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trends in autism spectrum
disorder prediction
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In recent years, there has been an increase in the incidence of autism spectrum

disorder (ASD), its pathogenesis remains unknown, and there are no effective

treatments available. Early identification of individuals at risk enables early

targeted intervention, which improves outcomes. Through the integration of

artificial intelligence and the medical field, researchers can establish a machine

learning (ML) risk prediction model to estimate the risk of ASD. Currently, a

variety of risk models have been developed using multiple factors, such as

genetic background, gaze behavior, adverse conditions during pregnancy and

childbirth, magnetic resonance imaging of the brain, and intestinal microbial

composition, to predict ASD. These ML prediction models have shown some

reliability in predicting ASD risk. In the future, ML prediction models for ASD

will present significant challenges and opportunities, potentially helping identify

drug targets for developing novel therapies to alleviate ASD symptoms and

enable precision medicine.
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1 Introduction

Autism spectrum disorder (ASD) is a common form of pervasive developmental
disorder (PDD) characterized by neurodevelopmental abnormalities, resulting in
communication difficulties, stereotyped actions, repetitive behaviors, and apathy (Matson
et al., 2009, Santocchi et al., 2016). The incidence of ASD is high. According to the
United States Centers for Disease Control (CDC) report in 2021, about 1 in 44 (2.3%) 8-
year-old children were diagnosed with ASD by the Autism and Developmental Disabilities
Monitoring (ADDM) Network in 2018, with a prevalence rate 3.39 times higher than that
in 2000 (Maenner et al., 2021). In 2022, the Development of the Autism Education and
Rehabilitation Industry estimated that the number of ASD patients in China may exceed
10 million, with over 2 million being children aged 0–14 years and nearly 200,000 new cases
per year (AERI, 2022). Zeidan et al. calculated a global prevalence rate of 1:100 for autism
from 2012 to 2021 (Zeidan et al., 2022). In Australia, 0.74% of children under the age of 7
are diagnosed with ASD (Bent et al., 2015). Therefore, ASD has emerged as a global public
health concern.
Nowadays, it is believed that ASD is a complex process driven by the accumulation of
genetic, demographic, environmental, and adverse factors during pregnancy (Qin et al.,
2024). However, the detailed pathogenesis of ASD is still poorly understood. Currently,
ASD diagnosis is less than ideal, as it depends on interviews and questionnaires (Guthrie
et al., 2012, Liu et al., 2019, Doi et al., 2022). Not only does it require a high level of
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diagnostic experience from physicians, but these methods also
fail to detect child patients under 3 years old, who may have
the highest detection rate due to their lack of typical autism
characteristics. Failure to identify these children can disturb the
development of their nervous system, resulting in lower efficacy
in ASD management. Importantly, the intervention and treatment
effects of ASD are also limited, which include non-pharmaceutical
interventions, such as music therapy, exercise, cognitive behavioral
therapy (CBT), equine-assisted activities, animal assisted therapy
(Tse, 2020, Lopata et al., 2020, Rabeyron et al., 2020), targeting
microbiota (Sanctuary et al., 2019, Kang et al., 2020, Wang et al.,
2020), acupuncture (Chan et al., 2009, Wang et al., 2022), drug
treatments (Golubchik et al., 2011, Harfterkamp et al., 2012, Scahill
et al., 2015, Hendren et al., 2016, Ichikawa et al., 2016, Levine et al.,
2016, Maras et al., 2018, Parker et al., 2019, Gabis et al., 2019,
Ballester et al., 2019, Wichers et al., 2019, Mahdavinasab et al., 2019,
Momtazmanesh et al., 2020, Soorya et al., 2021, McDougle et al.,
2022, Le et al., 2022, Hacohen et al., 2022), nutrition supplements,
such as tetrahydrobiopterin, resveratrol, vitamin D, omega-3, fatty
acid, d-Cycloserine, folinic acid (Klaiman et al., 2013, Frye et al.,
2016, Wink et al., 2017, Adams et al., 2018, Hendouei et al., 2019,
Mazahery et al., 2019, Javadfar et al., 2020, Keim et al., 2022), as
shown in Figure 1.

In recent years, machine learning (ML) has emerges as a key
tool for early detection, diagnosis, and intervention of disease by

analyzing large amounts of sample data to identify risk factors for
disease. Duggan, M. R. (Duggan and Walker, 2024) utilized ML on
plasma proteome data to predict 11 organ-specific aging diseases,
including heart failure, cognitive decline, and Alzheimer’s Disease
(AD). In addition, ML has been used to predict cardiovascular
disease and breast cancer based on the human microbiome (Liu
et al., 2024). In this review, we summarize the risk factors of ASD
and the growing role of ML in predicting ASD, especially through
the analysis of intestinal microbiome. Establishing an ML risk
prediction model for ASD using gut microbiota and applying it to
clinical practice may facilitate for the prediction and treatment of
ASD in the future.

2 Risk factors of ASD

ASD may be a multifactorial disease, and a single factor alone
is not sufficient to fully explain its onset. Therefore, it is crucial to
identify and understand the various risk factors in order to prevent
the occurrence of ASD. Previous studies have identified several
high-risk factors related to ASD, including genetic factors (Zhang
and Shen, 2016, Krupp et al., 2017), demographic factors (Perales-
Marín et al., 2021, Crump et al., 2021, Faruk et al., 2023), adverse
factors affecting pregnancy (Limperopoulos et al., 2008, Darcy-
Mahoney et al., 2016, Al-Zalabani et al., 2019, Hamad et al., 2019,

FIGURE 1

The intervention and treatment of ASD.
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FIGURE 2

Risk factors of ASD.

Axelsson et al., 2019, Madany et al., 2022a,b, Sousamli et al., 2024),
and biochemical factors (Wu et al., 2018, Kim et al., 2019, Hassan
et al., 2022, Zhang et al., 2022). Detailed information is provided in
Figure 2.

2.1 Demographic factors

Preterm birth and gender have been associated with an
increased risk of ASD development in infants (Crump et al., 2021,
Haghighat et al., 2022, Tartaglione et al., 2022). A national cohort
study performed on 4,061,795 infants born in Sweden from 1973
to 2013 found that preterm birth is associated with a higher risk
of ASD (Beggiato et al., 2017). This could be attributed to the
neurological development of the fetus. Alfred et al. (Supekar et al.,
2022) conducted a population-based case-control study involving
128 children diagnosed with ASD and 311 control subjects in
Spain. The study utilized questionnaires to collect information
and found a higher incidence of ASD among children born via
cesarean section and male gender. The incidence rate of ASD
in males is four times that in females (Wu et al., 2022). This
disparity may be due to the underrecognition of ASD in girls by
diagnostic tools and sex-related genetic factors (Wilfert et al., 2021).
The brains functionally organized differently of females and males
with ASD, such as motor, language and visuospatial attentional

systems (Supekar et al., 2022), which shows that the different
incidence rate of ASD between male and female may be related to
brain function.

2.2 Pregnancy, delivery, and postpartum
factors

Exposure to adverse risk factor during pregnancy can
significantly impact the normal development of the fetus, leading
to impaired neurodevelopment in children. Several factors, such as
different modes of delivery, low birth weight, lack of breastfeeding,
antibiotic use during pregnancy (Hamad et al., 2019, Madany
et al., 2022a,b), cesarean section (Al-Zalabani et al., 2019,
Axelsson et al., 2019), and premature delivery (Limperopoulos
et al., 2008) has been linked to an higher incidence of ASD.
A retrospective study analyzed 664 records of children treated at
one of the largest ASD treatment centers in the United States
from March 1, 2009, to December 10, 2010 found that children
born to older mothers, as well as those from ethnic minority,
or raised by single, divorced, or widowed mothers, had an
elevated risk of developing ASD (Darcy-Mahoney et al., 2016). In
addition, multicenter studies have shown that maternal exposure
to the triclosan during pregnancy can cause ASD in offspring,
significant male (Wu et al., 2022). Hamad et al. analyzed data
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from Manitoba’s population, including 214,834 children born in
Manitoba, Canada, from April 1, 1998, to March 31, 2016 and
found that children exposed to antibiotics during the second or
third trimester of pregnancy had an elevated risk of developing
ASD (Hamad et al., 2019).

2.3 Genetic factors

Genetic mutations related to ASD result in
neurodevelopmental impairments (Wilfert et al., 2021).
A recent study identified gene expression signatures in
various neuronal cell types associated with genes containing
likely gene-disrupting mutations (LGDs) in ASD patients
and screened 117 risk genes (Zhang and Shen, 2016). The
analysis of relevant gene subsets and genetic variations
associated with non-syndromic ASD was conducted using
databases such as the National library of medicine (ClinVar),
autism research community focusing on genes implicated in
autism susceptibility (SFARI Gene), and Autism informatics
portal (AutDB). Through this analysis, a subset of twenty
overlapping genes potentially specific to non-syndromic ASD
was identified. These genes were found to be enriched in
biological processes related to neuronal development and
differentiation, synaptic function, and social behavior (An
et al., 2018). Krupp et al. evaluated the potential role of post-
zygotic mosaic mutations (PMMs) in ASD risk and identified
the risk genes CHD2, CTNNB1, SCN2A, and SYNGAP1, as
well as the candidate risk genes ACTL6B, BAZ2B, COL5A3,
SSRP1, and UNC79, which may be involved in chromatin
remodeling or neural development (Krupp et al., 2017). These
findings highlight neurogenesis, chromatin modification,
and synaptic functions as key potential mediators of genetic
vulnerability. Furthermore, Whole-genome sequencing (WGS)
of de novo and rare inherited single-nucleotide variants (SNVs),
along with structural variations in genes previously linked
to ASD and other neurodevelopmental disorders, revealed
important insights. In one case, two ASD-affected siblings
harbored distinct ASD-related mutations, rather than sharing
a common risk variant. Interestingly, these siblings exhibited
greater clinical variability compared to cases where siblings
shared a common risk variant (Yuen et al., 2015). This
suggests that variations in ASD-associated genetic factors may
contribute to clinical heterogeneity, thereby complicating ASD
identification.

2.4 Biochemical factors

A study tested the blood of 1,537 children in Xinjiang from
September 2018 to September 2019 and found that Pb, Ca, and
Zn were linked to the occurrence of ASD (Zhang et al., 2022).
A meta-analysis encompassed 29 case-control studies involving a
total of 2,504 children with ASD and 2,419 healthy controls. The
analysis revealed that copper levels in hair were significantly lower
in children with ASD compared to healthy controls. However,
no significant difference was observed in blood copper levels
between the ASD group and the control group (Liu et al.,

2023). This indicates that copper has adverse effects on the
accumulation sites in the body. Detection in the hair indicates
a higher accumulation in the head, which can cause significant
damage to the brain. In addition, vitamin D status in neonates
was significantly associated with ASD and intellectual disabilities
(Wu et al., 2018). In another study, Hassan et al. analyzed blood
samples from 40 ASD patients and 40 healthy controls. Their
findings revealed that sodium (Na+), potassium (K+), Lactate
Dehydrogenase (LDH), Glutathione-S-Transferases (GST), and
Mannose Receptor C Type 1 (MRC1) were all associated with
ASD onset (Hassan et al., 2022). Blood contains various ions that
play a role in the regulation of nervous system activities and
exchanging nutrition substances with cells through a variety of
ion channels.

Research has evaluated perinatal biomarkers associated
with the subsequent development of ASD. Utilizing banked
cord blood plasma samples and clinical data from the Iowa
Maternal Fetal Tissue Bank, the study found elevated levels
of homocysteine, myristic acid, and pentadecanoic acid in
ASD samples. Conversely, levels of L-isoleucine, L-threonine,
O-phosphoethanolamine, and 2-hydroxybutyric acid were
reduced (Brandon et al., 2022). In cytokine levels, comparing
those later diagnosed with ASD (n = 38) to typically developing
(TD) (n = 103) infants at 3 years of age. The results showed
elevated levels of granulocyte colony-stimulating factor (G-
CSF) and reduced levels of interleukin-1α (IL-1α), IL-1β, and
IL-4 in the ASD group (Moreno et al., 2024). The Barwon
Infant Study, which involved n = 1,074 mother-child pairs,
identified a correlation between elevated cord blood acylcarnitine
levels and increased Attention Deficit Hyperactivity Disorder
(ADHD)/ASD symptoms at age of two. This relationship appeared
to be partially mediated by socioeconomic factors such as
low income, low Apgar scores, and maternal inflammation
(Vacy et al., 2024). A total of 567 children (92 with ASD and
475 neurotypical) from the Boston Birth Cohort study were
enrolled at birth and prospectively monitored at the Boston
Medical Center. Elevated levels of cord blood unmetabolized
folic acid were linked to an increased risk of ASD among
Black children (Raghavan et al., 2020), underscoring the
need to consider ethnic-specific factors for prenatal folic acid
supplementation.

ASD is characterized by a complex interplay of risk factors,
including genetic predisposition, biochemical imbalances, prenatal
complications, and gut microbiota dysbiosis. While progress
has been made in understanding these contributing elements,
substantial gaps remain. Future research should integrate multi-
omics data, such as genomic, radiomic, and microbiome, with
Artificial Intelligence (AI) analytics. This system-level approach
could decode ASD heterogeneity through computational modeling,
paving the way toward personalized diagnostics and therapies.

3 Screening with ASD ML prediction
model

ASD is an irreversible mental development disorder. Its
diagnosis relies on scales and behavioral tests, which can only
identify patients with obvious symptoms. However, these tools
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FIGURE 3

Factors in predictive models for ASD.

often fail to accurately diagnose individuals with atypical or
subtle presentations, limiting opportunities for early treatment
and reducing intervention effectiveness. Early intervention can
effectively prevent the onset of ASD, with a scientific and feasible
risk prediction model serving as the foundation for predicting ASD.
Rahman et al. (2020) used the electronic medical records (EMRs)
system of the Israeli Health Maintenance Organization to extract
data on ASD children and non-ASD children born from January
1, 1997 to December 31, 2008, and predicted ASD through an ML
model. By incorporating parents’ sociodemographic information,
medical history, and prescription medications data to train various
ML algorithms, including Multiple Logistic Regression (MLR),
Artificial Neural Network (ANN), and Random Forest (RF), they
achieved a c statistic (the c statistic is mainly used to evaluate the
prediction model’s accuracy; accuracy increases as the value gets
closer to 1) of 0.709 for predicting ASD. The model demonstrated a
sensitivity of 29.93%, specificity of 98.18%, accuracy of 95.62%, false
positive rate of 1.81%, and positive predictive value of 43.35%. The
study concluded that the ML algorithm, combined with EMR data,
effectively identified ASD risk in early life and revealed previously
unknown features associated with ASD risk. These methods can
have the potential to enhance the accurate and effective detection
of ASD in a large population of children. Currently, there is
no universally accepted gold standard for ASD risk prediction
models. Factors used for prediction include starting behavior
(early behavioral indicators), magnetic resonance imaging, adverse

factors affecting pregnancy, genetics, and gut microbiota. The
development of ML-based risk prediction models for ASD is an
ongoing area of research (Figure 3).

3.1 ASD ML prediction models based on
genetic factors

The development of ASD is linked to genetic factors. At
present, ML prediction models are increasingly used for genetic risk
prediction (Yao et al., 2021). A study used a method based on ML
to predict ASD risk genes, analyzing human brain spatiotemporal
gene expression patterns, gene level constraint indicators, and
other gene variation characteristics to predict the risk of ASD
(Lin et al., 2020). Duda et al. (2018) constructed an ML model
to rank ASD risk genes across the entire genome using a brain-
specific functional relationship network (FRN) of genes. They
identified some key pathways in early neural development of
ASD through functional enrichment analysis of candidate gene
networks. A new algorithm, Detecting Association With Networks
(DAWN), was developed to identify ASD using rare variations
in exome sequencing and gene co-expression in the fetal middle
prefrontal and motor somatosensory neocortex. The algorithm
converts the integrated data into a hidden Markov random
field, where the structure of the graph is determined by gene
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co-expression, and combines these interrelationships with node-
specific observations, namely, gene identity, expression, and genetic
data, to estimate risk. DAWN was used to study the emerging ASD
sequence data and gene expression data from other brain regions
and tissues (Liu et al., 2014). ASD is a complex brain disorder
with polygenic etiology. Wang and Avillach (2021) used a deep
learning gene classifier to diagnose ASD, performing chi-square
test on the collected genome data to extract common variants that
may be protective or pathogenic to ASD and designing a diagnostic
classifier based on Convolutional Neural Networks (CNNs) to
predict ASD using the significant common variants identified.
The deep learning model outperformed shallow ML models,
achieving an area under the receiver operating characteristic
curve of 0.955 and an 88% accuracy in identifying non-ASD
individuals.

The prediction model develops constantly updated and
developed. A new multi-label classification (MLC) model has
been used to identify ASD risk genes and toxic chemicals on
a large-scale dataset. First, the characteristic matrix and partial

marker network of ASD risk genes and toxic chemicals were
constructed from multiple heterogeneous biological databases.
Based on global and local metrics, simulation results showed that
the model has better classification performance than other MLC
methods (Huang et al., 2021). This work will help promote the
relationship discovery of ASD risk genes–environment interactions
and aid in studying the gene–environment interactions in the
future (genetic factors are internal, while environmental factors
are external) to better understand the pathological mechanism of
ASD. Wang and Wang (2020) developed a new ML method to
predict candidate lncRNAs related to ASD. In the pre-training
stage of model construction, an autoencoder network utilized
gene expression data for representation learning, and random-
forest-based feature selection was applied to the transcript-
sequence-derived k-mers. The model includes LR, Support Vector
Machine (SVM), and RF algorithms demonstrating the robustness
of candidate priorities based on 10-fold cross-validation and
hypothesis sites. These models are used to predict and prioritize
a series of candidate lncRNAs (These lncRNAs demonstrate

TABLE 1 ASD ML prediction models based on genetic factors comparative table.

Model Risk genes Samples Accuracy Limitations Ref

The gradient boosted
trees

NBEA, HERC1, TCF20,
MYCBP2 and CAND1

The gene set comprised 121
positive genes and 963 negative
genes.

AUC = 0.86 The ML model was
constrained by a limited
sample size and a small
number of predictive
variables.

(Lin et al., 2020)

The random forest BRAF, CACNA1C,
CDKL5, CHD7, DMD,
GATM, KCNJ10, NIPBL,
OCRL, PTPN11, SGSH,
AKAP9 and TCF7L2

Over 20,000 genes through
Bayesian network integration of a
diverse set of functional genomic
data types derived from human,
mouse and rat experiments.

AUC = 0.88 The ML model was
constrained by a limited
sample size and a small
number of predictive
variables.

(Duda et al., 2018)

Detecting Association
With Networks(DAWN)

CUL3, DYRK1A,
GRIN2B, POGZ, SCN2A,
TBR1, L1CAM, PTEN,
STXBP1, MBD5,
SHANK2, BBS10,
FOXP1, TBL1XR1,
ARID1B and ADNP

Periods 3–5 and 4–6 with 10 and
14 brains were 107 and 140
replicates of expression per gene,
respectively

– They might not be
captured effectively by
current exome
sequencing methods.

(Liu et al., 2014)

A convolutional neural
network–based

ARSD, MAGEB16, and
MXRA5 genes

The ASD data set from the
Simons Simplex Collection

AUC = 0.96 The ML model was
constrained by a limited
sample size and the
prediction accuracy of its
algorithm

(Wang and Avillach,
2021)

A multilabel
convolutional neural
network (MLCNN).

FBXL7, SEMA5A, FAT1,
CDH8, NXPH1, UPF3B,
PLN, NR3C2, CTTNBP2,
PTCHD1, FOXP1,
GLRA2, BCL6, ANK1,
PTHLH, RORA, CDH5,
SLIT3, ARX, BTN2A1,
SACS, HCCS

The top-20 predicted risk genes
have been demonstrated to have
associations with ASD

AUC = 0.81 The ML model was
constrained by a limited
sample size

(Huang et al., 2021)

Logistic regression (LR),
support vector machine
(SVM) and random
forest (RF) models

ENSG00000229807,
ENSG00000240801,
ENSG00000228971,
ENSG00000258283,
ENSG00000221857

The ASD-associated lncRNAs
training dataset consisted of 366
ASD risk genes as positive
instances and 1,762 non-ASD
disease genes as negative
instances.

AUC = 0.82 The ML model needs to
obtain ASD clinical
samples for predictive
training to improve
diagnostic accuracy.

(Wang and Wang,
2020)
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significant correlations with various ASD-related traits, such
as sex differences, synapsin function, birth weight, and both
intelligence and cognitive performance.), including some reported
cis-regulators of known ASD risk genes. Gene mutations associated
with ASD are polygenic, with a high frequency of gene mutations
in humans. However, the relative contribution of each gene is
small, hampering their identification. The details of the above
ASD ML prediction models based on genetic factors are shown in
Table 1.

3.2 ASD ML prediction model based on
staring behavior

ASD is typically associated with atypical visual attention,
and eye gaze data can be collected at a very young age. An
automatic screening tool based on eye gaze data can identify the
risk of ASD, which provides an opportunity to intervene before
all symptoms manifest (Jiang et al., 2020, Tsuchiya et al., 2021).
Using collected videos of Bangladeshi children from Dhaka Shishu
Children’s Hospital and utilizing ML raters to determine the “risk
score” of children’s ASD, this study improved the practicality and
performance of the model. This was achieved by developing and
applying a powerful new adaptive aggregation technology and
establishing two classification layers. In the first layer, typical and
atypical behavior are distinguished, while in the second layer, ASD
and non-ASD are distinguished. Each layer utilizes a unique rater
weighting scheme to summarize their classification scores based
on the professional knowledge of different raters. Area under the
receiver operating characteristic curve (AUC) was used to measure
the accuracy of the model. The AUC of the first layer was 0.76, and
that of the second layer was 0.85 (Tariq et al., 2019).

In addition, Liaqat et al. proposed two ML methods, the
synthetic saccade method and the image-based method, to
automatically classify children’s eye gaze data collected from natural
image tasks. The first method uses the synthetic saccade pattern
generation model to represent the baseline scan-path of a typical
non-ASD individual. It combines this with the real scan-path
and other auxiliary data as input for the depth learning classifier.
The second method employs a more comprehensive image-based
method, where the input image and a series of fixation maps
are fed into a convolutional or recurrent neural network. In this
experiment, the accuracy of ASD prediction in the validation
dataset reached 62.13% (Liaqat et al., 2021). The details of the above
ASD ML prediction models based on staring behavior are shown
in Table 2.

3.3 ASD ML prediction model based on
risk factor exposure during pregnancy
and childbirth

The incidence of ASD is linked to certain risk factors
during pregnancy. Grossi et al. (2016) evaluated 27 potential
risk factors related to postpartum and pregnancy. They collected
data by interviewing the mothers of 45 ASD children and
68 typically developing children. After selecting 16 variables
from the initial 27 variables through a TWIST dataset (input
selection and test training) system, special artificial neural networks
(ANNs) differentiated between ASD and control subjects, with an
overall accuracy of 80.19%. The study suggests that exposure to
adverse factors during gestation may induce gene mutations in
offspring.

To identify newborns at risk of ASD and detect potential
biomarkers shortly after birth, a retrospective study was conducted
comparing biological measurements and ultrasound data from
infants later diagnosed with ASD to those from Neurotypical (NT)
infants. These data were originally collected during routine prenatal
and postnatal care. A supervised ML algorithm incorporating
cross-validation was employed to classify NT and ASD infants.
When optimizing for a low false-positive rate, the model correctly
identified 96% of NT infants and 41% of ASD infants, yielding
a positive predictive value of 77%. The study identified several
biomarkers associated with ASD, including sex, autoimmune
diseases in maternal family, cytomegalovirus (CMV) infection,
IgG CMV levels, timing of fetal head rotation, femur length
during the third trimester, white blood cell count during the third
trimester, fetal heart rate during labor, neonatal feeding patterns,
and differences in body temperature at birth and the following
day. Statistical analysis revealed that 38% of ASD-risk infants
had significantly larger fetal head circumference compared to age-
matched NT infants (Caly et al., 2021). Maternal stress and immune
influence fetal brain development, highlighting the importance of
the mother’s physical health during pregnancy for optimal fetal
development. The details of the above ASD ML prediction models
based on adverse conditions during pregnancy and childbirth are
shown in Table 3.

3.4 ASD ML prediction model based on
brain MRI

Magnetic resonance imaging (MRI) is a non-invasive detection
method with high spatial resolution and high density resolution,

TABLE 2 ASD ML prediction models based on staring behavior comparative table.

Model Samples Accuracy Limitations Ref

The best-fit
diagnostic algorithm

222 individuals aged between 5 and 17 years were enrolled by physicians
at seven research sites and affiliated clinics at Hamamatsu University
School of Medicine, Hirosaki University, University of Fukui, Chiba
University, Saga University, Kanazawa University, and Tottori University
during a 6-month period beginning on 25 February 2018.

AUC = 0.84 The ML model
was constrained
by a limited
sample size

(Tsuchiya et al., 2021)

The random forest The Bangladesh Institute of Child Health, Dhaka Shishu Children’s
Hospital recruit 150 children,including 50 with ASD, 50 with an speech
and language conditions, and 50 with neurotypical development.

AUC = 0.76 and
0.85

Low accuracy of
training data

(Grossi et al., 2016)
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TABLE 3 ASD ML prediction models based on adverse conditions during pregnancy and childbirth comparative table.

Model Risk factors Samples Accuracy Limitations References

Artificial neural
networks

solvents/paints occupational exposure
during pregnancy, stressful events during
pregnancy, pregnancy complications,
perinatal complications, deficient
breastfeeding after delivery, and early
antibiotic therapy of the newborn.

The mothers of 45 ASD children and of 68
TD children. 24 siblings of 19 ASD
children formed control group.

AUC = 0.80 The ML model
was constrained
by a limited
sample size

(Grossi et al.,
2016)

The gradient
boosting
decision tree
algorithm

sex, maternal familial history of
auto-immune diseases, maternal
immunization to cytomegalovirus
(CMV), IgG CMV level, timing of fetal
rotation on head, femur length in the 3rd
trimester, white blood cell count in the
3rd trimester, fetal heart rate during
labor, newborn feeding and temperature
diference between birth and 1 day after.

In 2012–2013, 5356 babies were born in
the maternity Hospital of the University of
Limoges in France. Two to five years later,
65 of these babies (1.21%) were diagnosed
with ASD. The 63 babies with ASD (12
girls and 51 boys) were matched with 189
neurotypical (NT) babies based on
mother’s age, parity and term of childbirth.

F0.5 = 0.63 The small
sample size and
the number of
girls limit the
generaliz ability
of the results.

(Caly et al.,
2021)

which can effectively reflect brain lesions. With the advancement
of computer technology and medical imaging technology, the
“risk prediction model” based on medical imaging big data has
emerged. The occurrence of infantile autism was predicted using
the segmentation and segmentation maps of sMRI, with a peak
sensitivity of 73.1% and a peak specificity of 75.9% (Gao et al.,
2021). Liu et al. (2020) attempted to construct a reproducible
and robust ASD neural patterns using heterogeneous multi-site
brain imaging datasets. Brain connectivity was assessed using face
resting-state functional magnetic resonance imaging (fMRI) data
from the CC200 atlas based on the Extra-Trees algorithm. Through
a cross-validation strategy, the mean classification accuracy of this
method was found to be 72.2% (sensitivity, 68.6%; specificity,
75.4%). It improves the accuracy of ASD prediction by about
2% and the specificity by 3.2%. The connectivity analysis of
the optimal model highlights the brain regions that play a
significant role in social cognition and interaction, revealing that
the correlation between the anterior and posterior default mode
networks (DMNs) of individuals with ASD is lower than that of the
control group. This observation is consistent with previous studies,
which enables this method to effectively identify individuals with
ASD risk. In addition, utilizing a hierarchical structure, deep ML
models can identify ASD based on interactions within hierarchical
functional brain networks (FBNs) inferred from fMRI, achieving a
classification accuracy of 82.1% (Qiang et al., 2023).

There is evidence that microstructural disorders and the
disruptions in the connectome of white matter (WM) are related
to the onset of ASD. The influence of age on the microstructure
of WM was evaluated using Diffusion Tensor Imaging (DTI) and
connectome Edge Density (ED) in ASD and control patients of
different age groups. Fractional anisotropy (FA), Mean Diffusivity
(MD), Radial Diffusivity (RD), Axial Diffusivity (AD), and ED
maps were created for each subject. Voxel-wise and tract-based
analysis was conducted using different combinations of improved
ML classifiers and dimension reduction algorithms. The results
showed that changes in the corpus callosum and connectome
are related to ASD and are not present in infants and toddlers,
but become more apparent in adolescents and young adults
(Weber et al., 2022).

3.5 ASD ML prediction model based on
intestinal microorganisms

There is a large number of bacteria, viruses, and fungi present
in the human intestine, collectively known as gut microbiota.
The normal human intestinal microorganisms are found in a
state of dynamic equilibrium. When these microorganisms are
disturbed, it can lead to disturbances in the normal functions
of the digestive system, respiratory system, immune system,
nervous system, and other bodily systems (Bose et al., 2020,
Wastyk et al., 2021, Fu et al., 2021, Liu et al., 2022, Sun et al., 2024).
Although the pathogenesis of ASD is not clear, individuals with
ASD often experience gastrointestinal (GI) co-morbidities, such
as irritable bowel syndrome, diarrhea, and chronic constipation,
and the severity of these symptoms is linked to the degree of GI
microbiota dysbiosis (Sanctuary et al., 2019, Harris et al., 2021).
In addition, imbalances in intestinal microbiota is associated with
the onset and progression of ASD (Dan et al., 2020, Fouquier
et al., 2021, Li et al., 2022). Intestinal microbiota of ASD patients
exhibit a reduction in alpha diversity (Lou et al., 2021). The
abundance of Bifidobacterium spp. in the intestine of children
with ASD is lower (Jendraszak et al., 2021). In a mouse model
of ASD induced by SHANK gene deletion, changes in intestinal
microbiota were observed, with an increase in Firmicutes and a
decrease in Proteobacteria and Verrucomicrobia, as well as the
presence of Deferriactors, Tenericites, and Chlamydiae (Sauer et al.,
2019). Aseptic mice transplanted with intestinal microbiota from
ASD patients exhibited increased repetitive behavior, decreased
movement, and reduced communication (Sharon et al., 2019).
Microbial transfer therapy has shown significant improvement in
gastrointestinal and behavioral symptoms (Arnold et al., 2019,
Kang et al., 2019, Kang et al., 2020, Li et al., 2021). In addition,
supplementation with probiotics, such as Lactobacillus (L.) reuteri
has been shown to improve social behavior in ASD mice through
the vagus nerve (Sgritta et al., 2019).

Intestinal microbiota has shown significant predictive ability in
disease prediction models. ML modeling of the human microbiome
has the potential to identify microbial biomarkers and aid in
the diagnosis of various diseases, including inflammatory bowel
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disease, diabetes, and colorectal cancer (Topçuoğlu et al., 2020).
Midani et al. (2018) developed an ML model based on intestinal
microbiota that, along with known clinical and epidemiological
risk factors, can predict vibrio cholerae infection. Braun et al.
(2019) analyzed a study on Crohn’s disease (CD) using a
binary/ternary/ratio (BTR) model and found that the microbial
richness of patients with CD in clinical, biomarker, and mucosal
remission was significantly reduced, while the ecological imbalance
index was significantly increased. Verhaar et al. (2022) used an
ML model to study the relationship between intestinal microbiota
composition and AD biomarkers in patients with AD, mild
cognitive impairment (MCI), and subjective cognitive decline
(SCD). Microbiota composition showed the best performance
in predicting amyloid and p-tau levels using ML, with AUC
values of 0.64 and 0.63, respectively. Intestinal microbiota is
not only associated with many gastrointestinal diseases but also
affects other parts of the body, as evidenced by its role in
ASD. Although it has been demonstrated that the number and
structure of intestinal microbiota may be closely related to ASD,
there are few models based on intestinal microbiota to predict
ASD. A recent study used a two-dimensional cellular automatic
mechanism to build a mathematical model to simulate the growth
rate and intestinal nutrients of bifidobacteria, clostridium, and
desulfovibrio, as well as the growth rate and interaction after
lysozyme was introduced into the intestine. The model simulation
revealed that altering the number of Clostridium in the intestine
could cause changes in the intestinal microbiota, potentially
affecting the risk of ASD (Nagaraju et al., 2019). In a study by
Wu et al. (2020), 297 subjects from the sequence read archive

database were evaluated, including 169 ASD patients and 128
neurotypical subjects. Various analyses were conducted, including
α-diversity, phylogenetic profiles, and functional profiles. Principal
component analysis (PCA) showed that ASD and neurotypical
subjects could be distinguished based on unweighted UniFrac
distance. Through linear discriminant analysis effect size (LEfSe)
evaluation and random forest analysis, Prevotella, Roseburia,
Ruminococcus, Megasphaera, and Catenibacterium were identified
as potential biomarkers of ASD. Functional analysis revealed
six significant pathways distinguishing ASD and neurotypical
subjects, including oxidative phosphorylation, nucleotide excision
repair, peptidoglycan biosynthesis, photosynthesis, photosynthesis
proteins, and two-component system. Based on these changes in
the intestinal microbiota of ASD subjects, four ML models were
developed: RF, MLP, kernelized Support Vector Machines (SVMs)
with the RBF kernel, and Decision Tree (DT). Among them, the
RF model demonstrated the best performance achieving an F1
score (a measure of a model’s precision and recall) of 0.74 and an
AUC of 0.827, indicating both reliability and generalizability. The
details of the above ASD ML prediction models based on intestinal
microorganisms are shown in Table 4.

4 Conclusion and perspectives

The research outlined above has demonstrated the effectiveness
of the ML model in predicting ASD using genetic background,
gaze behavior, adverse perinatal conditions, brain MRI data, and
intestinal microbiota. These approaches play a crucial role in

TABLE 4 ASD ML prediction models based on intestinal microorganisms comparative table.

Model Risk factors Samples Accuracy Limitations Ref

The SVM to a
recursive feature
elimina tion (RFE)
algorithm

Vibrio cholerae A stool culture positive for vibrio
cholerae O1 as the sole pathogen.
other contacts within 6 hours of
presentation of the index case as
control at the International
Center for Diarrhoeal Disease
Research, Bangladesh

AUC = 0.80 The sample size is
small and not
representative

(Midani et al., 2018)

The random forest Christensenellaceae and S24.7 in a prospective observational
cohort of patients with quiescent
Crohn’s disease (45 cases, 217
samples) over 2 years or until
clinical flare occurred

AUC = 0.78 The sample is not
representative

(Braun et al., 2019)

The logistic
regression

Leptum, ventriosum group spp.,
Lachnospiraceae spp.,
Marvinbryantia spp., Monoglobus
spp., torques group spp., Roseburia
hominis, Christensenellaceae R-7
spp., Lachnospiraceae spp.,
Lachnoclostridium spp., Roseburia
hominis and Bilophila wadsworthia

170 patients from the Amsterdam
Dementia Cohort, including 33
with Alzheimer’s disease
dementia, mini-mental state
examination (MMSE), 21 with
mild cognitive impairment and
116 with subjective cognitive
decline

AUC = 0.64 and
0.63

The sample is not
representative

(Verhaar et al., 2022)

2-D Cellular
Automaton

Bifidobacterium, Clostridium and
Desulfovibrio

– – There are few types
of bacteria detected
by the model

(Nagaraju et al.,
2019)

The random forest Prevotella, Roseburia,
Ruminococcus, Megasphaera, and
Catenibacterium

297 subjects from the Sequence
Read Archive database, including
169 individuals with ASD and 128
neurotypical subjects

AUC = 0.827 The sample size is
small and not
representative, and
the model still needs
to be optimized

(Wu et al., 2020)
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forecasting the onset and progression of ASD. However, several
improvements are required for enhancing the ML prediction
model: (1) expanding the sample size and predicting factors for
ML; (2) unifying the selection of prediction factors and detection
methods; (3) continuously optimizing, training, and testing ML
models to improve prediction accuracy; and (4) conducting a crowd
cohort study in order to verify the accuracy and feasibility of
the machine model.

The integration and development of ML and prediction models
have been increasingly applied in the medical field (Lee et al., 2022,
Ben-Yacov et al., 2023). ML prediction models for ASD have also
been developed both domestically and internationally (Qiu et al.,
2020, Zhu et al., 2022). This approach presents great challenges and
potential for more effective screening, diagnosis, and treatment in
clinical practice.

ML models discussed in the literature primarily serve two key
purposes:

(1) Feature selection, involving the extraction of the most
discriminative features from the data to be used in
prediction or as a foundation for training ML models;

(2) Classification of ASD and control groups, enabling
the identification of differential features between both
populations and facilitating the detection of ASD-related
characteristics in previously unknown samples.

Most of the presented studies employed traditional ML
techniques, such as SVM, LR, RF, and DT. Among these
techniques, RF was the most frequently utilized due to its superior
performance compared to the other techniques and its relatively
low computational complexity during training. However, neural
network models were solely used, with only classic architectures
such as convolutional neural networks, multilabel convolutional
neural networks, and artificial neural networks, being applied. It is
evident that the discussed intestinal microbiota prediction models
mainly rely on conventional ML algorithms, including RF, SVM,
recursive feature elimination algorithm, and LR. However, AUC
values for these models range from 0.64 to 0.83, indicating that
they have not yet reached optimal performance. To improve model
performance, experience-based algorithms incorporating meta-
heuristic techniques can be employed for intelligent parameter
optimization during model tuning. This approach not only
improves predictive accuracy but also effectively mitigates the
risk of overfitting, especially when considering small sample sizes.
Future research will focus on exploring interpretable AI models
and validating the proposed methods on additional ASD datasets
as they become available, before being applied in clinical settings.

Currently, there is limited research on artificial intelligence in
predicting ASD risk through intestinal microbiota analysis, and
a comprehensive system has not been established yet. The main
problem with ML is the small sample size and the lack of inclusion
of key high-risk factors, which limits the diversity and accuracy of
predictive factors. It is hoped that further research on ML models,
especially the combination of laboratory research and population
cohort studies, can achieve the following goals:

(1) Establishing a library of ASD intestinal microbiota samples,
identifying the target bacteria in the microbiota as biomarkers

using machine models, determining disease risk through
screening these bacteria, and establishing a prediction model
for early disease detection.

(2) Screening high-risk bacteria through ML prediction
models, formulating standardized, refined, and intelligent
treatment measures tailored to the characteristics of ASD
patients, establishing more precise diagnostic standards and
medication guidelines, and providing insights for precision
medical treatment.

(3) Utilizing artificial intelligence to predict intestinal microbiota
patterns as a guide for the prediction and treatment of ASD,
providing a reference for the development of targeted drugs
to regulate microbiota, and reducing the time and cost of
drug development.

(4) Recognizing the deficiencies in underdeveloped countries
medical services within the broader context of global
healthcare disparities, particularly the low professional
standards of doctors, which reflect systemic challenges
in resource allocation, education, and infrastructure
development in underserved regions worldwide. This
issue underscores the need for a more equitable and inclusive
approach to healthcare that addresses both local and global
inequities, ensuring that all individuals, regardless of their
geographic location, have access to quality medical care and
professional expertise.

Early prediction, diagnosis, and treatment of ASD are
crucial for enhancing neurodevelopmental outcomes in children.
Gut microbiota plays a crucial role in the pathogenesis of
ASD through various mechanisms, including the regulation of
metabolites, modulation of immune responses, and activation
of neural signaling pathways. The dynamic variations in gut
microbiota present potential targets for early prediction and
intervention in ASD. However, the translation of basic research
into clinical practice encounters several challenges, such as
methodological limitations, data integrity issues, and ethical
considerations. Addressing privacy, data deficiency and ethical
issues in population surveys is not a matter of a single technical
approach, but a systematic project that runs through the entire
research life cycle and integrates legal compliance, technical
safeguards, ethical principles and scientific rigor. Always placing
the rights, dignity and well-being of participants at the core is
the cornerstone of ensuring that research is scientifically effective
and responsible. Moreover, the integration of multidisciplinary
technologies, including single-cell omics and AI analytics, is
essential for explaining the complex networks involved in gut-brain
interactions.

Future research should focus on the development of
microbiota-based diagnostic tools and precision therapeutic
strategies that selectively target specific microbial communities.
Such approaches hold significant promise for improving
neurodevelopmental outcomes for individuals with ASD.
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