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There are several ways to recover signature microbiome of a disease pathology.

One way is to look at the core microbiome, which comprises microbial

species prevalent across majority of the samples. At a finer level, certain

subcommunities may exhibit stable signature across the sampling space. There

can also be similarity of differential patterns across different body sites. In

view of above, and leveraging recent advancements in analytical strategies,

we revisit a multi-factorial Iranian ColoRectal Cancer (CRC) dataset, and

explore stable and persistent patterns in the microbiome. For this purpose,

16S rRNA gene is amplified from saliva and stool samples of CRC patients

using healthy controls as a baseline (n = 80). The dataset is supplemented

with demographical and nutritional data of the study participants that were

collected through filled questionnaire. Our results indicate that certain microbial

species i.e., Actinobacteriota, Bifidobacterium, Prevotella and Fusobacterium are

consistently present in the CRC patients suggesting their potential as diagnostic

biomarkers of disease. Additionally, we identified a group of microbes such

as Akkermansia, Selenomonas, Clostridia_UCG-014, Lautropia, Granulicatella,

Bifidobacterium, and Gemella that exhibit similar differential response across

body sites irrespective of where they are found, whether in saliva or stool

samples. This suggest that a part of saliva microbiome can act as a proxy

for stool microbiome giving further credence to oral-gut axis. Overall, our

findings underscore the importance of exploring stable microbial biomarkers in

multifactorial CRC dataset by marginalizing out variabilities, with the potential

for improved diagnosis and treatment strategies.
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Introduction

Colorectal cancer (CRC) is regarded as third most reported
cancer around the world having a mortality rate of 1.8 million
(Baidoun et al., 2021). The incidence of CRC is expected to rise
globally, with an increase rate of 2.2 millions new cases and 1.1
millions deaths by 2030 particularly in western countries (Arnold
et al., 2016). In Iran, CRC is prevalent in both genders, however,
its ranked fourth most diagnosed cancer in males whilst second
in Iranian females (Sung et al., 2021). It is believed that complex
interplay between immune system, transcriptome, microbiome and
metabolome might drive colon carcinogenesis and progression
(Yang et al., 2019). The human gastrointestinal tract hosts a wide
range of microbial community ∼1013 which surpass the number of
genes in human genome by more than 150-fold. There is growing
evidence implicating gut microbiota in the development of CRC
via potential carcinogenic bacteria such as Fusobacterium as well
as beneficial bacteria such as Bifidobacterium (Bullman et al., 2017;
Wu et al., 2021; Yu et al., 2017). In our previous studies (Rezasoltani
et al., 2022; Rezasoltani et al., 2024), we employed a comprehensive
sampling strategy to understand microbial makeup in oral and
fecal samples obtained from an Iranian CRC cohort. However,
microbial ecology, particularly in the context of stable and
persistent microbiome remains unexplored. Majority of the existing
analytical strategies focus on divulging differential patterns from
hypothesis-driven studies without considering the underpinning
ecology that exerts pressure on the microbial communities either
due to biotic or abiotic influences. Furthermore, the research
studies are increasingly incorporating additional datasets and
multi-omics modalities which leads to development of new class
of methods designed to not only explore discriminating features
(typically a subset) across study design (in a case-control, spatial
or temporal setting), but also find correlations of subset of features
across datasets (Ijaz et al., 2024). Therefore, guided by these recent
developments, in this paper, we revisit the dataset, and:

a) apply a recently developed dynamic approach (Shade
and Stopnisek, 2019) that recovers core microbiome
by considering site-specific occupancies, and then fits a
neutral model to further categorize the core microbiome
into those that can be deterministically explained (either
selected by host pressure or dispersal limitation) and those
that are neutral. Note that the core microbial species
typically exhibit functional redundancy, which stabilizes
the ecosystem and possess specialized functions that
can shape the microbiome landscape. The definition of
core microbiome is debatable, and often implies a crisp
“prevalence” threshold, i.e., how many samples should a
microbe be observed in to tag it as part of core. These
thresholds differ for different body sites and diseases
(Shetty et al., 2017) and hence an incentive to use a more
dynamic strategy;

b) recover ensembles of stable microbial subcommunities
through a recently developed Ensemble Quotient

Abbreviations: 16S rRNA, 16S ribosomal RNA; CRC, colorectal cancer;
OTUs, operational taxonomic units; EQO, Ensemble Quotient Optimization
algorithm.

Optimization algorithm (Shan et al., 2023), where collated
relative abundance of these subcommunities either remain
stable, or show a step-response. Note that whilst the
overall proportion of the microbial subcommunities
remain stable, the constituent members may adjust their
abundances in relationship to each other; and

c) employ a multi-study group derivative of sparse Projection
to Latent Structure—Discriminant Algorithm called MINT
algorithm (Rohart et al., 2017) since we have a multi-
factorial study design: group (healthy cohort [HC], CRC)
X body site (saliva, stool). The aim is to recover microbial
species that show a similar differential response between
healthy individuals and CRC patients irrespective of which
body site they are observed in.

The novelty in this study is to decipher those patterns which
were not previously possible due to limitations of the traditional
statistical approaches. Using the CRC dataset from Iranian study
establishes two directions: to highlight disparities in saliva and
stool microbiome specific to environmental exposures and dietary
habits in Iran; and to go beyond the region-specific psychosocial
stressors, marginalizing out variations, and establish a signature
microbiome for CRC. The MINT algorithm, with its ability to
recover inter-study nuances, should help in establishing biomarker
signatures from saliva microbiome that are not only discriminant
between healthy and CRC cohort but also act as a proxy for
gut microbial profiles. These may potentially lead to developing
diagnostic modalities.

Materials and methods

Bioinformatics

Our previous studies (Rezasoltani et al., 2022; Rezasoltani et al.,
2024) provides an overview of the study design, sampling, and their
processing. In brief, we collected saliva and stool samples of CRC
patients and healthy controls. A total of 80 samples were screened
for participation in this study in which only 78 underwent for final
analysis due to low read numbers (< 5,000 reads).

Overall, we have obtained 13,571,662 paired end reads from
78 samples. On these, we recovered representative operational
taxonomic units (OTUs) at 99% similarity using the same approach
as used previously (Ijaz et al., 2018) with the modifications: (a)
we have used the recent SILVA SSU Ref NR database release
v.138 (Quast et al., 2012); and (b) we generated the rooted
phylogenetic tree within the QIIME2 framework (Bolyen et al.,
2019). Furthermore, we used PICRUSt2 (Douglas et al., 2020)
within the QIIME environment to recover KEGG enzymes (10,543
enzymes for 78 samples) and MetaCyc pathway (489 enzymes for
78 samples) predictions for all the samples. For this purpose, we
used the parameters –p-hsp-method pic –p-max-nsti 2 in qiime
picrust2 full-pipeline.1 QIIME2 was also used to generate a final
BIOM file that combined abundance information with the new
taxonomy with a final n = 78 × P = 23,989 OTUs abundance table

1 https://github.com/picrust/picrust2/wiki/q2-picrust2-tutorial/
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with the summary statistics of OTUs per sample as [Min: 49,786; 1st
Quartile: 105,250; Median: 114,756; Mean: 113,357; 3rd Quartile:
123,510; Max: 159,166].

Statistics

As a pre-processing step, we selected for samples with > 5,000
reads, removed typical contaminants such as Mitochondria and
Chloroplasts, as well as any operational taxonomic units (OTUs)
that were unassigned at all levels, as per recommendations
given at https://docs.qiime2.org/2022.8/tutorials/filtering/, and
then included only those samples relevant to this study, thus giving
a final table of n = 78 × P = 23,370 OTUs with the summary
statistics of reads mapping to these OTUs for samples as follows:
[Min: 49,769; 1st Quartile: 104,419; Median: 113,840; Mean:
112,174;3rd Quartile: 122,755; Max: 159,159]. On this table, we have
performed multivariate statistical analyses within in the context of
meta data, with detailed provided in the Supplementary material.

Results

Core microbiota and neutral modeling

Significant differences (p < 0.05) are observed in richness
estimates of OTUs between: HC saliva and CRC saliva; HC
stool and CRC saliva; and HC saliva and CRC stool samples
(Supplementary Figure 1). For MetaCyc pathways, we also
observed significant differences (p < 0.05) in richness and Shannon
entropy between HC saliva and CRC stool, as well as between
HC stool and CRC saliva samples. Further exploration based on
PERMANOVA suggested 3.7, 3, and 2.3% variation (p < 0.001)
between HC and CRC in terms of composition, phylogeny, and
metabolic function, respectively. PCoA analysis suggests distinct
microbiota between stool and saliva samples giving credence to the
presence of unique core microbiome.

The core microbiome was then recovered using a dynamic
approach where site-specific occupancy and replicate consistency
within these sites decided which OTUs become part of the core
microbiome (Figures 1, 2). Figures 1A, D show the results when
site-specific occupancy (sites differing by body site) was used
for HC, and CRC cohort, respectively. Figures 1B, C, E, F,
show the results for HC saliva, HC stool, CRC saliva, and CRC
stool, respectively, and employed no occupancy criteria. Using
the occupancy criteria, the minimum prevalence threshold was
observed to be ∼0.5 (Figure 1A) for the core OTUs in both HC
and CRC cohort. Core OTUs detected in HC saliva (Figure 1B)
were highly prevalent (∼1; Figure 1D). CRC Saliva (Figure 1E)
on the other hand showed marked variation across cohorts with
the minimum prevalence threshold of core OTUs detected at
∼0.86 and suggesting more inter-subject differences. The converse
was observed for stool samples, where the detected minimum
occupancy threshold was lower for HC (Figure 1C) than the CRC
cohort (Figure 1F). The solid green points in occupancy-abundance
diagrams are the core OTUs that fall within the 95% confidence
interval of the fitted neutral model. The core OTUs that fall above
(red) or below (blue) this range are considered deterministic,

with particular interest in those that fall over the model as they
are selected by the host pressure determined implicitly by the
underlying environment.

Pie charts in Supplementary Figure 2 illustrates the
proportional classification of core OTUs at phylum level.
Across all the six models used in core microbiome analysis,
majority of the core OTUs belonged to the phyla Firmicutes,
Campilobacterota and Proteobacteria, whilst those belonging to
Patescibacteria, Campilobacterota and Fusobacteriota were low.
Notably, Actinobacteriota is the only phyla that distinguish HC
saliva from CRC saliva albeit at a lower proportion of 1.61%. Core
OTUs belonging to Desulfobacterota is exclusively observed in HC
stool and is absent from CRC stool. Although the core microbiota
is similar across all six models, their proportions differ. CRC
saliva samples display more phyla level diversity in core OTUs as
compared to the CRC stool samples. Neutrality analysis indicates
that majority of the OTUs influenced by the host belonged to
the phylum Firmicutes. There are more core OTUs belonging to
Firmicutes and Proteobacteria selected by host (above the neutral
model) for CRC cohort than for the healthy cohort (Figure 2).
Bacteroidota on the other hand shows the opposite response, i.e.,
more core OTUs selected for HC than for CRC patients.

Differential abundant taxa analysis taking
into account paired nature of samples

Due to the paired nature of data, where multiple subjects
provided both saliva and stool samples, respectively, we employed
a specialized QCAT-C association test (Supplementary Figure 4).
This test effectively minimizes Type 1 errors due to correlations
introduced by paired nature and at the same times gives differential
taxa at different lineages. Whilst on an average, the abundance
profile showed a similar response between HC and CRC cohort
for differential taxa on same body sites, there are some taxa that
stood out. These include: Halomonadaceae family is low abundant
in stool than in saliva for HC, with opposite response for CRC;
[Eubacterium]_brachy_group, Bifidobacterium, and Fusobacterium
genus significantly different between saliva and stool for HC than
for CRC cohort; and Actinobacteriota phylum more abundant in
CRC saliva than in HC saliva cohort.

Stable microbial subcommunities
identified through Ensemble Quotient
Optimization (EQO) algorithm

We next identified microbial subcommunities (at genus
level) where collated abundance of community members
remained stable for each cohort (subcommunities for HC
Saliva and CRC Saliva are shown in Supplementary Figure 5
whilst those of HC Stool and CRC Stool are shown in
Supplementary Figure 6, respectively). The quality of fit
is shown by Coefficient of Variation (CV) with lower
values representing higher stability. Many of the genera
were common in the stable microbial communities of
saliva samples of HC and CRC cohort i.e., Actinobacillus,
Selenmonadaceae, Granulicatella, Selenomonas, Campylobacter,
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FIGURE 1

Core microbiome [red, green and blue points in (A–F)] identified through a dynamic approach and shown on species occupancy abundance
diagrams. Six approaches are used: those that incorporate a site-specific occupancy criterion (occupancy being saliva, and stool) are shown in
(A) HC and (D) CRC, respectively, whilst results with no site-specific occupancy are shown in (B) HC saliva, (C) HC stool, (E) CRC saliva, and (F) CRC
stool, respectively. To identify the thresholds for core microbiome, we calculate the function C (that implicitly incorporates explanatory power of the
chosen core subset in terms of capturing beta diversity) and is shown below the species occupancy diagram. The blue dotted line represents the
threshold for “Last 2% decrease” criteria where OTUs are incorporated in the core subset until there is no more than 2% decrease in beta diversity.
Independently, a neutral model is fitted with those OTUs that fall within the 95% interval confidence intervals shown in green, whilst non-neutral
OTUs with observed frequency above the predicted frequency from the neutral model (selected by the host) are shown in red colors, and those with
observed frequency below the predicted frequency from the neutral model (selected by dispersal limitation) are shown in green colors.

Saccharimonadaceae, Leptotrichia, Porphyromonas, Actinomyces,
Neisseria, Fusobacterium, Veillonella, Prevotella and Streptococcus.
Those that were only part of stable cohort in CRC saliva
are Aggregatibacter, Bifidobacterium, Megasphaera, Gamella,
Stomatobaculum, Atopobium, Rothia, and Lactobacillus
(Supplementary Figure 5). Similarly, those microbial genera
that are common between CRC stool and HC stool are
Bilophila, Sutterella, Lachnospiraceae_NK4A136 group, Dialister,

Muribaculaceae, Oscillospiraceae; UCG-10, Agathobacter,
Oscillospiraceae; UCG-002, Alistipes, Christensenellaceae_R-
7 group, Roseburia, Faecalibacterium, Escherichia-shigella,
Barnesiellaceae, Prevotella and, Bacteroides. Those genera that
are part of stable cohort in CRC stool are Eubacterium_siraeum
group, [Ruminococcus]_torques_group, Dorea, Granulicatella,
Lactobacillus, Pseudomonas, Paraprevotella, Bifidobacterium, and
Streptococcus (Supplementary Figure 6).
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FIGURE 2

The count of core OTUs with taxonomic assignment at phylum level, and whether they are neutral, fitted below, or above the model, as per core
microbiome inference in Figure 1. Phyla with fewer OTUs are not seen properly using a single scale, and are shown separately for each model in
Supplementary Figure 3.

We then applied the EQO approach again, but this time, the aim
is to find subcommunity whose relative abundance change across
body sites, i.e., it had a differential response between stool and saliva
samples for both HC, and CRC cohort (Figure 3). Membership
of key genera in this subcommunity, with more proportional
representation in stool (irrespective of whether the sample comes
from HC or CRC) include: Prevotella, Bacteroides, Parabacteroides,
Escherichia-shigella, and Lachnospiraceae_NK4A136 group. Some
genera that were more abundant in HC saliva (in comparison
to HC stool) include: Prevotella, Gemella and, Megasphaera, and
those that have more proportional representation in CRC saliva (in
comparison to CRC stool) include: Prevotella and, Rothia.

Clade level differential analyses using heat trees
Whilst previous differential analysis (QCAT-C) was done to

show differences at different lineages (phylum, class, order, family,
genus), we employed differential heat trees to see whether there
are significant changes across lineages of the same node, or at

clade level. The results are shown in Supplementary Figure 7
where the highlighted branches with different colors represent
the significant enriched taxonomic paths in both groups (Brown:
enriched in HC; Green: enriched in CRC). The tree highlights
that Fusobacteriota, Erysipelatoclostridiaceae and Lachnospiraceae
are the most discriminatory taxa between CRC and HCs cohorts
as these are only dominant in CRC (Supplementary Figure 7).

Identifying inter-site biases using MINT analysis
To see which genera have similar differential response across

body sites, we have employed a multi study group derivative
of sparse Projection to Latent structure Discriminant Analysis
(sPLS-DA) called MINT algorithm (also called P-Integration
algorithm). The method gives non-zero loading vectors (weightage
associated with differential taxa) for each study (Figures 4, 5)
colored by the cohort these genera are upregulated in. Whilst
several discriminatory genera were recovered, our focus
lies solely on those, that show concordance across different
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FIGURE 3

Shows the ensemble with differential response between saliva and stool samples for (A) HC and (B) CRC cohort. The left plots show the fitness value
evolution of the genetic algorithm in finding these ensembles highlighting the convergence to a steady state solution whilst the right plots show the
relative abundance profiles of these ensembles with coefficient of determination (CD) value, for which a larger absolute value implies stronger
difference.

body sites, whether saliva or stool. These are represented
by the bars that are not joined by dotted lines in Figure 4
(for males) and Figure 5 (for females), and are the taxa that
have a consistent response (same color), and thereby serve as
diagnostic proxies. These include Akkermansia, Selenomonas,
Ruminococcaceae; CAG-352, Roseburia, Prevotella, Streptococcus,
Blautia, Parasutterella, [Eubacterium]_coprostanoligenes_group,
[Eubacterium]_hallii_group, Lachnospira, Atopobium,
Colidextribacter, Christensenellaceae_R-7_group, Ruminococcus,
Clostridia_UCG-014 and Gemella that are upregulated in
CRC male cohort (as compared to HC), while Granulicatella,
Bifidobacterium, Lachnospiraceae_UCG-010, Lautropia, and
Saccharimonadales are upregulated in CRC female cohort (as
compared to HC). Erysipelatoclostridiaceae; UCG-004, Dialister,
Desulfovibrio, Enterococcus, Prevotellaceae_UCG-003, Coprobacter,
Hydrogenoanaerobacterium, Absconditabacteriales_(SR1),
Clostridium_sensu_stricto_1, Peptococcus, Klebsiella,
Haemophilus, Erysipelotrichaceae_UCG-003, Collinsella, Bilophila,
Porphyromonas, Anaerostipes, Leptotrichia, Capnocytophaga,
Barnesiella, Lachnospiraceae_UCG-001, Solobacterium,
[Ruminococcus]_gnavus_group, Oscillospirales; UCG-010,
Saccharimonadaceae; TM7x, Coprococcus and, Mitsuokella are
upregulated in HC males whilst Faecalibacterium, Tannerella,

Campylobacter, Candidatus_Saccharimonas, Abiotrophia and
Aggregatibacter are upregulated in HC females.

Next, we wanted to explore if nutrition plays a differential
role. For this purpose, we generated heatmaps of the discriminant
genera identified from MINT algorithm for both males and females
(Supplementary Figures 8, 9) and then applied hierarchical (using
average linkages) clustering to identify clusters. By superimposing
nutritional annotations, we did not find any clustering, neither for
males nor for females. The samples mainly clustered together by
Treatment (HC, and CRC), and Treatment2 (Stool and Saliva).

Discussion

Growing literature highlights the role of microbiota in
tumorigenesis and progression of CRC (Chen et al., 2020;
Drewes et al., 2016; Mizutani et al., 2020; Wirbel et al., 2019).
Despite this, the full understanding of the microbiome and
its intricate interactions with the host remains incomplete and
necessitates further investigation. The key to understanding how
microbiota is linked to a particular disease is dependent on how
stable the microbiota is and whether the patterns hold across
majority of the subjects. In this study, we have revisited a CRC
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FIGURE 4

MINT results for inter-study comparison between HC and CRC for males, and across different body sites (stool and saliva). The algorithm is a
two-step process where in (A), two components were found that reduce the classification error rates (using centroids.dist in the function) in the
algorithm, and in (B) shows the number of non-zero coefficients in these two components represented with a diamond. Panel (C) shows the
reduced ordered representation of samples using all the genera in the first two components (MINT PLS-DA) with ellipse representing 95%
confidence interval and percentage variations explained by these components in axes labels, whilst in (D) the same samples are shown but only
using the discriminants from the two components (MINT sPLS-DA). Panels (E–G) then show the loading components for both studies, HC and CRC,
with dotted lines connecting them if they disagree. The color of the bars in (E–G) show the category where the genera have maximum abundance
across all groups considered. Note that in the loading diagrams, the length of the bar and not the directions of bar are important and highlights
relative significance for that genus against others. Heatmap of these genera along with further information is displayed in Supplementary Figure 8.

microbiome dataset (Rezasoltani et al., 2022; Rezasoltani et al.,
2024) from the point of view of finding consistent, stable, and
persistent microbiome. The analytical approaches used in this
study offer several advantages. The dynamic core microbiome
inference learns minimum occupancy threshold from the datasets,
highlighting only those microbial taxa that remain consistently
observed across all subjects. Based on this analysis, the dominant
phyla are Firmicutes, Campylobacterota and Proteobacteria whilst

Patescibacteria, Campilobacterota and Fusobacteriota are least
abundant across all study cohorts. Notably, Firmicutes and
Proteobacteria are selectively enriched in CRC Patients. Firmicutes,
the most dominant phylum in the gut has mixed trends, with
some species being beneficial while other species i.e., Eubacterium
eligens and, Eubacterium rectale showing significant association
with CRC (Sneath et al., 1986). In contrast, Proteobacteria are
generally regarded as gut commensals with pathogenic features
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FIGURE 5

MINT results for inter-study comparison between HC and CRC for females, and across different body sites (stool and saliva). The algorithm is a
two-step process where in (A), two components were found that reduce the classification error rates (using centroids.dist in the function) in the
algorithm, and in (B) shows the number of non-zero coefficients in these two components represented with a diamond. Panel (C) shows the
reduced ordered representation of samples using all the genera in the first two components (MINT PLS-DA) with ellipse representing 95%
confidence interval and percentage variations explained by these components in axes labels, whilst in (D) the same samples are shown but only
using the discriminants from the two components (MINT sPLS-DA). Panels (E,F) then show the loading components for both studies, HC and CRC,
with dotted lines connecting them if they disagree. The color of the bars in (E,F) show the category where the genera have maximum abundance
across all groups considered. Note that in the loading diagrams, the length of the bar and not the directions of bar are important and highlights
relative significance for that genus against others. Heatmap of these genera along with further information is displayed in Supplementary Figure 9.

(Joly et al., 2010) that have a strong correlation with CRC (Sinha
et al., 2016). A higher abundance of Proteobacteria in the gut
is typically seen as gut dysbiosis indicator, suggesting a potential
marker of diseases susceptibility (Shin et al., 2015; Xu et al., 2023).

We utilized the EQO algorithm to investigate stable microbial
subcommunities within each cohort. These are subcommunities
whose overall relative abundance remain stable whilst abundances
of individual members of these subcommunities may vary in
response to each other. In CRC saliva and stool samples, the
membership of genera contributing to overall stability includes
Aggregatibacter, Megasphaera, Eubacterium_siraeum group, Dorea,
Granulicatella, Paraprevotella, Bifidobacterium, and Streptococcus.
Notably, Bifidobacterium is the only genus present in both
CRC saliva and stool, suggesting its potential as a prognostic
marker. Bifidobacterium typically plays a role in intestinal epithelial
cell differentiation and numerous studies have highlighted its
beneficial effects, particularly in enhancing either the efficacy of
immunotherapies or antitumor immunity which can suppress
colon cancer (Ijaz et al., 2018; Rohart et al., 2017; Shan et al., 2023;
Shetty et al., 2017). However, our studies observed elevated amount
of Bifidobacterium both in the CRC saliva and stool supporting
previous study conducted by Quast et al. (2012) who reported
that 30% of the CRC patients have intratumor Bifidobacterium.
This suggests Bifidobacterium might indicate mucosal barrier
dysfunction or specific tumor characteristics.

Using EQO, we also identified subcommunities whose
collated abundance (proportional abundance of member species)
changes across body sites, showing differential responses of

subcommunities between stool and saliva samples in both HC,
and CRC cohorts. Genera more proportionally represented in the
stool samples (regardless of whether the samples are from HC
or CRC cohort) included Prevotella, Bacteroides, Parabacteroides,
Escherichia-shigella, and Lachnospiraceae_NK4A136 group. In
contrast, genera that are more proportionally represented in CRC
saliva compared to CRC stool included Prevotella, and Rothia.
Prevotella species are gram negative anaerobes of the phylum
Bacteroidetes, and are known to increase in cancer population
due to elevated IL17 producing cells in the mucosa (Sobhani
et al., 2011). Although generally considered commensals, some
Prevotella species can act as opportunistic pathogens involved
in endogenous infections (Brook, 2004). Rothia, a member of
Actinobacteria phylum, has been associated with CRC (Rezasoltani
et al., 2024). Typically, an oral commensal, Rothia is implicated
in various diseases particularly in immunosuppressed hosts (Amer
et al., 2017; Mougeot et al., 2020; Wang et al., 2021).

Our differential analyses have identified microbial species,
strongly associated with CRC progression, notably Fusobacteriota
and Erysipelatoclostridiaceae. Fusobacterium nucleatum, is often
found at higher level in CRC patients, and is linked to inflammation
and triggers immune responses that promote the production
of inflammatory cells. It also induces immune suppression by
modulating immune cells such as natural killer cells, T cells and
macrophages (Hashemi Goradel et al., 2019; Wu et al., 2019).
Erysipelatoclostridiaceae, an opportunistic bacterium associated
with metabolic syndromes or other diseases (Nishino et al., 2018;
Shao et al., 2017; Morgan et al., 2023) was found in higher
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abundance in CRC patients suggesting a potential link to CRC
progression.

The use of MINT algorithm offers patterns that have a
consistent response across multiple body sites, and do not change
direction in terms of differential response between HC and CRC.
If they are upregulated in HC as compared to CRC in stool, they
exhibit the same response in saliva. The converse is also true,
and has led to identification of Akkermansia, Selenomonas, and
Clostridia_UCG-014 as the key microbial genera in both stool
and saliva of male CRC patients. Akkermansia, a gram-negative
bacterium making up 1–4% of total human gut microbiota has been
linked to various gastrointestinal diseases including Inflammatory
bowel disease and cancer such as CRC (Gu et al., 2021; Wang
et al., 2022). Selenomonas, and Clostridium also showed a close
association with CRC patients supporting the previous published
studies (Gao et al., 2017; Huo et al., 2022; Zwinsová et al.,
2021). In contrast Lautropia, Granulicatella, and, Bifidobacterium
were highly prevalent in female CRC patients validating existing
literature (Costa et al., 2022; Kosumi et al., 2018; Li et al., 2020).

Overall, our research sheds light on the microbial ecology
of individuals diagnosed with CRC, focusing on cross-sectional
stability and persistence of the microbiome across multiple
body sites, a largely unexplored area in scientific literature. We
have utilized advanced statistical tools to unravel the complex
interplay between microbiome, exposome, and other clinical
parameters, whilst marginalizing for inconsistencies in results
that may arise as a result of site-specific and subject-specific
variabilities. Through a dynamic core microbiome approach
that incorporates neutral modeling, we have further identified a
signature microbiome associated with CRC, that is under selection
pressure, as the microbial taxa that are fitted above the neutral
model. These patterns demand exploration in further studies, not
only for their diagnostic potential, but as target candidates for
dietary intervention studies for treatment purposes. Furthermore,
providing and analyzing stool samples may be inconvenient in a
clinical setting. The MINT algorithm mitigates inter-study biases
across body sites, enabling a direct gut-oral axis, and highlights the
importance of using saliva swabs to give an account of microbes
that are representative of CRC.
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