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Antibiotic resistance, projected to cause 10 million deaths annually by 2050,

remains a critical health threat. Hospitals drivemultidrug resistance via horizontal

gene transfer. The 2023 Critical Assessment of Massive Data Analysis challenge

presents resistance markers from 146 Johns Hopkins bacterial isolates, aiming

to analyze resistomes without metadata or genomic sequences. Persistent

homology, a topological data analysis method, e�ectively captures processes

beyond vertical inheritance. A 1-hole is a topological feature representing a loop

or gap in the data, where relationships form a circular structure rather than a

linear one. Unlike vertical inheritance, which lacks topological 1-holes, horizontal

gene transfer generates distinct patterns. Since antimicrobial resistance genes

often spread via horizontal gene transfer, we simulated vertical and horizontal

inheritance in bacterial resistomes. The number of 1-holes from simulations and

a documented horizontal gene transfer case was analyzed using persistence

barcodes. In a simulated population of binary sequences, we observed that,

on average, two 1-holes form for every three genomes undergoing horizontal

gene transfer. Using a presence-absence gene table, we confirmed the existence

of 1-holes in a documented case of horizontal gene transfer between two

bacterial genera in a Pittsburgh hospital. Notably, the Critical Assessment of

Massive Data Analysis resistomes of Klebsiella and Escherichia exhibit 1-holes,

while Enterobacter shows none. Lastly, we provide a mathematical example of

a non-tree-like space that contains no 1-holes. Persistent homology provides

a framework for uncovering complex clinical patterns, o�ering an alternative to

understanding resistance mobility using presence-absence data, which could be

obtained through methods beyond genomic sequencing.

KEYWORDS

antimicrobial resistance (AMR), persistence barcode, horizontal gene transfer (HGT),

topological data analysis, persistent homology
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1 Introduction

Antimicrobial Resistance (AMR) is a critical global health

threat, comparable in severity to the challenges posed by HIV

and malaria (Antimicrobial-Resistance-Collaborators, 2022). The

collection of gene families conferring AMR, known as the

resistome, is especially important for studying clinically relevant

bacteria. The Critical Assessment and Massive Data Analysis

(CAMDA) microbiological challenges have historically focused

on understanding the origins of microbial samples using their

taxonomical composition (Walker et al., 2018; Zhang et al., 2021).

In 2023, the challenge promoted identifying the city of origin

of hospital-associated bacteria by analyzing their resistomes and

microbiomes from nearby cities’ subways. Transport microbiome

data may offer a valuable proxy for studying urban microbial

life, including hospital bacteria. Previous studies have considered

AMR patterns to distinguish between city patterns in urban

microbiomes (Casimiro-Soriguer et al., 2019; Zhelyazkova et al.,

2021; Danko et al., 2021). However, evolutionary aspects, such

as evidence of deviations from hierarchical datasets, remain

underexplored. Our study aims to explore the topological features

of the resistome to provide insights into non-hierarchical processes,

such as Horizontal Gene Transfer (HGT) in nosocomial settings,

including CAMDA 2023 datasets; see Section 4 for details on the

datasets.

Genes in the resistome are often encoded inside bacterial

genomes in mobile genetic elements (MGE). Horizontal gene

transfer (HGT) occurs when one bacterium transfers DNA to

another, which does not result from cellular division, and the

transfer occurs through a process different from traditional vertical

inheritance. Hospital studies have shown that antibiotic resistance

elements can be transferred even among bacteria of different genera

(Evans et al., 2020). Topological data analysis (TDA), particularly

persistent homology, can characterize HGT in pathogenic bacteria

(Emmett and Rabadán, 2014; Rabadán and Blumberg, 2019). When

analyzed with persistent homology, hierarchical data show no holes

in their structure (Chan et al., 2013). Populations composed of

descendants of one ancestor through mutation, reproduction, and

natural selection cycles are hierarchical data and can be represented

as a dendrogram and visualized as a tree. Non-vertical inheritance

events such as HGT perturb hierarchical data, allowing persistent

holes. Remarkably, as we will show, not all spaces without holes are

tree-like.

The CAMDA dataset comprises a presence-absence table of 505

AMR markers detected across 146 bacteria, including Enterobacter

hormaechei (8), Escherichia coli (14), and Klebsiella pneumoniae

(124). These bacteria were isolated from the same hospital over

several years. The precise location of the hospital in the USA

was not disclosed before the end of the Challenge. Additionally,

urban metagenomes were provided by the MetaSUB consortium

(Mason et al., 2016). Before applying TDA to CAMDA resistomes,

we followed two strategies to understand events where AMR was

horizontally transferred among bacteria. First, we simulated HGT

on AMR elements in hierarchical data to describe the effect of

length in HGT and the number of mobile elements on persistent

homology analyses. Second, we described topological holes in cases

of HGT between the resistomes of two hospital-associated bacteria,

including E. coli and K. pneumoniae (Evans et al., 2020).

In mathematics, especially in topology and TDA, "holes" refer

to empty spaces within a shape or structure. These holes are areas

enclosed by the shape but not filled. A simple example of a 1-

hole is a circle, where the space is enclosed by the circumference

but not filled in. When examining a dataset that represents

points on a plane, we may first notice small clusters that form

temporary holes. As we zoom out or change the scale, only

the more significant, persistent 1-holes remain visible, indicating

stable features in the data across different scales. Persistent holes

aid in identifying meaningful structures in data as they reveal

which features are robust across varying levels of observation.

Introductory reviews on mathematical foundations provide deeper

insights for interested readers (Chazal and Michel, 2021; Bukkuri

et al., 2021). TDA proves valuable in biomedicine applications by

identifying complex interactions between diseases and metabolic

features (Platt et al., 2024), analyzing signals to detect abnormalities

such as arrhythmias (Dindin et al., 2020), discovering intrinsic

structures in neural activity (Giusti et al., 2015), and identifying

and classifying tumors and diseases in oncology (Bukkuri et al.,

2021). Additional applications include analyzing complex networks

(Horak et al., 2009), identifying recombinations in hundreds of

human genomes (Cámara et al., 2016), and detecting patterns or

structures in 3D shapes (Carrière and Rabadán, 2020; Singh et al.,

2007).

Finally, we applied TDA to characterize the resistomes of

the CAMDA hospital samples of E. hormachei, E. coli, and K.

pneumoniae. In a world where the threat of epidemics looms

and the indiscriminate use of antibiotics continues to rise,

our work demonstrates that HGT can be inferred from the

resistome’s presence/absence features without needing the exact

DNA sequence. This approach highlights the potential of TDA in

uncovering complex genetic interactions and evolutionary events.

It aligns with recent collaborative efforts that showcase the utility

of TDA in pangenomic and genomic studies (Contreras-Peruyero

et al., 2024).

2 Methodology

2.1 Simplices, holes, and connected
components

Persistent homology is a fundamental tool in topological data

analysis (TDA), a field rooted in algebraic topology. Currently,

TDA is used to analyze the geometric and topological properties

of data. This approach examines simplicial complexes, which are

topological structures formed by the union of vertices, edges,

triangles, tetrahedra, and their combinations. The elements of a

simplicial complex are known as simplices and are geometrically

represented as follows: vertices are 0-dimensional simplices (0-

simplices), edges are 1-dimensional simplices (1-simplices), and

triangles are 2-simplices, among others. The features studied in

simplicial complexes include connected components and holes.

Connected components are groups of dots connected by a path

of edges, while holes exist in various dimensions. For example, a

1-hole (or 1-dimensional cycle) is a closed collection of edges (1-

simplices) that form a loop without a filling inside. A circumference

is an example of a 1-hole since it only comprises the perimeter of
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the circle (i.e., not the inside). A 2-hole is a 2-dimensional cavity

formed by triangles (2-simplices). An empty tetrahedron, which

definitionally has triangles as faces, is an example of a 2-hole.

The number of connected components and holes of different

dimensions are descriptive features of the simplicial complex. Using

homology, we can compute the persistent homology groups for

a simplicial complex (see Supplementary material Section 1 or

(Dey and Wang, 2022) Section 3.2 for a formal definition); the

dimensions of these groups are called the Betti numbers. The

interpretation of these Betti numbers is as follows: The Betti

number β0 represents the number of connected components in the

simplicial complex, β1 represents the number of 1-holes, and β2

represents the number of 2-holes, similarly for higher dimensions.

2.2 Persistent holes in a filtered simplicial
complex

Now that we have described the structure and characteristics

of simplicial complexes, we can explore their construction. In

this article, we work with the Vietoris-Rips complex, restricted to

dimension 2. Suppose we have a finite set of points in a metric space

and a value d ≥ 0. These points will represent the vertices of our

simplicial complex, i.e., the 0-simplices. The edges, or 1-simplices,

between each pair of points are formed when the distance between

them is less than or equal to d; that is, if we consider circles of

radius d/2 centered at the points, we have 1-simplices if the circles

intersect. The 2-simplices, or triangles, are formed when, for every

triplet of points, there is an edge between them. In this way, we

have a simplicial complex for each value of d ≥ 0. The collection of

all these simplicial complexes is called a filtered simplicial complex.

This allows us to observe how the simplicial complex evolves as we

adjust the filtration parameter (as the value d increases). For each

value of d, we compute the Betti numbers and present them in a

barcode called a persistence barcode. In a barcode, we can observe

how the simplicial complex evolves, which provides information

about changes in the connected components and holes. In all cases,

the barcode presented is the result when the maximum distance

between all points is reached, except in Figure 1, where we show

intermediate steps of the simplicial complex and its barcode up to

that point. In a barcode, the left endpoint of the bars is referred to as

a birth, and the right endpoint is referred to as the death.We usually

refer to a particular topological feature (connected component or

1-hole) being born and dying at those points. The length of a bar

is known as its persistence. Thus, on the x-axis, we observe the

variation of the filtration parameter. At the same time, the y-axis

does not possess a scale because it only stacks bars representing

connected components and holes that demonstrate their birth

and death. Typically, in barcodes, the Betti numbers of different

dimensions are represented by different colors; for example, in

Figure 1, green bars are related to β0 (connected components), and

blue bars are related to β1 (1-holes). If another color appears, it

represents holes of higher dimensions.

Figure 1 will help us understand these previous concepts. In

Figure 1a, we see that the simplicial complex for d = 0.5 (i.e., the

radius of the circles is d/2 = 0.25) consists of only four vertices

because the distance between them exceeds 0.5. Consequently, the

balls do not intersect, and in its persistence barcode, we observe

four bars representing the connected components that persist from

distance 0 to distance 0.5. In Figure 1b, where the distance is

1.1 (i.e., the circle’s radius is once again half of this distance),

the simplicial complex includes four vertices and four edges. The

barcode indicates that three bars have already died, leaving only

one for this distance, which signifies that we now have just one

connected component. We also observe a blue bar representing

the 1-hole formed in the simplicial complex, which was born at

d = 1 and remains alive at d = 1.1. Finally, for d = 1.7, the

simplicial complex now comprises four vertices, six edges, and four

triangles (though only two triangles are visible in the diagram). The

barcode shows that the 1-hole has died, meaning the triangles have

filled it in.

2.3 Persistence barcodes on hierarchical
data

Hierarchical data are relevant because it is known that their

persistence barcode contains no holes (Rabadán and Blumberg,

2019). Here, hierarchical data were simulated with populations of

binary chains to study their topological properties. To emulate

CAMDA resistomes of bacteria collected at Baltimore Hospital,

the size of the simulated binary chains was set to 505 positions,

where the first chain contained 180 ones and 325 zeros. Beginning

with this chain, we simulated hierarchical data using our custom-

built Python script, simulator resistome, accessible in our

GitHub repository.

A hierarchical population of computationally simulated

resistomes was generated from this original chain with two

descendants per generation. In each reproduction step, a zero can

change to one, or a one can change to zero, with a probability of
1
505 . This rate was selected to achieve approximately one change in

each generation. This is not a mutation rate, as we are modeling

the presence and absence of gene families, not punctual mutations

in the DNA. Instead, it can be viewed as simulating gene gain and

loss one at a time. We adopt a simplified model where changing a

position twice is forbidden; therefore, the gain and loss of the same

gene are not allowed. With this process over seven generations, we

obtained a population of 128 simulated bacterial resistomes stored

in a resistance marker matrix. Each row represents a chain, and

each column with a one in the i−th position signifies the presence

of the i−th gene family in that bacterial sample. The simulation

required Python libraries, including NumPy 1.21.6, Seaborn 0.12.2,

Matplotlib 3.5.3, SciPy 1.7.3, GUDHI 3.6.0, and NetworkX 2.2.

Pairwise distances were calculated for each pair of chains.

A distance matrix from a resistance marker binary matrix was

constructed using the "Hamming"metric, which counts the number

of differences by position between two chains. The distance was

calculated with pdist from scipy, which returns a normalized

distance matrix. Vietoris-Rips complexes were constructed using

the Python Gudhi package 3.6.0, with the maximum distance set

to 2 and a dimension of at most 3. Betti numbers and persistent

barcodes associated with variations in the Hamming distance were

calculated for simulated hierarchical data.
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FIGURE 1

The evolution of a simplicial Vietoris-Rips complex for four points in the plane is shown. (a–c) illustrate the graphical representation of the simplicial

complexes at distances d = 0.5, d = 1.1, and d = 1.7, respectively. Note that the circles centered on the points have a radius of d/2. (d–f) display the

corresponding persistence barcodes. For d = 0.5 (a), we observe four connected components, each representing one of the isolated points. This is

reflected in the barcode (d), where four bars correspond to these four connected components, each alive at d = 0.5. At d = 1.1, the simplicial

complex (b) consists of four vertices and three edges, forming a 1-hole in the complex. In the barcode (e), three of the bars corresponding to

connected components have ended, leaving one persistent bar that indicates a single connected component at this distance. A new blue bar also

appears, representing the birth of the 1-hole, which remains open at this stage. For d = 1.7, the simplicial complex (c) includes four triangles (though

only two are visible) that fill the previously existing 1-hole. In the barcode (f), a single bar for the connected component remains alive, while the blue

bar representing the 1-hole has ended at the moment the triangles formed and filled the hole.

2.4 Persistence barcodes of
nonhierarchical data

To perturb the hierarchical structure of the data, in a subset

of m computationally simulated resistomes, a set of k contiguous

resistance markers (columns) is turned to one, regardless of their

previous state. This change biologically corresponds to the sudden

gain of these k gene families inm bacteria, consistent with an HGT

event. In subsequent simulations, we varym, the number of bacteria

that acquire the HGT, and k, the number of acquired resistance

markers. Finally, to emulate the event in which bacteria from

different taxonomic lineages are involved, we allow two different

binary chains to be ancestors of two populations. Betti numbers

and persistent barcodes associated with Hamming distance were

calculated similarly to hierarchical data.

2.5 Persistence barcodes of nosocomial
data

This study considers two nosocomial datasets to investigate

their topological properties. The first dataset consists solely of

presence-absence information about AMR genes of bacteria

isolated from a Baltimore hospital and provided by the

CAMDA Challenge (Figure 2). The second dataset consists

of twelve genomes from bacteria isolated in a Pittsburgh

hospital Table 1. In the CAMDA dataset, a binary table

marks the presence of resistance genes of bacteria isolated

in Baltimore with one and their absence with zero. The 146

resistomes from E. hormaechei, E. coli, and K. pneumoniae were

represented as binary sequences. Pairwise Hamming distances

were calculated for these binary sequences, and the resulting
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FIGURE 2

Bacterial data consist of AMR profiles isolated from a hospital in Baltimore and bacterial genomes from a hospital in Pittsburgh. The Baltimore data

are provided by the CAMDA challenge, which includes resistance markers for three bacterial species: K. pneumoniae, E. coli, and E. hormaechei.

TABLE 1 Bacterial isolates from hospital patients .

RefSeq assembly Genomes Strain

GCF_012952615.1 E. coli EC00609

GCF_012952605.1 E. coli EC00668

GCF_012952555.1 E. coli EC00678

GCF_012952545.1 E. coli EC00690

GCF_012952535.1 E. coli EC00701

GCF_012952515.1 K. pneumoniae KLP00149

GCF_012952505.1 K. pneumoniae KLP00155

GCF_012952415.1 K. pneumoniae KLP00215

GCF_012952405.1 K. pneumoniae KLP00187

GCF_012952385.1 K. pneumoniae KLP00213

GCF_012952365.1 K. pneumoniae KLP00218

GCF_012952465.1 K. quasipneumoniae KLP00177

distance matrix was then used to generate the persistence

barcode.

In the second dataset, we included a known case of HGT

between two genera (Evans et al., 2020) in a Pittsburgh hospital

(Figure 2). The clinical case documented that gene families in the

IncF plasmid were shared between two E. coli strains and one K.

pneumoniae strain. Genomes from the same study representing

the genera Escherichia and Klebsiella were downloaded from NCBI

(Table 1). The strains involved in the HGT event are EC00701,

EC00678, and KLP00215. Genomes were processed and converted

into a binary matrix, with bacterial genomes as rows and gene

families as columns. First, FASTA files were uploaded to the

Bacterial And Viral Bioinformatics Resource Center (BV-BRC)

3.32.13a platform (Olson et al., 2023) to obtain the binary matrix.

Then, the genomes were functionally annotated via the RAST

platform using the RASTtk toolkit (Brettin et al., 2015). A gene

family table encompassing all the genomes was constructed using

the Comparative Systems tool. The table was then sorted based

on the presence of gene families in the EC00701 strain. From

the entire table with 13165 columns representing gene families,

we selected 500 columns containing the 123 gene families of

the IncF plasmid involved in the reported horizontal transfer.

These binary sequences encode the presence-absence information

of gene families across the twelve Escherichia and Klebsiella

genomes from the Pittsburgh hospital. We calculated pairwise

Hamming distances using these binary sequences to create the

distance matrix. Finally, a persistence barcode was constructed to

describe the variation in the number of connected components

and loops (1-holes) across the range of possible Hamming

distance values.

3 Results

To leverage persistent homology from TDA for detecting

HGT of antibiotic resistance, we first examined how persistent

homology behaves with hierarchical data. Hierarchical data refers

to a structure where each related item indicates a parentchild

relationship.

3.1 Hierarchical data simulations show no
1-holes in persistent homology analyses

The persistence barcodes of the hierarchical data do not contain

1-holes; this directly results from Theorem 5.2.1 in Rabadán and

Blumberg (2019). To illustrate, we present a population of binary

sequences composed of 0s and 1s obtained through a hierarchical

process. In each generation, sequences replicate into two new

sequences identical to the original, except for potential changes

at one position. This forward-in-time simulation model passes on
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FIGURE 3

Deviations from a hierarchical process produce 1-holes. (a) The persistence barcode indicates no 1-holes for a population of 128 chains simulated

hierarchically. Green bars represent the persistence of the connected components; for filtration values greater than six, only one bar remains,

indicating that the distance between all chains is below a threshold. (b) The persistence barcode, after introducing a deviation from the hierarchical

process, shows two 1-holes. Blue bars indicate the birth, death, and persistence of 1-holes.

identical sequences, except for occasional variations introduced at a

fixed probability. These variations, once acquired, are inherited by

subsequent generations, resulting in a hierarchical process where

each element (node) can have multiple child nodes. However, each

child node has only one parent node. The simulation began with

a single sequence of 505 positions, where 25% of the positions

were ones. After seven repetitions, this process produced 128

sequences, considering only the last generation. Importantly, it

was assumed that once a position changed, it remained fixed

in all subsequent generations. Tree structures are the standard

for modeling vertical or clonal evolution. Although this model

does not fully capture the complexity of prokaryotic genome

evolution, it provides a starting point for exploring the topology

of perturbed hierarchical processes. This applies across scales,

whether variation stems from point mutations or from the gain and

loss of genes.

To obtain the persistence barcode, we counted the differences

between each pair of chains using the Hamming distance and

then applied persistent homology. The resulting barcode showed

the absence of 1-holes; the Betti number β1 is 0, as shown

in Figure 3. We can also observe that we start with 128 bars,

each representing one chain, which indicates that β0 = 128

corresponds to 128 connected components for d = 0. As

the distance increases on the x-axis, the bars merge, indicating

that chains sharing a common ancestor are becoming connected.

By distance 6, only one connected component remains, where

β0 = 1. Next, we examine how the 1-holes, represented by

the Betti number β1, change when there is a deviation from the

hierarchical process (see Figure 3). To explore this, we will simulate

such a deviation.

3.2 Deviations from the hierarchical
process reveal the presence of 1-holes in
persistent homology analyses

3.2.1 Simulation of deviations from the
hierarchical process in one population

To simulate a deviation from a hierarchical process, we selected

chains from our population and made them share a common

segment. We used the following parameters to construct the

population: A group consists of three chains (group_size =

3), and the size of the shared segment is equal to 60 positions

(num_positions_to_change = 60). The choice of a group

size of three relates to the minimum required to ensure the

formation of a 1-hole when constructing a Vietoris-Rips simplicial

complex. Similarly, the segment size of 60 positions represents

approximately 12% of the total chain length. This value was

selected to ensure that the segment is neither too small, risking

undetectability of the 1-hole, nor too large, as it could dominate

the chain. A random position was selected between 1 and the total

chain length minus the segment size as the starting point. We then

changed all the positions from this starting point to the starting

point plus the segment size to 1. In this way, we simulated that

these three chains acquired this section through a non-hierarchical

process. These chains form a group whose distances do not satisfy

a tree-like structure.

When applying persistent homology to this modified

population, we observed the presence of two 1-holes, indicating

a Betti number β1 = 2. In Figure 3b, we see two blue bars with

persistence values of 4 and 7, which represent the persistence

of these 1-holes. Our simulations demonstrate that when a
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FIGURE 4

Simulations varying the size of a transferred segment and the number of groups that receive the transfer. (a) shows the deviation from hierarchical

data in one group of three chains. The x-axis varies the proportion of the transferred segment in terms of the total size of the chain (505 positions).

The average persistence of 1-holes is shown on the y-axis. One hundred populations were simulated for each point, and error bars represent

variance. Colors with a scale on the right y-axis indicate the average number of 1-holes obtained for each size. (b) shows the changes in the number

of 1-holes and their average persistence as the number of groups undergoing segment transfer varies. In this case, the number of transferred

positions was fixed at 60, and three genomes integrated the groups.

population following a hierarchical process exhibits deviations

from that process, these deviations can be detected through the

presence of 1-holes when applying persistent homology. In this

case, the persistence has an average value of 5.5 per bar. However,

to determine whether this average is associated with the size of the

shared segment, we conducted simulations where the transfer size

varied from 0 to 20% of the total chain length. Additionally, for

each of these sizes, we performed 100 simulations with different

random seeds. The results are displayed in Figure 4a.

In Figure 4a, we observe that varying the size of the segment

transferred in terms of the percentage of the chain full size (505

positions) causes the average persistence of 1-holes to grow rapidly

until it reaches its maximum, after which it decreases slowly. On

average, the maximum persistence is around 4.5 when the transfer

size represents 4% to 5% of the chain size. Furthermore, the figure

shows that when the transfer size represents less than 3% of the

chain size, the average number of 1-holes is 0 or 1. Outside of this

range, the average number of 1-holes is 1.75. Specifically, for each

size, 85 out of 100 simulations have two 1-holes. This is because

the maximum number of 1-holes is 2 and the minimum is 0. In

Figure 4b, we simulate another hierarchical population with 128

chains, setting the deviation size in the hierarchical process to 60

and fixing the group size at three while varying the number of

groups. In this simulation, we observe that there are almost always

two 1-holes for each group, except when there are six or seven

groups, where twelve 1-holes are detected. This suggests that within

a population, the transfer of a segment among a group of 3 chains

consistently produces two 1-holes.

Processes leading to non-tree-like structures in populations,

such as those observed in our simulations, can include

transformation, transduction, and conjugation in bacteria,

reassortment, and homologous recombination in viruses (Rabadán

and Blumberg, 2019). These deviations from hierarchical

structures contribute to the emergence of 1-holes, as captured

through persistent homology. We will now present simulations

with a population consisting of two different groups and examine

whether the transfer of segments between groups can again be

detected using persistent homology.

3.2.2 Simulations of deviation from the
hierarchical process between two populations

We simulated two hierarchical populations of chains, each

satisfying a tree structure, composed of eight chains per population

across three generations. In Figure 5a, we show the dendrogram

for this group of 16 chains, where the two populations are

clearly separated. We then selected chains 4 and 1 from

population 2 (green) and chain 8 from population 1 (pink),

transferring a section among these three chains, as described

in the previous section. The resulting dendrogram is shown

in Figure 5b, where we observe a change in the tree structure,

with the changes linked to the chains (blue) involved in the

segment transfer.

After applying persistent homology, we detected a 1-hole

with a persistence of 14, which was born at distance 184 and

died at distance 198, as shown in Figure 5c. This persistence

barcode shows two bars representing the connected components

(β0) with the highest persistence: 184 and infinity. These

bars correspond to each population, which groups separately

until distance 184, where they merge just as the 1-hole,
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FIGURE 5

Deviations from Hierarchical Processes with Two Populations. We simulated two hierarchical populations, each consisting of eight chains

represented as vertices colored pink and green. In (a), we present a dendrogram with the 16 chains, where the x-axis shows the labels for each chain,

and the colors indicate the population to which they belong. In (b), we display a dendrogram after simulating a deviation from the hierarchical

process involving chains 1, 4, and 8 (shown in blue). (c) presents the persistence barcode after simulating the deviation from the hierarchical process.

Here, the green bars represent the persistence of connected components, while the blue bars represent the persistence of 1-holes. In (d), we show

the simplicial complex representation at filtration level d = 184, where we can observe the formation of a 1-hole created by chains 1, 2, 8, and 13.

formed by chains 1, 2, 8, and 13, is born, as illustrated

in Figure 5d. This figure provides a graphical representation

of the simplicial complex at d = 184, where the two

populations are shown as distinct groups connected by the 1-

hole. Once again, TDA through persistent homology enables us

to detect segment transfers between chains, this time between

different populations.

Following the analogy established in previous sections, we

could hypothesize that we have two bacterial populations—

one of Escherichia and one of Klebsiella—where HGT occurs

between the populations. Persistent homology can be used to

detect this horizontal transfer through the presence of 1-holes,

as we will demonstrate with data from hospital isolates in the

following section.

3.3 AMR acquired by HGT in nosocomial
data show persistent 1-holes

3.3.1 Inter-species antibiotic resistance HGT in
Pittsburgh hospital shows persistent 1-holes

Hospitals are urban sites of interest in microbial surveillance.

They aim to identify HGT and antibiotic resistance, especially in

clinically relevant bacteria. Genes conferring antibiotic resistance

can be shared by HGT, even among bacteria of different genera

(Evans et al., 2020; Constantinides et al., 2020). In 2020, Evans

et al. (2020) scanned 2,173 bacterial genomes isolated between

2016 and 2018 from the University of Pittsburgh Medical Center

in one hospital. At least ten distinct mobile elements were tracked

across the genomes, with identical DNA regions shared between
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FIGURE 6

Persistent homology captures HGT in AMR Nosocomial Data. In (a), we present a heatmap of a distance matrix calculated from a gene count table,

including the IncF plasmid, for the strains listed in Table 1. The numbers and color gradient represent the distances, with blue-highlighted labels

indicating strains exhibiting HGT. (b) shows the persistence barcode, where green bars represent the persistence of connected components and blue

bars indicate the persistence of 1-holes. (c, d) illustrate representations of the filtered simplicial complex at filtration levels 108 and 119, respectively.

Pink labels represent Klebsiella strains, green labels indicate Escherichia strains, and blue labels highlight strains involved in HGT. In (c), we observe a

1-hole formed exclusively by Escherichia strains. In (d), we observe another 1-hole involving both Klebsiella and Escherichia strains.

bacteria of different genera, suggesting evidence of HGT. One

particular clinical case illustrates how one E. coli ST69 isolate

(EC00678) and one K. pneumoniae isolate (ST405) were collected

from Patient A, sharing the same mobile genetic element (MGE).

Patient B also contains an almost identical mobile element in a E.

coli isolate (EC00701). Patients A and B were in contiguous rooms,

though not simultaneously. The shared MGE is the IncF plasmid,

which contains approximately 113.6 Kb. IncF is an Enterobacter

plasmid with resistance genes often found in E. coli (Rozwandowicz

et al., 2018). Nevertheless, in this clinical case, IncF was found

in E. coli and K. pneumoniae, two bacteria of different genera.

In Evans’s study, genomes of particular interest were sequenced

again with long reads, improving the understanding of how

AMR gene families are distributed in mobile elements (Table 1).

From these high-quality genomes, we downloaded all sequences

from genera Klebsiella and Escherichia from NCBI (Table 1). To

analyze their persistent homology, we selected 500 gene families,

including those in the IncF plasmid found in E. coli strain
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FIGURE 7

Persistent Homology for CAMDA Bacterial Resistance Marker Data. (a) shows a barcode representation for samples from hospitals. Pink bars

represent K. pneumoniae, while green bars represent E. coli. (b) provides a geometrical representation of the simplicial complex at the filtration level

of 0.113 for E. coli samples from hospitals.

EC00768. Figure 6a illustrates this, divided into four regions. The

redder regions indicate the distances between different species of

Escherichia and Klebsiella. Notably, the fourth quadrant represents

the distances among Klebsiella strains, while the first quadrant

is for Escherichia. In this latter quadrant, we can observe some

reddish hues related to the distance between the strains where the

horizontal transfer occurred.

Utilizing Hamming distances presented as a heatmap in

Figure 6a, we constructed a Rips simplicial complex and calculated

persistent homology with a maximum dimension of 3; we

identified the presence of two 1-holes. These appeared at

filtration levels 88 and 118 and dissipated at 112 and 145,

respectively, as shown in Figure 6b. Additionally, this plot reveals

an infinite persistence bar in β0 (connected component) and

another with a persistence of 108. As expected, this latter

observation is linked to our data being clustered into two

groups: Klebsiella and Escherichia. Furthermore, Figure 6c provides

a graphical representation of the simplicial complex filtered at

filtration level 108, showing the presence of the first 1-hole

(which emerged at 88), formed by EC00668, EC0678, EC00701,

and EC00690. At this stage (filtration level 108), a connected

component dissipated, and an edge connecting KLP00221 and

EC00609 emerged, bridging the groups formed by Klebsiella and

Escherichia. Finally, Figure 6d illustrates the simplicial complex

at filtration level 119, where we can observe the second 1-hole

(emerging at 119) formed by EC00678, EC0609, KP00215, and

KP00187.

Thus, TDA enabled us to detect the presence of 1-holes

representing horizontal transfer among EC00701, EC0678, and

KP00215, a phenomenon previously confirmed by the high

sequence identity of the IncF plasmid family region.

3.3.2 The resistome of bacteria isolated from a
Baltimore hospital has 1-holes

Every year, the CAMDA community of interest provides

an open big data challenge. The CAMDA 2023 Anti-Microbial

Resistance Prediction Challenge comprises two data sets to study

AMR patterns. First, CAMDA supplied a presence/absence table

of 505 AMR markers from 146 bacteria isolated and sequenced

from a single hospital over several years; see Figure 2. This

hospital’s resistome data contains AMR markers from 14 E.

coli, 124 K. pneumoniae, and 8 E. hormaechei. Second, shotgun

metagenomes from 2016 and 2017 collected from sixteen cities

worldwide were provided by the MetaSub consortium (Mason

et al., 2016). The hospital belongs to one of the cities in the

United States, but the exact location was not disclosed before the

end of the challenge. We attempted two approaches to obtain

information from CAMDA data: (i) identifying the topology of

the hospital resistome table, and (ii) searching for differential

genes between cities using species-level pangenomes developed

with public genomes from dates and cities following CAMDA data

(available in the Supplementary material).

In this study, we aim to identify whether the AMR markers in

this hospital resistome table correspond primarily to a hierarchical

process. We applied persistent homology to the binary chains that

encode the AMR markers of K. pneumoniae, E. hormaechei, and E.

coli, measuring the similarity of the resistomes using the Hamming

distance. Unlike previous persistence barcodes, which include the

persistence of connected components, in Figure 7a, we present a

persistence barcode that exclusively shows the persistence of 1-

holes. There are 40 pink bars representing the persistence of 1-holes

for the dataset of 124 K. pneumoniae strains and three green bars

representing the persistence of 1-holes for the 14 E. coli strains.
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We used normalized Hamming distance to enable a comparison

between both datasets. Notably, we observe a significantly higher

number of 1-holes in the K. pneumoniae dataset compared to the E.

coli dataset, which may be partly due to the difference in sample

sizes. We also see variation in the lengths of the persistence of

these bars that could reflect the extent of HGT, as suggested by the

presence of 1-holes in persistent homology. The lack of holes in

E. hormaechei could be due to the absence of HGT or the limited

data available for E. hormaechei for comparison. In Figure 7b, we

provide a geometric representation of the simplicial complex at

filtration level 0.113, where we observe a 1-hole formed by chains

1, 4, 6, and 9. These chains are potential candidates for HGT.

Additionally, we note that at this filtration level, 12 out of the 14

strains are already connected within a single connected component,

leaving only strains 2 and 11 unconnected. This suggests that

strains 2 and 11 are more distinct from the others at the level of

AMR genes.

Once the CAMDA Challenge finished, Baltimore was revealed

as the city where the hospital was located. After the persistent

homology analysis, our second goal was to understand if, when

comparing the resistome hospital table against AMRmarkers in the

metagenomes, there was enough evidence to identify Baltimore as

the city of origin of the samples. We constructed eighteen binary

tables from the metagenomes, representing the samples of the

three bacterial genera in each of the six cities. The presence of

AMR markers in the labeled samples is too sparse to accurately

determine the mysterious city. We then searched for differential

genes between cities using pangenomes elaborated with public

genomes from dates and cities similar to the CAMDA samples–;

however, no conclusive evidence allowed us to identify Baltimore

as the mysterious city.

3.4 There are spaces without holes that are
not tree-like

In the mathematical aspect of this study, after analyzing the

topology of both simulated and actual biological data, we aim to

explore the necessary and sufficient conditions that distinguish a

tree-like structure from spaces with 1-holes. This section will focus

on the interplay between topological features and the underlying

data structure, examining how the presence or absence of 1-holes

impacts our ability to classify spaces as tree-like. In Section 3.1,

we analyzed the case of a hierarchical population represented as

a tree, which, in terms of TDA, is indicated by the absence of 1-

holes in the persistent barcode. However, some spaces lack a tree

structure and also do not possess 1-holes. This section presents an

example of such a case and clarifies why the absence of 1-holes

should not be interpreted as indicative of a hierarchical population

or tree structure.

It is known that in an additive metric space (tree-like)M, the p-

level persistence barcode of the Vietoris-Rips complex is empty for

all p > 0 (Chan et al., 2013), as detailed in Supplementary material

Section 2. While being tree-like is sufficient for having Betti

numbers equal to zero in higher dimensions, it is unnecessary.

Here, we present an example where βi = 0 for i ≥ 1, yet the space

is not tree-like.

FIGURE 8

Metrical space with βi = 0 for i ≥ 1 that is not tree-like.

Four points satisfy the four-point condition if and only if:

d(x, y)+ d(z, t) ≤ max
{

d(x, z) + d(y, t), d(x, t) + d(y, z)
}

(1)

In 1974, Buneman proved that a graph is a tree if and only if

it is connected, contains no triangles, and has a graphical distance

satisfying the four-point condition, (Buneman, 1974).

The graph in Figure 8 has βi = 0 but it does not satisfy the

four-point condition because:

d(x, y) + d(z, t) = 1.6+ .5 = 2.1 > 2 = (2)

max
{

d(x, z) + d(y, t) = 1 + 1 = 2, d(x, t)

+d(y, z) = 1+ 1 = 2
}

Then, Figure 8 is not tree-like.

4 Discussion

The original challenge presented by the CAMDA23 community

was determining the origin of hospital samples of K. pneumoniae,

E. hormaechei and E. coli by analyzing their resistomes, which

consist of around 500 genes, and metagenomes from nearby cities.

Despite calculating the AMR profiles in the microbiomes, the low

quantity of detectable AMR genes—likely due to the shallow depth

of some samples—hindered our ability to characterize the cities

based on resistome differences. Therefore, we followed the next

challenge: extracting themost information possible from these data.

We utilize the topology of the resistomes to investigate evidence

of HGT.

To accomplish this, we conducted three stages: a simulation

of horizontal transfer by perturbing hierarchical resistomes, a

topological description of a known example of inter-generic HGT

in a hospital setting, and finally, the identification of topological

persistence in the CAMDA data. We aim to understand how many

holes form when HGT occurs, how long these holes persist, and

which population elements are involved in their formation.
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Our results indicate that the persistence of 1-holes varies with

the number of genes transferred. Small transfer sizes often result

in minimal persistence, suggesting that such events might closely

resemble vertical inheritance or be indistinguishable from it due

to the similarity of the genomes involved. This underscores the

nuanced role of transfer size, alongside other factors like mutation

rate and the number of genomes in a group, in influencing the

detectability of HGT through TDA. Our findings suggest that

HGT can be effectively captured in larger genomic regions, where

the transferred genes significantly impact the organism’s genomic

structure, producing detectable topological features. This aspect

highlights the importance of analyzing gene transfers across various

scales to understand their evolutionary implications.

In our study, we explore the dynamics of HGT and its

detectability through TDA, primarily using persistent homology.

Hierarchical data represented as trees models vertical inheritance

in evolutionary biology. The core of our analysis relies on the

model that tree-like data structures exhibit Betti numbers (βi)

equal to zero for dimensions greater than or equal to one (Chan

et al., 2013). This mathematical framework allows us to associate

the presence or absence of holes in the data with a deviation

from vertical inheritance (Rabadán and Blumberg, 2019), such as

HGT in bacterial resistomes (Emmett and Rabadán, 2014). The

relationship between persistent homology and data topology in

population genomics is threefold: (1) Populations without HGT are

hierarchical data and represent tree-like spaces; consequently, they

have Betti numbers equal to zero in every higher dimension (i.e.,

βi = 0 for i ≥ 1) (Chan et al., 2013). (2) However, we demonstrate

that not all populations with βi = 0 for i ≥ 1 lack HGT, as

having Betti numbers equal to zero does not necessarily imply a

tree structure. (3) Conversely, the presence of holes (non-zero βi

numbers for some i ≥ 1) indicates a non-tree-like structure, which

we model here as evidence of HGT.

Non-HGT implies a tree-like space with no holes in data.

Evolutionary data modeled in our simulator without gene gain

associated with HGT exhibit a tree-like structure devoid of holes.

This baseline contrasts with HGT scenarios, further complicating

the interpretation of evolutionary dynamics.A dataset can contain

no holes but not have a tree-like structure. The condition βi = 0

for i ≥ 1 is necessary but insufficient to assert that data has a

tree-like structure. Here, we show an example with no holes (zero

Betti number in every dimension) without a tree-like structure,

emphasizing the complexity of inferring evolutionary relationships

from topological characteristics alone. Also, HGT does not imply

the presence of holes. In our simulations, not all instances of HGT

result in detectable holes in the data structure. This observation

aligns with the biological understanding that gene transfer can

occur without drastically altering the hierarchical structure of

genomes, especially when transfers happen between closely related

species or involve a very small number of genes that do not

significantly impact the organism’s overall genomic architecture.

Finally,HGT is implied by the presence of holes, since holes mean

that the topological structure of the data is not tree-like. These

topological features capture gene transfer events that introduce

discontinuities or “gaps” in the otherwise smooth narrative of

vertical inheritance.

Our research highlights the complexity of detecting and

interpreting HGT through topological methods. The interplay

between transfer size, genomic similarity, and the methodological

nuances of TDA presents amultifaceted challenge in understanding

the role of gene transfer in evolution. By meticulously analyzing

the persistence of topological features across various scenarios,

we contribute to a deeper understanding of the evolutionary

processes shaping microbial genomes, providing insights into

the subtleties of HGT and its implications for phylogenetic and

evolutionary studies.

A potential avenue for future research involves leveraging

advances in persistent homology. Some authors have reviewed

and described methods to calculate distances between barcodes

(Chazal and Michel, 2021) and demonstrated the utility of

combining persistent homology-extracted features with machine

learning methods to distinguish between datasets (Bukkuri et al.,

2021). Applying similar approaches to calculate distances between

presence-absence-derived barcodes could enable clustering of

datasets with similar horizontal transfer scales, further refining our

understanding of HGT dynamics.

In Section 6 of the Supplementary material, we include the

Horizontal Gene Transfer (HGT) Analysis of the genomes listed

in Table 1. First, we conducted an analysis of species and gene

phylogenetic trees based on amino acid sequences, which revealed

several horizontal gene transfer events, as expected. Subsequently,

we performed the same analysis using gene count tables. However,

in this case, we did not detect any horizontal gene transfer

events between the Escherichia and Klebsiella groups. Additionally,

in Section 3.3, we applied persistent homology to detect the

presence of HGT in the same dataset, using the gene count table

as input. This approach highlights the advantages of leveraging

Topological Data Analysis (TDA) and persistent homology for

detecting horizontal gene transfer events.
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