 2015) provide semantic segmentation with the

ability of adaptive determination of scales or receptive field sizes

for visual recognition tasks with fine localization; however, their

performance warrants further improvements. Feature integration

has led to the development of instance segmentation. FPN (Tsung-

Yi et al., 2017) and PANet (Shu et al., 2018) integrate features

via lateral connections to achieve excellent performance; however,

they cannot merge shallow and deep information with each other.

AdaptIS (Konstantin et al., 2019) predicts point proposals for

classagnostic instance segmentation, and then generates a mask

for the object located at this point. PolarMask (Xie et al., 2020)

uses instance center classification and dense distance regression

in a polar coordinate system to predict the contour of instances.

These methods may be considered as a semidirect adigm. They are

anchor-free andmake the CNN simple; however, all of them require

additional complex processing methods. ooTensorMask (Xinlei

et al., 2019) operates in a dense sliding window and segments

objects in fixed local patches, limited by patch scale. SOLO aims

to segment instance masks directly, under the supervision of full

instance mask annotations rather than in-box masks or additional

pixel pairwise relations (Xinlong et al., 2020).

Recently, the most common instance segmentation method

is the two-stage method. It has two approaches. The first one is

“detect then segment”. It first detects the target to create bounding

boxes and then divides the mask in each box. The second one

is “label then cluster”. First, each pixel is predicted, and then the

pixels of the same instance are grouped together.This approach is

usually not as effective as the first approach. A typical example

of a two-stage approach is Mask R-CNN, which uses a region

proposal network (RPN) (Shaoqing et al., 2017) to obtain and

classify candidate regions, which are then segmented using an FCN

(Jonathan et al., 2015) model. Two stage methods achieve both

step-wise and indirect object localization and mask generation,

which either rely heavily on bounding box detection or clustering.

On the contrary, one-stage instance segmentation methods can

simultaneously achieve object localization and mask generation.

SOLO (Xinlong et al., 2020) is one of the representative methods

of one-stage instance segmentation methods, which takes an image

as input and directly outputs instance masks and corresponding

class probabilities, using a fully convolutional, frameless and

groupless adigm.

Faisal et al. (2020) enhanced structured prediction capabilities

for nucleus segmentation through conditional generative

adversarial networks trained with synthetic and real data.

Peter et al. (2019) formulated the nuclear segmentation task as

the regression of intra-nuclei map distance to solve the joint

segmentation of close nuclei. Similar to the nucleus segmentation

task, Hao et al. (2016) proposed a deep contouraware network

integrating multiple layers of contextual features to accurately

segment glands from pathological images. Carsen et al. (2021)

proposed a segmentation method called Cellpose that can

accurately segment cells from various image types, with exciting

results. For better generating bounding box proposals, Jingru

et al. (2019) proposed a keypoint-based detector combined with

cell instance segmentation. Oskar et al. (2019) segmented nuclei

based on Mask R-CNN and used bounding boxes to detect

nuclei instances. However, the shape of the nucleus tends to

be oval, which presents an occlusal problem. This means that

each bounding box may contain pixels representing two or more

instances, which suggests that the bounding box may end up

being suboptimal for kernel segmentation (Shengcong et al.,

2020). Ortiz et al. (2020) proposed an instance segmentation

method based on a recurrent residual network, which offers the

advantages of improved segmentation accuracy and enhanced

feature propagation stability. However, the method has some

drawbacks, including high computational cost and training time,

limited flexibility when handling complex scenarios, and sensitivity

to the quality of input data. In recent years, methods based on

Transformer have gradually emerged. Chen et al. (2021) combined

the Transformer encoder with the U-Net architecture for medical

image segmentation, which is especially suitable for medical

image segmentation tasks. This method can effectively capture

long-distance global dependencies and improve the segmentation

accuracy. However, the computational resource consumption of

Transformer is relatively large, resulting in long training time
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and high memory requirements. Cao et al. (2022) enhanced the

segmentation performance of medical images by introducing Swin

Transformer and utilizing its multi-scale characteristics, especially

performing prominently in medical image segmentation tasks.

However, when dealing with very large or complex images, the

local windowing method of Swin Transformer may limit the ability

to extract global information. He et al. (2023) enhanced the model’s

ability by introducing convolution operations in SwinUNETR.

However, the training process may be relatively complex, involving

a variety of techniques and adjustments, which may increase the

implementation difficulty in practical applications.

In this study, we introduce a novel method called the

deformable multi-level feature network (DMFNet) for nucleus

segmentation. The DMFNet is based on a CNN using images of

H&E stained tissue specimens. The DMFNet employs two levels

to process the features and masks separately. To address the three

challenges mentioned earlier, the DMFNet effectively combines

deformable convolutional networks (DCNs) (Jifeng et al., 2017),

balanced feature pyramid (BFP) (Jiangmiao et al., 2019), and

segmenting objects by locations (SOLO) (Xinlong et al., 2020).

Even though each of these components has been used in the past,

we demonstrate that their combination in nuclei segmentation

is superior to the existing standard methods. Thus, the main

contributions of this study are as follows:

First, we use a novel module to replace the feature extraction

module of a conventional CNN for dense spatial transformations;

this can increase the transformation modeling capability. In the

new module, the convolution kernel can be in various forms of

deformation for free sampling.

Second, we integrate multi-level features, which are rescaled,

integrated, refined, and strengthened to obtain balanced

semantic features and refine the same. Finally, we use a

one-stage network to directly distinguish instances by the

center locations and object sizes instead of masks in boxes

or pixel-pairwise relations. Nuclei segmentation by location

renders the segment framework simple, and flexible. The

DMFNet achieved the best performance on the MoNuSeg

2018 dataset, with its mAP and mAR approaching 37.8% and

47.4%, respectively.

2 Materials and methods

SOLO is a one-stage algorithm, and its backbone comprises

a residual network (ResNet) (Kaiming et al., 2016) and FPN

(Tsung-Yi et al., 2017). To mitigate the complex structure

in the two-stage methods, our DMFNet is based on SOLO

for nucleus segmentation. The proposed model consists

of a feature level and a mask level, as shown in Figure 1.

Specifically, the input image is first extracted with features

in ResNet, which incorporates a deformable convolution

(Jifeng et al., 2017). Then, the features are integrated into

a balanced feature pyramid to obtain enhanced multi-level

semantic features. Finally, a mask generation network predicts

categories and generates instance masks simultaneously,

thus achieving an effective instance segmentation under a

one-stage network.

2.1 Feature extraction

At the feature level, a deformable residual network is trained for

an efficient feature extraction. The standard convolution consists of

the following two steps: (1) use a regular grid R for sampling on

the input feature map x; and (2) perform a weighting operation.

For example,

R = (−1,−1), (−1, 0), ..., (0, 1), (1, 1) (1)

where R defines the size and dilation. Here, it defines a 3 × 3

kernel with a dilation of 1. Each position p0 on the output feature

map y, is calculated using the following formula:

y(p0) =
∑

pn∈R

w(pn) · x(p0 + pn) (2)

where w is the weight of the sampled values, and pn is an

enumeration of the locations listed in R. In this network, the regular

grid R is expanded by adding offsets, where N = |R|. The same

position p0 becomes:

y(p0) =
∑

n∈R

w(pn) · x(p0 + pn + δpn) (3)

Now, the sampling location has become an irregular location.

As the offset δpn is usually a decimal number, Equation (3) is

implemented via a bilinear interpolation, shown in Equation (4)

below. Here, p defines an arbitrary location and q is an enumeration

of all the integral spatial locations listed in feature map.

x(p) =
∑

q

G(p, q) · x(q) (4)

whereG(., .) denotes a bilinear interpolation kernel. It is divided

into two one-dimensional kernels as follows:

G(p, q) = g(qx, px) · g(qy, py) (5)

where g(a, b) = max(0, 1− |a− b|).

As illustrated in Figure 2, the offsets are obtained by applying

a convolutional layer over the same input feature map. To learn

the offsets, the gradients are back propagated using Equations 4,

5. The deformable network is integrated with the state-ofthe-art

architecture ResNet to enhance the capability of the DMFNet

for modeling the transformations. This possesses excellent feature

extraction capability for nuclei of various shapes.

2.2 Feature integration

Feature integration occupies a crucial position in the field

of deep learning. It focuses on merging and summarizing the

feature information obtained from different network layers,

diverse functional modules, or various feature extraction methods,

ultimately creating a more comprehensive expression that

accurately depicts the target features. This technique plays a
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FIGURE 1

Illustration of our proposed DMFNet architecture.

FIGURE 2

Feature extraction module for feature level. The upper part is the standard convolution, and the lower part is the deformable convolution.

significant role in enhancing the model’s ability to understand

and process complex data. The Balanced Feature Pyramid is

an innovative structure specifically designed to optimize the

feature integration process. In the ongoing evolution of deep

learning models, while traditional feature pyramid networks are

capable of capturing multi-scale features, they often face the

challenge of imbalanced information distribution when merging

features from different levels. For example, in tasks such as cell

nucleus segmentation, this imbalance can lead to inaccurate and

incomplete descriptions of nuclear features. In response to this

challenge, the Balanced Feature Pyramid was developed, with its

core mission being to address this issue. Through a series of unique

designs and operations, it makes the feature integration process

more efficient and precise, thus providing a higher-quality feature

foundation for subsequent tasks, such as cell nucleus segmentation.

Next, we utilize the balanced feature pyramid in our DMFNet

to strengthen the multi-level features. The essential purpose of this

module is to strengthen the multi-level features using the same

deeply integrated balanced semantic features. It consists of four

steps, namely rescaling, integrating, refining, and strengthening

(Jiangmiao et al., 2019). The structure of this module is shown in

Figure 3. To obtain balanced semantic features, we first resize the
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FIGURE 3

Feature integration module for feature level.Q2, Q3, Q4, and Q5 are multi-level features, and U2, U3, U4, and U5 are multi-level output signals.

multi-level features {Q2,Q3,Q4,Q5} which have been generated by

the FPN to the same size asQ4, and merge them to obtainQint with

interpolation andmax-pooling. The balanced semantic features can

be expressed as:

Qint =
1

L

lmax∑

lmin

Ql (6)

where L is the number of multi-level features; Ql is the

feature of resolution level l; and lmin and lmax are subtables

representing the lowest and highest level indices, respectively.At

this time, each resolution obtains equivalent information from the

other resolutions.

Next, we use a non-local module (Xiaolong et al., 2018) to refine

the balanced semantic features for more distinguishing features and

better results. Non-local operations in deep neural networks are

represented as:

Ui =
1

C(v)

∑

∀j

f (vi, vj)g(vj) (7)

where i and j represent the indices of the output position and

all possible associated positions, respectively; v indicates the input

signal; U indicates the output signal, with the same size as v; and f

(vi, vj) calculates the scalar between i and j. For example, the farther

the distance between the positions of i and j, the smaller the value

of the pairwise function f , which means that the position of j has

less influence on i. g(vj) calculates the representation of the input

signal at position j and C(v) is the normalization parameter.

Finally, the refined features of the four levels are added to

the original features through interpolation or pooling to enhance

the original features. We effectively create the semantic features

of different layers using the BFP. This offers a better accuracy for

nucleus segmentation.

2.3 Mask generation

At the mask level, we further process the category prediction

and instance mask generation. The pipeline for the same is shown

in Figure 4.

We divide the picture into an S × S grid. The network

output is divided into two branches, namely classification and

mask branches. Simultaneous with the category prediction, each

grid generates a corresponding instance mask. The size of the

classification branch is S × S × C, where C is the number

of categories. The mask branch size is H × W × S2, where

S2 is the maximum number of instances predicted. When the

center of the target object falls in the grid, the corresponding

position of the classification branch and corresponding channel

of the mask branch are responsible for the prediction of the

object. For example, if the instance is allocated to the grid

(i, j), then the channel k = i · S + j on the mask branch

is responsible for predicting the mask of the target; each grid

belongs to a single instance only. Finally, we use the non-

maximum-suppression (NMS) algorithm to obtain the final results.

Compared with a two-stage method, our one-stage method is

simpler and can connect nucleus segmentation to a location to

achieve better results.

The loss function includes two parts: category branch andmask

branch. The loss function is as follows:

LDMF = Lfocal + γ Lm (8)

The Sigmoid activation function output is used

here. Lfocal represents the category branch, and uses

the traditional semantic segmentation loss function

Focal Loss (Shaoqing et al., 2017) to measure the gap

between the predicted category and the ground truth.

Lm is the loss function of the mask branch, specifically

expressed as:

Lm =
1

N

∑

k

βp{i,j>0}Ldice (9)
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FIGURE 4

Mask generation network for mask level.

3 Results

3.1 Dataset

MonuSeg stands for Multi-organ Nucleus Segmentation, and

the dataset was published at the official satellite event of MICCAI

2018.The MoNuSeg 2018 dataset contains 30 tissue images and

21,623 annotated nuclear boundaries, each image of size 1, 000 ×

1, 000 pixels (Kumar et al., 2017). The dataset used H&E-

stained tissue slides digitized at 40x magnification and contained

nuclei of varying sizes from seven different organs. These organs

include the bladder, liver, breast, kidney, colon, prostate, and

stomach. We cropped each image into 16 patches, and the size

of each patch was 250 × 250 pixels. Specifically, we generated

480 images, including 352 training, 32 validation, and 96 test

images. Furthermore, we used data augmentation to augment the

size of the datasets and reduce overfitting. Before the image is

input into the model, it will go through a channel composed of

different data enhancement methods. Each enhancement method

is set with a certain probability value and different enhancement

factors. In other words, each image will follow the data in

the channel. Augmentation is randomly combined with a set

probability. Numerous image transformation schemes that were

used include brightness enhancement, contrast reduction, Gaussian

noise, impulse noise, and Poisson noise. Some representative

examples of data augmentation are shown in Figure 5.

3.2 Implementation details

The DMFNet was implemented in PyTorch and trained on an

NVIDIA Tesla V100 GPU with 32 GB of video memory. During

the training, the mini-batch strategy was used to iteratively train

the DMFNet for 200 epochs, and each iteration used two samples

as a batch, with a total of 35,200 iterations. The validation set

was evaluated after each training epoch. The network used batch

normalization (Sergey and Christian, 2015) for regularization every

time the weight was updated, and the stochastic gradient descent

was used to update the model parameters. The learning rate,

weight decay, and momentum were set to 0.0025, 0.0001, and

0.9, respectively.

3.3 Evaluation metrics

In object detection, the intersection-over-union (IoU) metric,

which is the ratio of the intersection to the union of the prediction

bounding box generated by the network and the original ground

truth bounding box, was used. The evaluation method of instance

segmentation was very similar to the evaluation method of object

detection, with the difference being that the IoU of the mask was

calculated in lieu of the IoU of the bounding box. In this study,

precision and recall under a specific IoU threshold were considered

as the evaluation indicators, and the expressions for the same are

as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

whereTP is the number of nuclei that are actually nuclei and are

predicted by the model to be nuclei; FP is the number of nuclei that

are actually background, but are predicted by the model; and FN

is the number of nuclei that are actually nuclei, but not recognized

as nuclei by the network. The Precision measures the proportion

of samples that the model predicts as positive class (in nucleus

segmentation, that is, predicted as nuclei) and are actually positive

class among the samples predicted as positive class by the model.

The Recall represents the proportion of samples that are actually

positive class and are predicted as positive class by themodel among

the total number of actual positive class samples.The threshold

of the IoU was calculated every 0.05 from 0.5 to 0.95 and the

average precision (AP) was calculated every 0.05. The mean average

precision (mAP) of all the results was used as the main indicator
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FIGURE 5

Representations of some image transformation schemes used. (A) Original. (B) Brightness enhancement. (C) Contrast reduction. (D) Gaussian noise.

(E) Impulse noise. (F) Poisson noise.

to report the results of the DMFNet. The AP under a specific IoU

threshold was calculated as follows:

APIoU=k =
1

101

∑

r∈R

pinterp(r) =
1

101

∑

r∈R

max
r̃·r̃≥r

p(r̃) (12)

where k indicates the threshold in K :[0.5, 0.55, ..., 0.90, 0.95], r

denotes the recall, and R :[0, 0.01, 0.02, ..., 0.99, 1.0], with an interval

of 0.01 and a total of 101 values. p(r̃) denotes the precision related

to the recall rate r̃. To calculate the AP value at the ten thresholds,

we considered the average value at the ten thresholds as the mean

average precision (mAP). In addition, we also used the average

recall (AR) as an evaluation metric, which was obtained by testing

the mean ARIoU = k of more than 10 IoU thresholds, and a

maximum of the top 100 predicted masks were given. Similarly,

we also considered the average value at the ten thresholds as

the mean average recall (mAR). In this study, the task of the

model was to identify only one category; therefore, ARIoU = k

at a specific threshold was equal to R in Equation 12. mAP is

an important indicator for evaluating model performance, which

measures the model’s ability to accurately identify cell nuclei.

A high mAP value indicates that the model performs well in

accuracy and completeness. AR reflects the ability of the model

to detect actual cell nuclei. In cell nucleus segmentation, high AR

ensures that cell nucleus information is not missed, which can help

detect diseased cells in early cancer screening in a timely manner.

mAR measures the average performance of the model at different

recall thresholds, calculating the average proportion of correctly

predicted positive samples at multiple levels to the actual total

number of positive samples. In addition, for mAP and mAR, we

also used the following metric:

1. AP50: AP value over a single threshold of IoU = 0.50.

2. AP75: AP value over a single threshold of IoU = 0.75.

3. AR50: AR value over a single threshold of IoU = 0.50.

4. AR75: AR value over a single threshold of IoU = 0.75.

3.4 Ablation study

To verify the effectiveness of the feature extraction and feature

integration modules, we used a network with and without those

modules, embedded the same into the DMFNet, and then trained

and evaluated them separately. To make an unbiased comparison,

both these models used the same experiment and hyperparameter

configuration. Table 1 summarizes the ablation studies on the

effects of each module of the DMFNet.

As shown in Table 1, the DCN module was embedded in the

SOLO, and the AP and AR scores of the segmented network were

significantly improved, which means that the deformable feature

extraction could better improve the transformation modeling

capability of the model. This also proves that the deformable

convolution had a higher accuracy for the irregular circle of

the nucleus. When the BFP module was added, the mAP and

mAR increased by 1.9% and 0.9%, respectively. This verifies that

the multi-level feature integration played a key role. Specifically,
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the enhancement effect of the two modules was inconsistent;

however, using the two modules at the same time yielded a better

result, and it was proved that the DMFNet integrated the two

modules effectively.

Next, we visualized the ablation study and analyzed the details

of our model. More typical examples are provided in Figure 6,

including different stained nuclei and their masks. Amodel without

the modules would result in errors, such as a small number

of segmented nuclei and a lack of distinction between adjacent

nuclei. The reason for this behavior was that the network did

TABLE 1 E�ects of each module of the DMFNet (%).

DCN BFP mAP AP50 AP75 mAR AR50 AR75

29.7 64.6 24.8 38.6 72.3 38.4

X 34.9 ↑5.2 70.1 ↑5.5 32.5 ↑7.7 43.0 ↑4.4 77.3 ↑5.0 46.6 ↑8.2

X 31.6 ↑1.9 67.7 ↑3.1 26.1 ↑1.3 39.5 ↑0.9 73.9 ↑1.6 40.0 ↑1.6

X X 37.8 ↑8.1 77.8 ↑13.2 33.6 ↑8.8 47.4 ↑8.8 85.3 ↑13.0 49.0 ↑10.6

not completely learn the overall features and, hence, did not fully

identify the edges of the features. In contrast, the DMFNet could

segment more nuclei, correctly segment adjacent nuclei, and also

segment each nucleus more completely. This means that our model

offers advantages in nuclei edge extraction and global feature

integration, and it is also proved that the two modules played a

significant role.

3.5 Comparisons

To verify the effectiveness of the DMFNet on nuclei

segmentation, we compared the proposed model with a few state-

of-the-art methods, with the same experimental configuration.

Table 2 lists the instance segmentation results of each of these

methods. Compared to the existing baseline methods, for example,

Mask R-CNN (Kaiming et al., 2017), TensorMask (Xinlei et al.,

2019), and PolarMask (Xie et al., 2020), the proposed method

yielded better results than the state-of-the-art methods. The

DMFNet achieved the best performance on the MoNuSeg 2018

FIGURE 6

Visualization comparison between the DMFNets (with or without the two feature processing modules) and examples of segmentations model; the

first row contains the original tissue images; the second row contains the images from the DMFNet without the two modules; while the third row

contains the images from our proposed DMFNet.
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TABLE 2 E�ects of each module of the DMFNet (%).

Method mAP AP50 AP75 mAR AR50 AR75

PolarMask 21.7 52.4 14.5 31.8 64.1 29.4

Mask R-CNN 30.3 67.8 24.1 40.9 77.4 40.2

TensorMask 31.4 67.4 27.1 39.8 74.0 39.7

SOLO 29.7 64.6 24.8 38.6 72.3 38.4

DMFNet 37.8 77.8 33.6 47.4 85.3 49.0

dataset, with its mAP and mAR approaching 37.8% and 47.4%,

respectively. Furthermore, when the IoU threshold was 0.50 and

0.75, our method yielded a better performance, and both AP and

AR were the best.

Figure 7 shows the segmentation P-R curves (smoothed) of five

models with 10 IoU thresholds ranging from 0.5 to 0.75 with an

interval of 0.05. Figure 7 shows that with a change in the IoU

threshold, the trend of the model was approximately the same, and

the corresponding P-R curve gradually approached the coordinate

axis; however, the closing speed of the P-R curve of the proposed

model was slower than that of the other models. This proves that

the prediction result of the proposed DMFNet had a higher score

and better overall quality.

4 Discussion

Changes in nuclear morphology are closely related to the

growth state of tumors. For nearly 150 years, changes in nuclear

morphology have been the gold standard for cancer diagnosis,

so it is critical to understand single nuclear instances. With the

development of digital pathology, the emergence of electronic

pathology pictures helps pathologists get rid of microscopes,

but it is very cumbersome and difficult to browse and observe

pathological nuclei on the computer. The main method for

pathologists to quantify nuclei is subjective estimation, which

cannot be done precise quantification.

In digital pathology research, instantiating nuclei can help

pathologists understand the structure of individual nuclei.

Quantitative analysis of the spatial distribution of nuclear clusters

and the number of mitoses, which are key factors in cancer

diagnosis and prognosis. In practice, there are independent nuclei

and clusters of nuclei that are clustered together. Although the

semantic segmentation of nuclei has an excellent effect and can

extract nuclei from pathological images, it is not suitable for

independent study of nuclei clusters or adjacent nuclei. Scene of

the nucleus in a cell.

For the above reasons, we propose a model DMFNet to

segment pathological image nuclei from the perspective of instance

segmentation. DMFNet analyzes the process of nucleus instance

segmentation at both feature and segmentation levels. At the

feature level, we added a feature extraction module for the

diversemorphological characteristics of nuclei, which enhanced the

model’s transformation and modeling capabilities to better sample

target instances. In nucleus segmentation, both detail features and

semantic features play a very important role, so we propose to use

the feature integration module to integrate and enhance the two

features. At themask level, we replace the traditional methods using

anchor boxes or clustering with a one-stage location-based instance

segmentation method, making the model simpler. Experiments

show that the method in this paper can effectively improve the

accuracy of nucleus instance segmentation.

In summary, both feature extraction and feature integration

modules can improve the accuracy of nucleus segmentation;

moreover, their combination can further improve the performance,

which not only validates that their combination is suitable for

the task of nucleus segmentation, but also shows that they

differ from feature level Aspects enhance the segmentation task.

Therefore, we can use these two modules simultaneously in the

application scenario of nucleus segmentation to achieve optimal

segmentation results.

In the field of medical image processing, the development of

automatic annotation technologies is of critical significance for

improving the efficiency of clinical applications. The DMFNet

model in this study demonstrates remarkable potential in the

automatic annotation of medical images. By achieving precise

segmentation of cell nuclei, the model can automatically identify

and annotate key information such as the location and boundaries

of the nuclei. This greatly reduces the workload associated

with manual annotation. Traditional manual annotation methods

require significant time and effort from pathologists, especially

when handling large-scale medical image data. In contrast, the

DMFNet model can rapidly and accurately perform the annotation

task. For example, annotating pathological slide images containing

numerous cell nuclei may take several hours or even days

manually, while the DMFNet model can complete the preliminary

annotation in a much shorter time, achieving high accuracy. This

not only improves annotation efficiency but also provides timely

and reliable data support for subsequent clinical diagnosis and

research, thereby promising to enhance overall clinical application

efficiency and provide robust support for early disease diagnosis

and precision treatment.

In terms of practical clinical applications, this nuclear cell

segmentation model holds great potential. In the process of cancer

diagnosis, accurate nuclear cell segmentation is a crucial step.

Currently, the incidence rate of cancer remains at a relatively high

level, and early diagnosis is of great significance for improving

patients’ survival rates and quality of life. By enhancing the accuracy

of nuclear cell instance segmentation, this model can provide

pathologists with more accurate and detailed information about

nuclear cells. For example, in the diagnosis of common cancers

such as breast cancer and lung cancer, pathologists can utilize

this model to observe the morphology, size, and distribution

of nuclear cells more clearly, thereby making a more accurate

judgment on the benign or malignant nature of the tumor. This

is of great importance for the early detection of tiny tumors,

the determination of cancer staging, and the formulation of

personalized treatment plans. Moreover, during the follow-up after

cancer treatment, this model can also be used to monitor changes

in the morphology of nuclear cells, enabling the timely detection of

signs of cancer recurrence.

We analyzed the problem of nuclei segmentation in

pathological images and proposed amodel for nuclei segmentation,
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FIGURE 7

P-R Curves of state-of-the-art models over di�erent IoU thresholds, compared with those of the proposed DMFNet.

but with the change of datasets and the development of medical

images, the model still needs to be further optimized. Although

the nucleus segmentation dataset we used is a well received work

in recent years, in the process of analyzing the edges, it is found

that the labeling of the edges is not fine enough and the amount

of training data is relatively small.Therefore, transfer learning

should be performed in combination with newly released datasets

to improve the robustness and accuracy of the model. We only

segment the nuclei in the pathological images without considering

the types of nuclei. In tumor tissues, the cells included not only

cancer cells, but also stromal cells, lymphocytes, macrophages,

etc. Recent studies have shown that tumor cell nuclei Stromal cell

interactions are involved in tumor progression and metastasis. In

the following work, the fine-grained classification of the research

cells is also needed, and the cells are divided into tumor cells,

stromal cells, lymphocytes, etc.

5 Conclusions

In this study, we proposed an innovative model, DMFNet,

which holds significant value in clinical applications. This model

is mainly used for nuclear segmentation from digital pathology

images of different organs, a function that is of great significance

for the clinical diagnosis and treatment of diseases such as cancer.

In clinical practice, the accuracy of nuclear segmentation is crucial

for determining the nature and development stage of tumors.

We conducted a detailed analysis of the nuclear segmentation

process and made targeted improvements to key components

such as feature extraction, fusion, and template generation.

Through these enhancements, DMFNet effectively combines DCN,

BFP, and SOLO, significantly improving the performance of the

segmentation network.

However, the DMFNet model still has certain limitations. At

the methodological level, although it exhibits good performance

on the existing dataset, with the development of medical imaging

technology and the emergence of new datasets, the model may

face adaptability issues. From the perspective of network structure,

although the performance has been improved through module

combination, when dealing with large-scale, high-resolution

pathological images, the problem of excessive consumption of

computational resources is rather prominent, which affects the

running efficiency of the model to a certain extent. In terms

of feature extraction, the expression of features such as the

morphology and texture of the cell nucleus is not rich enough,

making it difficult to capture some subtle but critical pathological

features, which may thus affect the accuracy of segmentation.

In the process of feature fusion, the fusion method of different

hierarchical features is not optimal, resulting in information loss

or redundancy, leading to the underutilization of some features.

The template generation process is not flexible enough in adapting

to the diverse morphological distributions of cell nuclei, and the

processing ability of the model is limited when facing complex

pathological situations.

In the future, we will further improve the model from the

directions of enhancing model performance (such as optimizing

feature extraction, fusion, and template generation), expanding

application scenarios (to more organ diseases and integrating
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with clinical processes), and increasing model interpretability

(visualization and constructing explanatory models). When

the DMFNet was applied to the MoNuSeg 2018 dataset,

the experimental results clearly demonstrated the performance

advantages of this method over some existing methods. This

implies that in actual clinical scenarios, pathologists can utilize

this model to more accurately extract nuclear information from

pathological images. Meanwhile, during the follow-up of diseases,

this model also helps in continuously monitoring the changes of

cell nuclei, enabling the timely detection of disease progression

or recurrence.

In summary, the DMFNet model provides important support

for clinical diagnosis and treatment and has remarkable clinical

value.
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