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Background: Abnormal component changes of gut microbiota are related to 
the pathogenesis and progression of coronary heart disease (CHD), and gut 
microbiota-derived metabolites are key factors in host-microbiome interactions. 
This study aimed to explore the key gut microbiota and metabolites, as well as 
their relationships in CHD.

Methods: Feces samples and blood samples were collected from CHD 
patients and healthy controls. Then, the obtained feces samples were sent 
for 16s rRNA gene sequencing, and the blood samples were submitted for 
metabolomics analysis. Finally, conjoint analysis of 16s rRNA gene sequencing 
and metabolomics data was performed.

Results: After sequencing, there were no significant differences in Chao 1, 
observed species, Simpson, Shannon, Pielou’s evenness and Faith’s PD between 
the CHD patients and controls. At phylum level, the dominant phyla were 
Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. At genus level, 
the abundance of Sphingomonas, Prevotella, Streptococcus, Desulfovibrio, and 
Shigella was relatively higher in CHD patients; whereas Roseburia, Corprococcus, 
and Bifidobacterium was relatively lower. Randomforest analysis showed that 
Sphingomonas was more important for CHD. Through metabolomic analysis, a 
total of 155 differential metabolites were identified, and were enriched in many 
signaling pathways. Additionally, the AUC of the conjoint analysis (0.908) was 
higher than that of gut microbiota species (0.742).

Conclusion: In CHD patients, the intestinal flora was disordered, as well as 
Sphingomonas and the identified differential metabolites may serve as was 
candidate biomarkers for CHD occurrence and progression.
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1 Introduction

With the rapid growth of China’s economy and the improvement 
of people’s living standards, coronary heart disease (CHD) has 
increasingly become a global health problem and a major cause of 
morbidity and premature death worldwide (Albarrati et al., 2018). It 
is estimated that more than 11 million people in China suffer from 
CHD, and the number is expected to grow steadily in the coming 
decades (Moran et al., 2010; Dorje et al., 2019). CHD is characterized 
by the formation of arterial plaques composed primarily of lipids, 
calcium and inflammatory cells that narrow the coronary lumen, 
leading to attack or persistent angina (Li et al., 2018). The rupture of 
these plaques can contribute to the formation of thrombosis, thus 
leading to myocardial infarction and death (Tian et al., 2019). It has 
been reported that the risk factors of CHD are varied, including 
hypertension, unhealthy diet, diabetes, hypercholesterolemia, 
smoking, excessive drinking and depression (Yang et al., 2019; Amann 
et al., 2021). Nowadays, surgical treatment (percutaneous coronary 
intervention and coronary artery bypass grafting) and drug therapy 
(aspirin, low molecular heparin, urokinase, and statins) are used to 
manage CHD, and drug therapy is the basis of all treatments (Hsue 
and Waters, 2019). However, the timing of surgical treatment is 
important and technically difficult; and the long-term use of drugs can 
cause some adverse effects (Liang and Wang, 2021). Therefore, it is 
necessary to further explore the pathogenesis of CHD, so as to unearth 
underlying biomarkers or therapeutic targets for CHD.

Gut microbiota is a general term for the microorganisms existing in 
the human gut, which is composed of 1 × 1014 communities and more 
than 1,000 species of bacteria (Cheng et al., 2021). Gut microbiota, 
influenced by diet, genetic, host and environmental factors, plays 
important roles in regulating metabolism, immunity and the nervous 
system, maintaining a delicate balance with the host (Liu et al., 2020). 
For healthy people, there is a dynamic balance between harmful and 
beneficial bacteria in gut microbiota to maintain the healthy state of the 
host (Jin et al., 2019). However, imbalance of gut microbiota can lead to 
structural disorder of the bacteria, and disrupt basic metabolic processes 
of the host, resulting in the occurrence and development of some 
diseases (Trøseid et al., 2020). More and more evidence has suggested 
that gut microbiota is implicated in the occurrence and progression of 
various cardiometabolic diseases, such as obesity, heart failure, 
cardiovascular disease (CVD), diabetes, dyslipidemia and hypertension 
(Jie et al., 2017; Kazemian et al., 2020; Wu and Chiou, 2021). A previous 
study of Han et al. (2021) showed that in the acute myocardial infarction 
(AMI) patients, the abundance of phylum Firmicutes, genera 
Pseudobutyrivibrio, and Lachnospiraceae ND3007 group was lower, 
while the abundance of phylum Bacteroidetes and genera Desulfovibrio, 
Butyricimonas, and Acidaminococcus was higher compared to the 
healthy controls, which indicated the dysbiosis of gut microbiota in 
AMI. Another study demonstrated that statins could modulate the gut 
microbiota of acute coronary syndrome (ACS) patients to a healthier 
state, i.e., decreasing pathogenic bacteria, such as Paracenobacteria 
Merdae, while elevating beneficial bacteria, like Anaerostipes hadrus and 
Bifidobacterium longum subsp. longum (Hu et al., 2021). These reports 
indicated that gut microbiota may participate in the development of 
multiple cardiometabolic diseases. However, changes of gut microbiota 
composition in CHD remain unclear and need to be further investigated.

In addition, gut microbiota, considered as “bioreactors,” can 
ferment food and break them into functional metabolites or microbial 

products through regulating many metabolic processes in the host, 
including energy homeostasis, glucose metabolism, and lipid 
metabolism (Macfarlane and Macfarlane, 2003; Wu and Chiou, 2021). 
Cui et al. (2018) employed metabolomics to analyze the blood samples 
of chronic heart failure (CHF) patients, and found that in CHF 
patients, beneficial metabolites like orotic acid were decreased; and 
harmful metabolites such as sphingosine 1-phosphate were increased. 
Trimethylamine N-oxide (TMAO), one of the metabolites formed by 
gut microbiota, has been reported to be positively correlated with 
CVD, and increase the size of plaques, triggering prethrombotic 
platelet function and promoting the growth of arterial thrombosis 
(Randrianarisoa et al., 2016; Yang et al., 2019). Metabolomics analysis 
enables rapid discovery of active metabolites that alter cellular 
physiology, thereby, these metabolites can be used as biomarkers for 
disease diagnosis and prediction (Rinschen et al., 2019). Teruya et al. 
(2021) applied metabolomics to find that 33 metabolites including 
quinolinic acid, ergothioneine, glycerophosphocholine, and amino 
acid may be biomarkers of dementia patients. However, the metabolic 
profiles of CHD patients and potential metabolites involved in CHD 
are still lacking.

Therefore, this study collected feces samples and blood samples 
from CHD patients and healthy controls, and then 16s rDNA 
sequencing and metabolomics analysis were used to investigate the 
key gut microbiota and metabolites closely associated with CHD. Our 
research will provide direct evidence for gut microbiota dysbiosis of 
CHD and provide new insights for treatment of CHD.

2 Materials and methods

2.1 Patient recruitment and sample 
collection

From March 2021 to July 2021, 20 CHD in-hospital patients 
(disease group, verified by coronary angiography), and 20 control 
individuals (normal group) were recruited from The Fourth Affiliated 
Hospital, Zhejiang University School of Medicine (ZJU4H). The 
diagnosis of CHD was established based on the World Health 
Organization (WHO) criteria and confirmed through coronary 
angiography. As defined by the WHO, CHD is a condition marked by 
the narrowing or obstruction of coronary arteries caused by the 
accumulation of atherosclerotic plaques (Pega et  al., 2021). This 
reduction in arterial diameter leads to decreased blood flow to the 
heart muscle, potentially resulting in myocardial infarction, angina, 
or other forms of ischemic heart disease. The criteria for the controls 
were coronary stenosis of <25% as assessed by invasive coronary 
angiograms or coronary CT angiography. The exclusion criteria 
consisted of subjects that: (i) received antacids, probiotics, antibiotics, 
or antimicrobial agents within 30 days before sample collection, (ii) 
had an organic disease of the digestive system, diabetes, or 
hypertension, and (iii) had gastrointestinal surgery.

And the fresh fecal (2–5 g) and blood (5 mL) samples were 
obtained from each subject under the hospital diet. Then the fecal 
samples were transferred into sterile collecting pipes and frozen at 
−80°C immediately. The blood samples were centrifuged and the 
upper serum was collected and stored at −80°C. The basic clinical 
information of the enrolled subjects is displayed in Table  1 and 
Supplementary Table 1.
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TABLE 1 The basic clinical information of coronary heart disease (CHD) patients and control individuals.

Index Group

CHD (N = 20) Control (N = 20) Total (N = 40) P-value

Age

Mean (SD) 61.2 (12.4) 55.2 (13.1) 58.2 (13.0) 0.339

Median [Min, Max] 63.0 [36.0, 79.0] 57.0 [31.0, 72.0] 59.0 [31.0, 79.0]

Sex

Man 14 (70.0%) 13 (65.0%) 27 (67.5%) 0.945

Woman 6 (30.0%) 7 (35.0%) 13 (32.5%)

Systolic_pressure

Mean (SD) 133 (19.6) 130 (16.8) 132 (18.1) 0.836

Median [Min, Max] 136 [92.0, 166] 132 [102, 161] 132 [92.0, 166]

Diastolic_pressure

Mean (SD) 77.3 (9.43) 80.6 (10.1) 78.9 (9.80) 0.528

Median [Min, Max] 76.5 [57.0, 94.0] 78.5 [58.0, 100] 77.5 [57.0, 100]

BMI

Mean (SD) 25.4 (3.40) 23.4 (2.84) 24.4 (3.25) 0.235

Median [Min, Max] 25.7 [20.6, 33.2] 23.7 [18.7, 27.8] 24.3 [18.7, 33.2]

Triglyceride

Mean (SD) 1.30 (0.378) 1.65 (1.10) 1.47 (0.822) 0.824

Median [Min, Max] 1.35 [0.620, 2.07] 1.28 [0.670, 5.53] 1.34 [0.620, 5.53]

Missing 0 (0%) 1 (5.0%) 1 (2.5%)

Heart_rate

Mean (SD) 72.0 (11.7) 79.7 (11.7) 75.9 (12.2) 0.0509

Median [Min, Max] 67.5 [54.0, 95.0] 80.5 [46.0, 100] 77.5 [46.0, 100]

Total cholesterol

Mean (SD) 3.41 (0.809) 4.38 (1.15) 3.88 (1.09) 0.0232

Median [Min, Max] 3.33 [2.25, 5.46] 4.24 [2.69, 6.96] 3.62 [2.25, 6.96]

Missing 0 (0%) 1 (5.0%) 1 (2.5%)

Low density lipoprotein

Mean (SD) 1.96 (0.700) 2.55 (0.781) 2.25 (0.788) 0.0702

Median [Min, Max] 1.92 [0.860, 3.56] 2.48 [1.56, 4.19] 2.13 [0.860, 4.19]

Missing 0 (0%) 1 (5.0%) 1 (2.5%)

High density lipoprotein

Mean (SD) 0.977 (0.235) 1.12 (0.215) 1.05 (0.234) 0.231

Median [Min, Max] 1.04 [0.510, 1.30] 1.15 [0.780, 1.52] 1.12 [0.510, 1.52]

Missing 0 (0%) 1 (5.0%) 1 (2.5%)

Weight

Mean (SD) 68.2 (11.8) 63.6 (11.8) 65.9 (11.9) 0.48

Median [Min, Max] 68.8 [51.0, 92.5] 64.0 [46.0, 90.0] 65.8 [46.0, 92.5]

Smoke

No 12 (60.0%) 17 (85.0%) 29 (72.5%) 0.209

Yes 8 (40.0%) 3 (15.0%) 11 (27.5%)

Aspirin

No 2 (10.0%) 8 (40.0%) 10 (25.0%) 0.0907

Yes 18 (90.0%) 12 (60.0%) 30 (75.0%)

Clopidogrel

No 14 (70.0%) 19 (95.0%) 33 (82.5%) 0.115

Yes 6 (30.0%) 1 (5.0%) 7 (17.5%)

Statins

No 0 (0%) 1 (5.0%) 1 (2.5%) 0.599

Yes 20 (100%) 19 (95.0%) 39 (37.5%)
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2.2 16s rRNA gene sequencing of fecal 
samples and bioinformatic analysis

The collected fecal samples from the all subjects were submitted to 
Yanzai Biotechnology (Shanghai) Co., Ltd. (Shanghai, China) for 16s 
rRNA gene sequencing based on the Illumina MiSeq platform. Total 
DNA was extracted from the fecal samples using a Fecal DNA Extraction 
Kit (Takara Biomedical Technology Co., Ltd., Beijing, China), and the 
quality and concentration of the extracted total DNA were assessed using 
1.2% agarose gel electrophoresis and Nanodrop. After that, a primer set 
(341F ACTCCTACGGGAGGCAGCA/806R CGGACTACHVGGG 
TWTCTAAT) of V3-V4 region was used to amplify the target fragment, 
and then the amplified products were purified. The sequencing library 
was constructed using the TruSeq Nano DNA LT Library Prep kit 
(Illumina) following the manufacturer’s instructions. After quality testing 
using a Agilent High Sensitivity DNA Kit on Agilent Bioanalyzer, the 
DNA samples were sequenced on the MisSeq sequenator.

QIIME 2 (2019.41) was used for gut microbiota bioinformatics 
analysis. The raw sequencing data were filtered, denoised, merged and 
chimera removed using DADA2, and amplicon sequence variants 
(ASVs) were obtained. Then, ASVs were mapped to Greengenes database 
(Release 13.82) in QIIME 2 to assign operational taxonomic units (OTUs) 
according to the criteria of 98% sequencing similarity. Thereafter, the 
diversity of gut microbiota, different species composition at phylum and 
genus levels between the disease and normal groups, as well as underlying 
pathways involved in CHD were further analyzed.

2.3 Isolation of metabolites and 
metabolomics analysis of blood serum

The obtained blood serum from the all participants were used for 
metabolomic analysis. The blood serum samples (100 μL) were 
transferred to a new 2 mL centrifuge tube, and 400 μL pre-cooled 
methanol was added. After vortex oscillated for 60 s, the samples were 
centrifuged at 12,000 rpm for 10 min at 4°C, and the supernatant was 
transferred to a new tube. After concentrated to dry in vacuum, the dried 
powder was redissolved in 150 μL 80% methanol solution (80%) with 
2-chlorobenzalanine (4 ppm), and then filtered through a 0.22 μm 
membrane. The obtained samples were used for liquid chromatography-
mass spectrometry (LC–MS) detection.

A Thermo Ultimate 3000 system equipped with an ACQUITY 
UPLC® HSS T3 column (1.8 μm, 2.1 × 150 mm, Waters), and a mass 
spectrometer (Orbitrap 120, thermo) were employed for LC–MS. The 
temperature of sample injector and column was, respectively, 8°C and 
40°C. The flow rate was 0.25 mL/min, and the injection volume was 
2 μL. The mobile phases for positive were 0.1% formic acid in water (C) 
and 0.1% formic acid in acetonitrile (D); and for negative were 5 mM 
ammonium formate water (A) and acetonitrile (B). The elution program 
was set as follows: 2% B/D, 0–1 min; 2–50% B/D, 1–9 min; 50–98%, 
9–12 min; 98% B/D, 12–13.5 min; 98–2% B/D, 13.5–14 min; 2% D, 
14–20 min (positive)/ 2% B, 12–17 min (negative). The spray voltage of 
MS for positive and negative modes was, respectively, 3.5 kV and 2.5 kV; 

1 http://qiime.org/

2 http://greengenes.secondgenome.com/

sheath gas and auxiliary gas were set at 30 and 10 arbitrary units; and the 
capillary temperature was 325°C. Full scanning was carried out with a 
resolution of 60,000, and the scanning range of 100–1,000 m/z.

The raw data generated by LC–MS were converted to a mzXML 
format (xcms input file format) using Proteowizard software (v3.0.8789), 
and then the CXMS software of R package (v3.3.2) was applied for peaks 
identification, peaks filtration, peaks alignment with the parameters of 
bw = 5, ppm = 15, peakwideth = c (530), mzwid = 0.015, mzdiff = 0.01 
and method = “centWave.” A data matrix consisted of mass to charge 
ration (m/z), retention time and peak intensity was obtained. After 
normalization, the metabolites were annotated, and differential 
metabolites were screened based on the thresholds of p-value ≤ 0.05 and 
VIP ≥ 1. Receiver operating characteristic (ROC) and area under curve 
(AUC) were used to evaluate the sensitivity and specificity of the 
identified differential metabolites (Lin et al., 2014).

2.4 Functional analysis

The functional potential of the gut microbiota was predicted using 
PICRUSt2 (Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States). The Amplicon Sequence 
Variants (ASVs) obtained from 16S rRNA gene sequencing were used 
as input. These ASVs were mapped to the Greengenes database (version 
13.8) for taxonomic annotation. PICRUSt2 employs a phylogenetic 
placement approach to infer the functional content of microbial 
communities based on the known functional annotations of closely 
related reference genomes. The predicted functional content was then 
mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway and MetaCyc pathway databases to identify and annotate 
metabolic pathways. Statistical analysis was performed to compare 
pathway abundances between groups, and pathways with an adjusted 
p-value < 0.05 were considered significant. The results were visualized 
using heatmaps and bar plots to highlight differences in functional 
pathways between CHD patients and healthy controls. Finally, the 
differential metabolites identified through metabolomics analysis were 
submitted for KEGG pathway enrichment analysis to further explore 
their potential roles in metabolic processes related to CHD.

2.5 Conjoint analysis of 16s rRNA gene 
sequencing and metabolomics data

Pearson correlation analysis was used to calculate the correlation 
coefficient and p value of the two groups; and then redundancy analysis 
was used to analyze the relationships between gut microbiota at genus 
level and differential metabolites, and p < 0.05 was considered as the 
significant level.

3 Results

3.1 Alpha biodiversity of gut microbiota in 
CHD

In order to understand the roles of gut microbiota in CHD, the 
feces of CHD patients and control individuals were sent for 16s 
rRNA gene sequencing. It is clear that in the current sequencing, 
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the species accumulation curve tended to be  stable with the 
increase of sample size (Figure 1A), indicating that the sequencing 
depth and sample size were sufficient to reflect the species 
composition of gut microbiota and capture most of the diversity. 
Nonmetric multidimensional scale analysis (NMDS) showed there 

was no obvious clustering of microbial composition in the CHD 
and control subjects; as well as the value of stress was 0.159 (<0.2, 
Figure 1B), which suggested that the result of NMDS was reliable. 
The Good’s coverage in the CHD and control groups were, 
respectively, 0.9909 ± 0.002 and 0.9606 ± 0.005 (Figure  1C), 

FIGURE 1

Overall diversity of gut microbiota in coronary heart disease (CHD). (A) Species accumulation curves analysis. (B) Nonmetric multidimensional scale 
analysis (NMDS) showed the value of stress was 0.159 (<0.2). (C) The alpha diversity analyses based on Chao 1, observed species, Simpson, Shannon, 
Pielou’s evenness and Faith’s PD indexes.
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implying that the present sequencing contained basically most 
species, and can be used for further analyses.

Thereafter, the indexes of Chao 1, observed species, Simpson, 
Shannon, Pielou’s evenness and Faith’s PD were calculated. It is obvious 
that there were no significant differences in values of Chao 1, observed 
species, Simpson, Shannon, Pielou’s evenness and Faith’s PD between 
the CHD patients and control individuals (p > 0.05, Figure 1C). Taken 
together, it can be  inferred that CHD did not alter the alpha 
biodiversity of gut microbiota compared to the control participants.

3.2 The compositions of specific gut 
microbiota in CHD

After that, we further explored changes in the compositions of 
specific gut microbiota at phylum and genus levels. As shown in 

Figure 2A, it was found that there were 34,441 OTUs and 31,349 
OTUs in the disease group and normal group, respectively, which 
included 4,840 shared OTUs. From the level of phylum, the dominant 
phyla were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, 
and Verrucomicrobia (Figure 2B). However, from the aspect of genus, 
we found that dominant genera were Bacteroides, Faecalibacterium, 
Prvotella, Roseburia, and Streptococcus (Figure 2B). Additionally, the 
relative abundance of Prevotella, Streptococcus, Lactobacillus, and 
Shigella was higher in the CHD patients than that in the control 
participants; whereas the abundance of Roseburia, Blautia, 
Corprococcus, and Bifidobacterium was relatively higher in the control 
subjects compared to the CHD patients (Figure 2B).

Following, a clustering heatmap analysis was carried out on the 
top50 genera between the two groups (Figure 2C). It can be seen that 
Sphingomonas, Slackia, Lachnobacterium, Prevotella, Butyrcimonas, 
and Desulfovibrio were relatively enriched in the CHD patients 

FIGURE 2

The gut microbial composition in CHD. (A) Venn diagram of operational taxonomic unit (OUT) in the CDH patients and control individuals. (B) The 
relative abundance of top 10 phyla and genera in the CDH patients and control subjects. (C) The clustering heatmap of the prominent OTUs (top50) 
assigned to genus level among each sample.
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compared with the control individuals. Then, randomforest analysis 
showed that Tenericutes, Proteobacteria, Acitinobacteria, and 
Bacteroidetes were important phyla for CHD (Figure 3A); and the key 
genus for CHD was Sphingomonas (Figure 3B).

3.3 Functional analyses of the annotated 
gut microbiota

The annotated gut microbiota was submitted for functional 
analysis, including KEGG pathways and MetaCyc pathways analyses. 
KEGG pathway enrichment demonstrated that the annotated gut 
microbiota was enriched in “carbohydrate metabolism,” “amino acid 
metabolism,” “metabolism of cofactors and vitamins,” “metabolism of 
terpenoids and polyketides” and “lipid metabolism” in the metabolism 
term; and “replication and repair,” “translation” and “folding, sorting 
and degradation” in the genetic information processing term; and “cell 
growth and death” and “cell motility” in the cellular processes term; as 
well as “membrane transport” and “signaling transduction” in the 
environmental information processing (Figure  4A). Furthermore, 
MetaCyc results showed that gut microbiota could play important role 
in CHD through “amino acid biosynthesis,” “nucleoside and 

nucleotide biosynthesis/degradation,” “cofactor, prosthetic group, 
electron carrier, and vitamin biosynthesis,” “secondary metabolism 
biosynthesis/degradation,” “carbohydrate degradation,” 
“fermentation,” “glycolysis,” “TCA cycle,” “pentose phosphate 
pathways,” “glycan biosynthesis/ degradation,” “tRNA charging,” and 
“pyrimidine deoxyribonucleotide phosphorylation” (Figure 4B).

3.4 Identification of differential metabolites 
in CHD

We further performed the metabolomics analysis of bold serum 
for CHD patients and control participants. As shown in 
Supplementary Figure 1, quality control (QC) samples were densely 
distributed and good reproducible, which indicated the system was 
stable and the data was reliable. In QC samples, the proportion of 
characteristic peaks with relative standard deviation (RSD) < 30% 
WAS 84% (Supplementary Figure  1), illustrating that the 
metabolomics data were good and reliable, and conducive to the 
detection of biomarkers. Additionally, Partial Least Squares-
Discriminant Analysis (PLS-DA) model showed the samples in the 
disease group were significantly distinguished from the samples in the 

FIGURE 3

Randomforest analysis of gut microbiota in CHD. (A) The randomforest diagram of gut microbiota at phylum level. (B) The randomforest diagram of 
gut microbiota at genus level.
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FIGURE 4

Functional analysis of the annotated gut microbiota. (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of the annotated gut 
microbiota. (B) MetaCyc pathway analysis of the annotated gut microbiota.
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normal group (Figure 5A), as well as the values of R2 and Q2 in this 
model were, respectively, 0.991 and 0.882 (Figure 5B), which indicated 
the evaluation model was effective and reliable, and could be used for 
subsequent secondary structure analysis.

According to the thresholds of VIP ≥ 1 and p-value ≤ 0.05, a total 
of 155 differential metabolites were screened, including 99 upregulated 
ones and 56 downregulated ones (Table 2). The clustering heatmap of 
the identified differential metabolites were displayed in 
Supplementary Figure 2 using agglomerate hierarchical clustering 
method. Compared with the control participants, the relative 
concentrations of metabolites phenacetin, 1-methyladenosine, 9,10-
DHOME, dodecanedioic acid, GMP, N6-acetyl-L-lysine, gitogenin 
and creatine were significantly elevated in the CHD patients; while  
the relative concentrations of acetylcholine chloride, 
o-phosphoethanolamine, quinolinic acid, trehalose, tobramycin and 
diaminopimelic acid were reduced in the CHD participants (Table 2).

Next, ROC curves of these identified differential metabolites were 
drawn, and AUC was calculated. ROC curves were used to evaluate 

and screen the potential biomarkers, and AUC was employed to assess 
the sensitivity and specificity of biomarkers for predicting event 
occurrence. It is clear that the AUC values of 1-methyladenosine, 9,10-
DHOME, acetylcholine chloride, dodecanedioic acid, GMP, and 
N6-acetyl-L-lysine were 0.925, 0.96, 0.991, 0.975, 0.98, and 0.979, 
respectively (Supplementary Figure 3). The results implied that these 
identified differential metabolites, including 1-methyladenosine, 9,10-
DHOME, acetylcholine chloride, dodecanedioic acid, GMP, and 
N6-acetyl-L-lysine, could be used as the biomarkers to predict the 
occurrence and development of CHD.

3.5 KEGG pathway analysis of the identified 
differential metabolites

KEGG is a database of systematic analysis of gene function and 
genomic information. The identified differential metabolites were 
applied for KEGG pathway enrichment analysis. Based on the results 

FIGURE 5

The blood serum metabolomic profile in CHD. (A) The score diagram of Partial Least Squares-Discriminant Analysis (PLS-DA) based on blood serum 
samples. (B) Displacement test diagram of PLS-DA. (C) KEGG pathways map of the identified differential metabolites.
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TABLE 2 All differential metabolites between control individuals and coronary heart disease patients.

VIP Fold change log2(FC) p value FDR

Phenacetin 1.18553 15.617 3.965 4.54E-07 5.04E-05

Dodecanedioic acid 1.908746 11.572 3.5326 4.54E-07 4.92E-05

Creatine 1.701693 6.5058 2.7017 1.81E-05 0.000326

Gitogenin 1.258032 6.0301 2.5922 0.000104 0.001072

Phenmetrazine 2.316949 4.1988 2.07 2.36E-06 0.000104

Oxoglutaric acid 1.812159 4.1779 2.0628 7.58E-06 0.000201

4,5-Dihydroorotic acid 2.204628 3.9884 1.9958 3.42E-07 4.79E-05

N-[(3a,5b,7a)-3-hydroxy-24-oxo-7-

(sulfooxy)cholan-24-yl]-Glycine

1.112346 3.6963 1.8861 0.000758 0.004647

Maleic acid 1.887571 3.3165 1.7297 4.54E-06 0.000136

4-Pyridoxic acid 1.371738 3.2686 1.7087 0.000921 0.005253

2-O-(alpha-D-Mannosyl)-D-glycerate 1.660888 3.2471 1.6992 2.92E-05 0.000449

Isocitric acid 1.681158 3.2168 1.6856 5.25E-05 0.000668

3,4-Dihydroxyhydrocinnamic acid 1.30448 3.1588 1.6594 0.003057 0.013417

Glycochenodeoxycholic acid 1.059019 3.1348 1.6484 0.010581 0.034557

Biliverdin 1.065255 3.118 1.6406 0.000921 0.005382

Catechol 2.02395 2.9321 1.5519 8.6E-06 0.000219

4-Hydroxycinnamic acid 1.481582 2.9051 1.5386 0.0002 0.001709

Phenylacetylglutamine 1.373208 2.7898 1.4802 0.001349 0.007022

L-Phenylalanine 2.227579 2.6977 1.4317 1.2E-06 7.03E-05

3-Methylindole 1.082333 2.6759 1.42 0.00556 0.021142

Bilirubin 1.400503 2.5557 1.3537 0.000758 0.004647

16-Hydroxypalmitate 1.693513 2.5196 1.3332 4.68E-05 0.000611

L-2-Amino-3-oxobutanoic acid 1.066464 2.3689 1.2442 0.001481 0.007718

N-[(2S)-2-Amino-2-carboxyethyl]-L-

glutamate

1.705818 2.3676 1.2434 5.25E-05 0.000668

GMP 2.317182 2.3413 1.2273 2.96E-07 4.42E-05

2-Propylmalate 1.95265 2.255 1.1731 1.41E-05 0.000272

Acetylphosphate 1.549707 2.2428 1.1653 0.000509 0.003342

3-Hydroxyphenylacetic acid 1.38116 2.231 1.1577 0.002799 0.012578

Vitexin 1.089289 2.2144 1.1469 0.007113 0.025507

4-Guanidinobutanoic acid 1.713666 2.2045 1.1404 1.41E-05 0.000295

Ribitol 1.194625 2.1234 1.0864 2.6E-05 0.000415

Pyrrolidonecarboxylic acid 1.278558 2.1219 1.0854 0.004703 0.018393

3-Methylthiopropionic acid 1.818538 2.0312 1.0224 4.54E-06 0.000136

Dhurrin 1.436371 2.0283 1.0203 0.007712 0.027103

9(S)-HPODE 1.512025 2.0178 1.0128 0.000179 0.001584

Pantothenic acid 1.486845 1.9885 0.99165 8.29E-05 0.000908

9,10-DHOME 1.77927 1.9873 0.99079 1.2E-06 7.03E-05

Xanthine 1.662858 1.9659 0.97521 1.41E-05 0.000272

Lidocaine 1.878093 1.9504 0.96375 0.000275 0.002135

Phenylpropanolamine 1.988867 1.9238 0.94395 0.000222 0.001837

4-Hydroxyphenylacetaldehyde 2.079808 1.923 0.94335 1.58E-06 8.48E-05

4-Quinolinecarboxylic acid 1.4427 1.9028 0.92815 0.003639 0.015321

(Continued)
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TABLE 2 (Continued)

VIP Fold change log2(FC) p value FDR

N-Acetyl-D-tryptophan 1.244305 1.8899 0.91833 0.002799 0.012247

1-Methyladenosine 2.105591 1.8845 0.91415 4.54E-06 0.000151

D-Glucose 1.406796 1.8556 0.89191 0.001349 0.007184

1,3-Dihydro-(2H)-indol-2-one 1.353302 1.8521 0.88917 0.003336 0.014059

Phenylethylamine 1.166687 1.8517 0.88886 0.015479 0.04658

Creatinine 1.04659 1.78 0.83188 0.003336 0.014348

O-Succinyl-L-homoserine 2.080243 1.7772 0.82957 3.99E-06 0.000128

2-Isopropylmalic acid 1.720999 1.7373 0.79688 0.000144 0.001354

L-Asparagine 1.007519 1.7301 0.79083 0.014364 0.044592

Aminoadipic acid 1.90314 1.714 0.77737 2.04E-05 0.000368

N6-Acetyl-L-lysine 2.230201 1.6964 0.76252 3.94E-07 5.01E-05

N-Formyl-L-methionine 1.977055 1.692 0.75872 3.29E-05 0.000484

Erythritol 1.644237 1.6883 0.75555 0.000375 0.002752

3-Hydroxymethylglutaric acid 1.316197 1.6523 0.72449 0.002561 0.011728

Rimantadine 1.042011 1.639 0.71279 0.020735 0.059535

L-Isoleucine 1.322898 1.5787 0.65873 0.002341 0.010926

N,N-Dimethylhistidine 1.395155 1.5779 0.65805 0.002799 0.012247

Anhalamine 1.233867 1.5697 0.65053 0.001349 0.007022

Prunasin 1.24128 1.5217 0.60566 0.008355 0.028772

FMN 1.23167 1.5145 0.59884 0.002799 0.012578

Uric acid 1.206473 1.503 0.58782 0.002341 0.010926

Undecanoic acid 1.250193 1.5016 0.58652 0.004703 0.018393

Glycerophosphocholine 1.127094 1.4758 0.56147 0.006557 0.023858

Epsilon-caprolactam 1.907618 1.4436 0.52963 0.00046 0.003092

Adipic acid 1.450385 1.4164 0.50227 0.000836 0.005013

N-Alpha-acetyllysine 1.282101 1.4142 0.49999 0.003639 0.015321

cis-Aconitate 1.242097 1.4043 0.48988 0.003639 0.015321

Uridine 1.122918 1.3848 0.46966 0.007113 0.025421

Citramalic acid 1.327291 1.3757 0.4602 0.000758 0.004647

Benzamide 1.581982 1.3735 0.45781 0.000247 0.001979

L-Leucine 1.46586 1.3583 0.4418 0.001014 0.005782

N-methyl-L-glutamic Acid 1.095815 1.3577 0.44115 0.010581 0.034557

Vanylglycol 1.268893 1.3551 0.43836 0.004703 0.018393

Neocembrene 1.870779 1.3539 0.43716 6.61E-05 0.000777

5-Methylthioadenosine 1.531213 1.3528 0.43591 0.000179 0.00158

1H-Indole-3-carboxaldehyde 1.249154 1.3268 0.40797 0.00432 0.017501

2,6-Dimethoxyphenol 1.52917 1.3224 0.40313 0.000687 0.004175

2-Furoate 1.185449 1.2859 0.36282 0.003639 0.015321

Gamma-Glutamylalanine 1.267519 1.2722 0.34732 0.012345 0.039536

Pyridoxamine 1.221648 1.2564 0.32925 0.007712 0.027189

Glucosamine 1.05601 1.2515 0.3237 0.020735 0.059535

L-Valine 1.790042 1.2494 0.32128 5.25E-05 0.000668

L-Tyrosine 1.157048 1.2458 0.31709 0.008355 0.028772

L-Cystine 1.432023 1.2356 0.30525 0.001481 0.007509
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TABLE 2 (Continued)

VIP Fold change log2(FC) p value FDR

Mesaconate 1.059796 1.2311 0.29996 0.020735 0.058191

Thyrotropin releasing hormone 1.074954 1.2298 0.29844 0.000338 0.002492

Capric acid 1.758715 1.2287 0.29708 0.000116 0.001149

7-Methylguanine 1.396456 1.2281 0.29641 0.002799 0.012247

Sebacic acid 1.051473 1.2262 0.29419 0.041124 0.100435

Oxalacetic acid 1.992975 1.2011 0.26433 3.07E-06 0.00011

4-Nitrophenol 1.144062 1.1893 0.25013 0.023903 0.064795

Choline 1.425813 1.1721 0.22911 0.001116 0.006082

Myo-Inositol 1.146689 1.142 0.19157 0.023903 0.064795

Pelargonic acid 1.061161 1.1344 0.18196 0.041124 0.097686

Gamma-Glutamylcysteine 1.30365 1.1094 0.14976 0.005115 0.019861

Methyl beta-D-galactoside 1.642616 1.0286 0.040746 0.000247 0.002013

Imidazol-5-yl-pyruvate 1.314027 1.0261 0.037141 0.011433 0.037216

Alpha-Santonin 1.344555 0.94315 −0.08444 0.003057 0.013092

Isophorone 1.022448 0.93454 −0.09768 0.04388 0.105169

Diaminopimelic acid 1.536219 0.92935 −0.1057 0.000836 0.004877

1,1-Dimethylbiguanide 1.014765 0.84635 −0.24067 0.020735 0.059535

13(S)-HPOT 1.276588 0.83948 −0.25242 0.002341 0.010926

Sphingosine 1.461377 0.83655 −0.25747 0.002341 0.010635

Ascorbate 1.281539 0.82602 −0.27575 0.007712 0.027189

Saccharopine 1.277684 0.82275 −0.28147 0.00604 0.022323

Threonic acid 1.034718 0.8188 −0.28842 0.027483 0.072043

Erucic acid 1.542439 0.7929 −0.33479 0.000416 0.002975

2-Heptanone 1.526107 0.78896 −0.34197 0.000144 0.001357

Dihydrouracil 1.050395 0.77236 −0.37266 0.019292 0.056279

3-Dehydroshikimate 1.686888 0.76177 −0.39257 0.000161 0.001468

Deoxycholic acid 1.842048 0.75828 −0.39919 4.17E-05 0.000575

Citrulline 1.485544 0.75124 −0.41266 0.001782 0.008618

Phenylacetic acid 1.061202 0.7506 −0.41389 0.020735 0.059535

Folic acid 1.937893 0.74092 −0.43261 7.58E-06 0.000185

Gluconic acid 1.426563 0.73953 −0.43533 0.003057 0.013417

Indoleglycerol phosphate 1.580061 0.73455 −0.44507 0.000921 0.005253

Spermidine 1.138233 0.72404 −0.46586 0.04388 0.102401

Trehalose 1.165864 0.71248 −0.48907 0.001782 0.008911

Fructose 1,6-bisphosphate 1.077604 0.71101 −0.49206 0.038515 0.09302

L-Histidine 1.526892 0.70292 −0.50857 0.000161 0.001463

Triacetate lactone 1.273865 0.70069 −0.51316 0.00432 0.017232

5-Guanidino-3-methyl-2-oxopentanoate 1.114318 0.70056 −0.51341 0.023903 0.066822

(2R,3R)-3-Methylglutamyl-5-

semialdehyde-N6-lysine

1.081811 0.69377 −0.52747 0.002139 0.009925

Dehydroepiandrosterone 1.1536 0.66215 −0.59478 0.02227 0.063069

N2-gamma-Glutamylglutamine 1.603426 0.65151 −0.61813 9.28E-05 0.000984

L-Glutamine 1.349041 0.64419 −0.63444 0.012345 0.038989
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of Figure 5C and Supplementary Table 2, we found that the differential 
metabolites were significantly enriched in the pathways of “mTOR 
signaling pathway,” “central carbon metabolism in cancer,” “valine, 
leucine and isoleucine biosynthesis,” “insulin signaling pathway,” 
“glucagon signaling pathway,” “sphingolipid signaling pathway,” “FoxO 
signaling pathway,” “Citrate cycle (TCA cycle),” “AMPK signaling 
pathway,” “HIF-1 signaling pathway” and “cGMP-PKG 
signaling pathway.”

3.6 Conjoint analysis of 16s rRNA gene 
sequencing and metabolomics

Further to explore the relationships between gut microbiota and 
differential metabolites, the conjoint analysis of 16s rRNA gene 
sequencing and metabolomics data were performed. Pearson correlation 
coefficient analysis showed the relationship between gut microbiota at 
phylum level and the differential metabolites (Figure 6A). At the phylum 
level, Firmicutes were significantly negatively correlated with choline, 
while evidently positively correlated with 8-hydroxyquinoline. 

Verrucomicrobiota were markedly positively correlated with 2-dehydro-
3-deoxy-D-xylonate and (2R,3R)-3-methylglutamyl-5-semialdehyde-
N6-lysine. For Proteobacteria, it was evidently negatively related to 
spermidine, whereas significantly positively associated with glucosamine 
(Figure 6A). Besides, Tenericutes was found to be correlated with most 
differential metabolites (Figure 6A). After that, RAD and ROC were 
used to analyze the relationship between differential metabolites and gut 
microbiota at the genus level. For example, Sphingomonae had synergetic 
effects with vanylglycol, N-[(2S)-2-Amino-2-carboxyethyl]-L-glutamate, 
and 1-Methyladenosine; while had antagonistic effects with 2-dehydro-
3-deoxy-D-xylonate and aminoadipic acid (Figure 6B). Additionally, 
Enterobacter had antagonistic effects with trehalose, but Pseudomonas 
had synergetic effects with vanylglycol. For the metabolite of 
N,N-Dimethylhistidine, five bacteria had antagonistic effects, including 
Nesterenkonia, Aliihoeflea, Granulicatella, Necropsobacter, and 
Aggregatibacter. Finally, the AUC values of differential metabolites, gut 
microbiota species and conjoint analysis were 0.925, 0.742, and 0.908 
(Figure 6C). These indicated that the predictive effect of conjoint analysis 
was better than that of gut microbiota species alone, whereas slightly 
lower than that of differential metabolites alone.

TABLE 2 (Continued)

VIP Fold change log2(FC) p value FDR

Acetylcholine chloride 2.478521 0.6207 −0.68802 1.43E-07 4.14E-05

3-Methyl-L-tyrosine 1.785866 0.61356 −0.70472 4.68E-05 0.000622

L-Threonine 1.819506 0.59664 −0.74508 0.000116 0.001155

Alpha-D-Glucose 1.394597 0.58245 −0.77979 0.000622 0.003995

3-(2-Hydroxyphenyl)propanoic acid 1.88794 0.55471 −0.8502 1.81E-05 0.000338

Citric acid 1.599549 0.52239 −0.93681 7.41E-05 0.000844

Dehydroepiandrosterone sulfate 1.121374 0.52019 −0.94289 0.029441 0.075824

8-Hydroxyquinoline 1.411668 0.5065 −0.98138 0.0002 0.001711

Tobramycin 1.993714 0.49796 −1.0059 1.1E-05 0.000253

Glycocholic acid 1.116974 0.48421 −1.0463 0.00604 0.022323

Hydroquinone 1.481197 0.47122 −1.0855 0.002139 0.009925

2-Dehydro-3-deoxy-D-xylonate 1.614671 0.45962 −1.1215 0.000305 0.002347

Nicotine 1.286395 0.44974 −1.1528 0.002561 0.011728

Bovinocidin 1.615586 0.42589 −1.2315 0.000247 0.001979

Taurine 1.337972 0.37403 −1.4188 2.6E-05 0.000425

p-Hydroxyphenylacetic acid 1.831916 0.37051 −1.4324 8.29E-05 0.000914

L-Aspartate-semialdehyde 1.753674 0.35686 −1.4866 8.29E-05 0.000908

Gentamicin X2 1.392728 0.34701 −1.527 0.001481 0.007509

4-Acetamidobutanoic acid 1.522384 0.33819 −1.5641 9.28E-05 0.000984

2-Ketobutyric acid 1.272717 0.32723 −1.6116 0.006557 0.023858

O-Toluidine 1.717093 0.32346 −1.6283 0.000144 0.001357

L-4-Hydroxyphenylglycine 1.298582 0.30497 −1.7132 0.003966 0.016093

Phosphoglycolic acid 1.63914 0.30328 −1.7213 5.9E-05 0.000719

Palmitic acid 1.551572 0.26971 −1.8905 0.001116 0.006082

9,12,13-TriHOME 1.171146 0.25824 −1.9532 0.033718 0.084368

Quinolinic acid 1.250689 0.23942 −2.0624 0.000836 0.004877

O-Phosphoethanolamine 1.404009 0.090082 −3.4726 2.06E-06 9.6E-05
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4 Discussion

CHD is a common heart disease, which seriously affects the 
quality of life and mental state of patients. It was reported that the 
incidence of depressive symptoms in CHD patients was 77.23%(Im 
et al., 2018). The abnormal component changes of gut microbiota are 
related to the pathogenesis and progression of CHD. Gut microbiota-
derived metabolites are key factors in host-microbiome interactions, 
and represent the potential biomarkers for early diagnosis, and show 
promising therapeutic targets in metabolic disorders (Agus et  al., 
2021). In this study, changes of gut microbiota and metabolites in 
CHD were analyzed using 16s rRNA gene sequencing and 
metabolomics. From the overall structure of the gut microbiota, 
we found that no significant difference in alpha biodiversity of gut 
microbiota between the CHD patients and control ones. A study of 

Hu et  al. (2021) showed that the alpha biodiversity and overall 
structure of gut microbiota in ACS patients did not alter significantly 
compared with the healthy controls. Another study reported that the 
richness level (Chao) in the CHD was significantly higher than that in 
the health controls; whereas there were no significant differences in 
the diversity levels (Shannon and Simpson) (Wan et al., 2021). Taken 
together, we  speculate that CHD may not influence the overall 
diversity and structure of gut microbiota, but this conclusion requires 
to be verified in larger sample size.

The compositions of specific gut microbiota were then analyzed 
at phylum and genus levels. It was found that Firmicutes, Bacteroidetes, 
Proteobacteria, Actinobacteria, and Verrucomicrobia were dominant 
phyla in CHD. At genus level, the relative abundance of Sphingomonas, 
Prevotella, Streptococcus, Desulfovibrio, and Shigella was relatively 
higher in CHD patients; whereas the abundance of Roseburia, 

FIGURE 6

Conjoint analysis of 16s rRNA gene sequencing and metabolomics. (A) The associated heatmap between the gut microbiota at phylum level and the 
differential metabolites. Different colors and depth represent the size of the correlation coefficient. Red represents a positive correlation, while blue 
represents a negative correlation. *0.01 < p < 0.05; **0.0001 < p < 0.01; ***p < 0.0001. (B) Redundancy analysis (RDA) of gut microbiota at genus level 
corresponding to differential metabolite. The acute angle between two variables represents a positive correlation, that is, a synergistic effect. The 
obtuse Angle between two variables means a negative correlation, that is, an antagonistic effect. (C) Receiver operating characteristic (ROC) and area 
under curve (AUC) of the gut microbiota at genus level, differential metabolites and conjoint analysis.
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Corprococcus, and Bifidobacterium was relatively lower. Randomforest 
analysis showed that Sphingomonas was more important for 
CHD. Sphingomonas is an aerobic, non-fermentative, opportunistic 
Gram-negative bacterium that is a rare cause of human infection, 
found mainly in patients with chronic diseases (e.g., diabetes), 
malignant tumors, and other immune deficiencies (Tang et al., 2022). 
Sphingomonas is a low-virulence bacterium, but if not diagnosed and 
treated early, it may lead to many complications, such as tricuspid 
valve endocarditis with pulmonary infarction (Tang et  al., 2022), 
bacteremia with pyogenic spondylodiscitis (Dsouza et al., 2021), and 
splenic abscess (Birlutiu et al., 2022). A study of Higuchi et al. (2021) 
reported that the increased abundance of Sphingomonas could 
be  associated with impaired immunity in the tumor 
microenvironment, which indicated that Sphingomonas may be  a 
specific microbiota related to cancer progression, and may be used as 
a biomarker for thymoma in clinical. These findings, together with our 
results, it can be inferred that Sphingomonas may be closely related to 
CHD, and may serve as a crucial biomarker of intestinal flora for CHD 
development. However, the mechanisms of Sphingomonas in CHD 
need to be further investigated.

CHD is closely associated with inflammation, lipid compositions 
and metabolic disturbance. Prevotella, commonly identified in the 
fecal samples of CHD patients (Chen et al., 2021), primarily activates 
toll-like receptor 2 and exhibits increased inflammatory properties 
that promote the recruitment of mucosal Th17 immune response and 
neutrophil (Larsen, 2017). Prevotella-mediated mucosal inflammation 
can result in systemic transmission of inflammatory mediators, 
bacteria, and bacterial products, which in turn may contribute to the 
progression of systemic diseases, for example, rheumatoid arthritis, 
periodontitis, and bacterial vaginosis (Larsen, 2017). Desulfovibrio has 
been identified as an endotoxin-producing bacterium, and is higher 
in the intestinal tract of a CHD rat model (Peng et  al., 2020). 
Streptococcus and Shigella are both harmful bacteria. The abundance 
of Streptococcus was found to be  increased in atherosclerotic 
cardiovascular disease, which deviated from a healthy state (Jie et al., 
2017). Bifidobacterium, a kind of probiotics, can improve the glucose 
tolerance of patients with hyperglycemia and other metabolic 
disorders via regulating the health of human intestinal flora (Ming 
et al., 2021). Roseburia and Corprococcus belong to butyrate-producing 
probiotics, are negatively correlated with the development of 
atherosclerotic lesions in genetically diverse mouse populations 
(Kasahara et al., 2018). Therefore, we speculated that the intestinal 
flora may be disordered in CHD patients, characterized by a decrease 
in beneficial bacteria (Roseburia, Corprococcus, and Bifidobacterium) 
and an increase in harmful pathogens (Sphingomonas, Prevotella, 
Streptococcus, Desulfovibrio, and Shigella).

It has been reported that metabolites in blood are associated with 
gut microbiome under various physiological and pathological 
conditions (Visconti et al., 2019). In our study, a total of 155 differential 
metabolites, including 99 upregulated and 56 downregulated ones, 
were identified. The AUC values of 1-methyladenosine, 9,10-DHOME, 
acetylcholine chloride, dodecanedioic acid, GMP, and N6-acetyl-L-
lysine were all above 0.9, which indicated the identified differential 
metabolites could be used as biomarkers for CHD.

Among these metabolites, some have been supported by existing 
literature as being closely related to the development and progression 
of coronary heart disease (CHD). For example, 1-methyladenosine, a 
nucleoside metabolite, may be associated with the dysregulation of 

apoptosis and autophagy, both of which play important roles in the 
pathophysiology of CHD (Dong et al., 2019). Similarly, 9,10-DHOME, 
an oxidized lipid metabolite, may reflect enhanced oxidative stress and 
inflammatory responses in CHD patients, processes that are closely 
linked to the progression of atherosclerosis (Yang et  al., 2019). 
Additionally, the decreased levels of acetylcholine chloride may 
be related to endothelial dysfunction, a key pathological feature of 
CHD (Penna et al., 2017).

In our study, we also identified some novel metabolites, such as 
dodecanedioic acid and N6-acetyl-L-lysine, which were significantly 
elevated in CHD patients but have not been explicitly reported in the 
literature in relation to CHD. These metabolites may represent novel 
findings from our research, but their specific mechanisms of action 
require further investigation. We believe that future studies should 
validate the diagnostic value of these metabolites in larger cohorts and 
explore their potential roles in the pathogenesis of CHD. Furthermore, 
we  recognize that metabolite levels may be  influenced by various 
factors, including disease severity, medication use, and other potential 
confounding variables. For instance, CHD patients are often treated 
with statins, antiplatelet drugs, and other medications, which may 
affect metabolite levels by modulating metabolic pathways (Hu et al., 
2021). Therefore, we suggest that future studies consider stratified 
analyses of these factors to more accurately assess the relationship 
between metabolites and CHD. Additionally, we note that variations 
in disease severity may lead to fluctuations in metabolite levels, as the 
metabolic profiles of mild and severe CHD patients may differ. This is 
an area that we believe requires further research to elucidate.

Functional analysis showed these differential metabolites were 
enriched in many pathways, such as mTOR signaling pathway, 
sphingolipid signaling pathway, FoxO signaling pathway, TCA cycle, 
AMPK signaling pathway, HIF-1 signaling pathway and cGMP-PKG 
signaling pathway. Apoptosis and autophagy play essential roles in 
the occurrence, development and prognosis of CHD. Increased 
apoptosis and autophagy have been reported in patients with CHD 
(Dong et  al., 2019). A previous study demonstrated that AMPK 
signaling pathway, FoxO signaling pathway, and mTOR signaling 
pathway participate in cell autophagy, thus playing a dual role in 
CHD (Dong et al., 2019). HIF-1 signaling is considered to be a key 
pathway of viral infection in the cardiovascular system, and has 
found to be involved in the formation and rupture of atherosclerotic 
plaques (Zhang et al., 2021). Besides, cGMP is a second messenger 
widely used in the nervous system, and PKG is one of the main 
effectors of cGMP, which can catalyze the phosphorylation of a 
variety of proteins, including ion channels. Penna et  al. (2017) 
showed that obestatin could mediate cardiovascular function and 
promote cardiac protection through cGMP-PKG signaling pathway. 
TCA cycle is the central pathway of oxidative phosphorylation in cells 
and meets the requirements of bioenergy, biosynthesis and redox 
equilibrium (Anderson et al., 2018). Sphingolipid 1-phosphosphingol 
is a signaling lipid, and its production and signaling imbalance is 
related to the development of diseases such as abnormal angiogenesis, 
arterial hypertension, endothelial dysfunction and atherosclerosis 
(Jozefczuk et  al., 2020). Another study identified 72 differential 
metabolites in thyroid carcinoma, and determined 5 metabolites with 
AUC values > 0.8, which could serve as potential signatures of thyroid 
carcinoma (Feng et al., 2019). Taken together, our results implied that 
the identified differential metabolites, particularly 1-methyladenosine, 
9,10-DHOME, acetylcholine chloride, dodecanedioic acid, GMP, and 
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N6-acetyl-L-lysine, may be candidate biomarkers for CHD, as well as 
mTOR signaling pathway, sphingolipid signaling pathway, FoxO 
signaling pathway, TCA cycle, AMPK signaling pathway, HIF-1 
signaling pathway and cGMP-PKG signaling pathway may play 
crucial roles in CHD occurrence and progression. However, the 
specific effects of the differential metabolites and these involved 
pathways on CHD should be further explored.

Further, we excavated the correlation between gut microbiota 
and differential metabolites in CHD. Feng et al. (2019) combined 
16s rRNA gene sequencing and metabolomics, and found that 
Klebsiella and Coprococcus_3 were correlated with lipid-related 
metabolites; and Lactobacillus, Megamonas, and Blautia were 
related to benzenoid, amino acids, and flavonoids-related 
metabolites. Correlation analysis between gut microbiota and 
metabolites of another study showed that in polycystic ovary 
syndrome patients, serum testosterone level and estradiol level 
were, respectively, negatively correlated with Prevotella_9 and 
Clostridium abundance; and luteinizing hormone level was 
positively correlated with Bifidobacterium abundance (Zhou 
et al., 2020). In this study, Sphingomonae had synergetic effects 
with vanylglycol, and 1-Methyladenosine; while had antagonistic 
effects with 2-dehydro-3-deoxy-D-xylonate and aminoadipic 
acid. Pseudomonas had synergetic effects with vanylglycol, while 
Enterobacter had antagonistic effects with trehalose. Five bacteria 
including Nesterenkonia, Aliihoeflea, Granulicatella, 
Necropsobacter, and Aggregatibacter had antagonistic effects with 
N,N-Dimethylhistidine. Additionally, the AUC of the conjoint 
analysis (0.908) was higher than that of gut microbiota species 
(0.742). All these findings indicated that the predictive effect of 
combined analysis may be better for CHD, and gut microbiota 
may participate in the physiological and pathological processes 
of CHD by regulating metabolites.

Although our study revealed characteristic changes in gut 
microbiota and serum metabolites in patients with coronary heart 
disease (CHD) through multi-omics analysis and identified potential 
biomarkers, we acknowledge that there are still some limitations. 
First, the sample size was relatively small (20 CHD patients and 20 
healthy controls), which may limit the generalizability and statistical 
power of our findings. We plan to expand the sample size in future 
studies to validate these results. Second, all participants were elderly 
Chinese individuals, and we recognize that our findings may not 
be  directly generalizable to other ethnic groups, age groups, or 
geographic regions. Third, although we controlled the diet during the 
sample collection period, we were unable to assess the long-term 
dietary habits of participants prior to hospitalization, which may have 
a significant impact on gut microbiota and metabolites. Fourth, 
we note that the absence of fecal metabolomics limits our ability to 
directly interrogate microbial-metabolite crosstalk at the gut 
interface. While serum metabolites provide valuable insights into 
systemic mechanisms and clinical translation potential, 
we understand that fecal metabolites are crucial for understanding 
localized gut interactions and microbial contributions to CHD 
pathogenesis. Finally, our study employed a cross-sectional design, 
reflecting the state of microbiota and metabolites at a single time 
point, and thus cannot establish causality. We believe that future 
studies should adopt a longitudinal design to evaluate the dynamic 

changes in gut microbiota and metabolites during the development 
and progression of CHD. We acknowledge these limitations and plan 
to address them in future research to enhance the robustness and 
generalizability of our findings.

5 Conclusion

In conclusion, untargeted metabolomics and 16s rRNA gene 
sequencing revealed characteristic changes in blood metabolites 
and gut microbiota in CHD. In CHD patients, the intestinal flora 
disorder was found, characterized by a decrease of beneficial 
bacteria (Roseburia, Corprococcus, and Bifidobacterium) and an 
increase the of pathogenic microbes (Sphingomonas, Prevotella, 
Streptococcus, Desulfovibrio, and Shigella) in gut. Sphingomonas 
may be  closely related to CHD, and may serve as a crucial 
biomarker of intestinal flora for CHD. Additionally, a total of 155 
differential metabolites, including 1-methyladenosine, 9,10-
DHOME, acetylcholine chloride, dodecanedioic acid, GMP, and 
N6-acetyl-L-lysine, may serve as candidate biomarkers for CHD 
occurrence and progression. This work identifies the key 
functional gut microbiota and potential biomarkers associated 
with the pathogenesis of CHD; and provides novel promising 
targets for the diagnosis and therapy of CHD.
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