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Introduction: Polygonatum kingianum is a well-known medicinal herb with

proven bioactivities; however, little is known about the e�ects of its

polysaccharide on intestinal injuries in animals induced by lipopolysaccharide

(LPS).

Methods: A total of 30 Institute of Cancer Research (ICR) mice were divided

into control (CH), induced (MH), and treated (H) groups. Mice in group H were

supplemented with 100mg/kg Polygonatum kingianum polysaccharides, while

groups C and M were treated with the same amount of normal saline by gavage

for 18 days. On the 18th day animals in groups M and H were induced by LPS

(10mg/kg).

Results: The results showed the weight of mice in group MH significantly

dropped (P < 0.0001), while mice in the PK group had a higher weight (P < 0.01).

Pathological analysis found that the majority of the villi in mice induced by LPS

were broken and short, while PK-treated animals had longer and considerably

integrated villi. The villi length in groups CH (P < 0.0001) and H (P < 0.0001) was

longer than that in group M, and the value of villi length/crypt depth in group MH

was smaller than that in groups CH (P < 0.0001) and H (P < 0.0001), while the

crypt depth in group MH was higher than in groups CH (P < 0.0001) and H (P <

0.0001). Serum inspection showed that MAD (P < 0.05), IL-1β (P < 0.05), IL-6 (P <

0.05), and TNF-α (P < 0.01) were significantly higher in group MH, while SOD (P

< 0.001), T-AOC (P < 0.01), and GSH-Px (P < 0.01) were notably higher in groups

CH and H. Microbiome sequencing of mice obtained 844,477 raw and 725,469

filtered reads. There were 2,407 ASVs detected in animals, and there were 312

and 328 shared ASVs between CH and MH, and CH and H, respectively. There

were 5 phyla and 20genera of remarkable bacteria found among mice groups

including genera of Escherichia, Pseudomonas_E, Mailhella, Paramuribaculum,

NM07-P-09,Odoribacter, Nanosyncoccus, SFM01,Onthenecus, Clostridium_Q,

UBA6985, Ructibacterium, UBA946, Lachnoclostridium_B, Evtepia, CAG-269,

Limivicinus, Formimonas, Dehalobacterium,Dwaynesavagella, andUBA6985.We

revealed that Polygonatum kingianum polysaccharide could alleviate intestinal

injuries by promoting oxidation resistance, decreasing inflammatory responses,

and accommodating the intestinal microbiota of mice.

Discussion: Our results suggest the possibility of developing novel therapies for

intestinal diseases.

KEYWORDS

Escherichia, Pseudomonas_E, Mailhella, Paramuribaculum, NM07-P-09, Odoribacter,

Nanosyncoccus, SFMI01
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1 Introduction

The intestine is a complex organ that plays a crucial role in

digestion, nutrient assimilation, immune function, and overall host

health (Hickey et al., 2023). Intestinal injury is a common symptom

of many conditions, including radiation therapy-related diseases

(Lin et al., 2023), heat stress (Li et al., 2020), inflammatory bowel

disease (Li H. et al., 2023; Li et al., 2023a,b), and infectious diseases

(Donaldson et al., 2022). However, treating intestinal damage

remains challenging, and novel therapies are urgently needed (Ling

et al., 2024; Cho et al., 2021; Yang et al., 2022).

Traditional Chinese medicine (TCM) has been used effectively

to treat different diseases in history (Huang et al., 2021), such

as ulcerative colitis (Liu et al., 2022), liver disease (Zhu et al.,

2023), and inflammatory bowel disease (Yang L. et al., 2021).

Polygonatum kingianum is a well-known medicinal herb in TCM,

grown in Yunnan, China. It is known for its bioactivities, including

immuno-enhancement, anti-aging, anti-fatigue properties, and the

regulation of glucolipid metabolism (Dong et al., 2021; Li X. et al.,

2023). There are several effective constituents in this herb-like

plant: polysaccharides, saponins, phenolics, and flavonoids (Yang

et al., 2020). Previous studies found that Polygonatum kingianum

polysaccharide (PKP) could promote glucolipid metabolism (Gu

et al., 2020), regulate microbiota and short-chain fatty acids (Yang

M. et al., 2021), and enhance immunity (Su et al., 2023).

The gut microbiota is composed of billions of microorganisms

including prokaryotes and eukaryotes (Lozupone et al., 2012),

which play important roles in the host’s immunity, nutrient

absorption, metabolism, and overall health (Adak and Khan, 2019).

Gut dysbiosis was associated with inflammatory, metabolic, and

neurodegenerative diseases (Levy et al., 2017), Crohn’s disease

(Caparrós et al., 2021), and inflammatory bowel diseases (Haneishi

et al., 2023). Lipopolysaccharide is a crucial adjective membrane

structural component of Gram-negative microbes (Sweeney and

Lowary, 2019), which can stimulate immune response and promote

the secretion of pro-inflammatory factors (Mohr et al., 2022).

Previous studies reported that LPS caused intestinal damage and

intestinal flora disorder (Izadparast et al., 2022; Yan et al., 2022).

However, little information is available regarding the influence of

Polygonatum kingianum polysaccharide on intestinal injuries in

animals induced by LPS. Therefore, this study was conducted to

investigate the mediating effect of PKP on mice challenged by LPS

by regulating antioxidant ability and microbiota.

2 Materials and methods

2.1 Animal experiment

Thirty ICR mice (4 weeks, 22.81 ± 0.98 g) with the same

amount of male and female animals were procured from the

experimental animal center at Yangzhou University. All those

rodents were given 3 days for acclimatization and then divided

into control (CH), induced (MH), and treated (H) groups. Mice

in the H group were supplemented with 100 mg/kg Polygonatum

kingianum polysaccharide (Yuanye Bio-Technology Co., Ltd,

Shanghai, China), while the C and M groups were treated with an

even volume of normal saline by gavage for 18 days. On the 18th,

animals in the M and H groups were induced by LPS (10 mg/kg)

(Meng et al., 2024; Peng et al., 2024), and then those animals were

euthanized to obtain blood and intestine samples the next day.

2.2 Pathological staining

Approximately 1–2 cm tissue samples of the jejunum and ileum

frommice in the CH,MH, andH groups were kept in formaldehyde

solution (4%) for more than 2 days and then used for H&E staining

in Wuhan Pinuofei Biological Technology (China). Pathological

examination was performed using Olympus CX23 (Olympus Co.,

Japan), and the villus height and crypt depth of enteric samples

were measured as per the guidelines of published studies (He et al.,

2023; Chen et al., 2022).

2.3 Serum oxidation resistance and
inflammation levels detection

All the mice blood samples were centrifuged at 4,000 g x 8min

to isolate serums for oxidation resistance and inflammation level

detection using assay kits of malonaldehyde; superoxide dismutase;

total anti-oxidation capacity; glutathione peroxidase; interleukins-

−1β, IL-6, and IL-10; and tumor necrosis factor alpha bought from

Jiancheng Bioengineering Research Institute (Nanjing, China) and

Solarbio Life Science (China).

2.4 Flora sequencing

The microbial DNA of rectal contents from three mice

in each group was extracted by applying a stool genomic

DNA extraction kit (Solarbio, China). The product quality was

then confirmed using a NanoDrop OneC (Thermo Scientific,

USA) and agarose gel electrophoresis (1.2%), as previously

described in studies by Mattei et al. (2019) and Zhang X. et

al. (2022). The V3-4 gene of 16S rRNA of the microbes in

mice in different groups was magnified by piloting objective

primers 338F/806R (F: 5′-ACTCCTACGGGAGGCAGCAG-3′,

R:5′-GGACTACHVGGGTWTCTAAT-3′) (Yu et al., 2020). Finally,

sequencing libraries for mice from the C, M, and H groups were

constructed using an NGS Tn5 DNA library prep kit (Ruikang

Technology Co., LTD, Beijing, China) for further sequencing

through the Illumina platform at Bioyi Biotechnology Co., Ltd.

(Wuhan, China) (Kong et al., 2024).

2.5 Sequencing data analysis

The raw sequencing data from mice in groups C, M, and H

were quality-filtered using DADA2 (Callahan et al., 2016), and

characteristic tabulation of amplicon sequence variant (ASV) was

generated using QIIME2 (Nagarajan et al., 2023). The co-existing

ASVs were examined and presented using a Venn map (Dou et al.,

2023). ANOVA and LEfSe were used to screen markedly different

bacterial taxa between rodent animal groups (Wells et al., 2022;
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Lv et al., 2023). The diversity analysis of alpha (observed species,

Chao1, Shannon, Simpson, Faith’s PD, and Pielou’s evenness)

and beta diversity (principal coordinate analysis and non-metric

multidimensional scaling) analyses were performed to estimate the

bacterial diversity, evenness, and richness of samples and group

structure variation in mice samples using QIIME2 (Long et al.,

2023; Zhong et al., 2023; Deng et al., 2021; Zhang Y. et al., 2022).

Finally, the microflora function was predicted using PICRUSt2 (Li

et al., 2023a,b), and functional differences among the CH, MH,

and H groups were examined by annotating with the KEGG and

MetaCyc databases.

2.6 Statistical analysis

Variances among the CH, MH, and H groups were assessed

using ANOVA and Student’s t-test relying on IBM SPSS (26.0). The

mice data were presented as means± standard deviation (SD), with

P < 0.05 considered statistically significant.

3 Results

3.1 PK relieved intestinal damage in mice
caused by LPS

The body weight of animals in the PK group was marginally

higher than that in the CH and MH groups (Figure 1A), and after

LPS inducing, the weight of mice in the MH group significantly

dropped (P < 0.0001), while mice in the PK group had a higher

weight (P < 0.01) (Figure 1B). Pathological analysis found that the

majority of the villi in mice induced by LPS were broken and short,

while PK-treated animals had longer and considerably integrated

villi. The villi length in the CH (P < 0.0001) and H (P < 0.0001)

groups was longer than that in the M group, and the value of villi

length/crypt depth in the MH group was smaller than that in the

CH (P < 0.0001) and H (P < 0.0001) groups, while the crypt depth

in the MH was higher than that in the CH (P < 0.0001) and H

groups (P < 0.0001) (Figures 1C, D).

3.2 PK-mediated serum oxidation
resistance and inflammation levels

Serum inspection showed that MAD (P < 0.05), IL-1β (P <

0.05), IL-6 (P < 0.05), and TNF-α (P < 0.01) were significantly

higher in the MH group, while SOD (P < 0.001), T-AOC (P <

0.01), and GSH-Px (P < 0.01) were notably higher in the CH and

H groups (Figure 2).

3.3 PK partly renovated the composition of
intestine microflora in mice

Over 77,500 (CH), 69,600 (MH), and 98,300 (H) raw reads and

66,700 (CH), 57,800 (MH), and 85,000 (H) filtered sequences were

identified in mice (Table 1). Alpha diversity calculation found that

the rarefaction curves of all mice were horizontal lines after a short

rise (Figure 3A), and the rank abundance curves in groups CH,

MH, andHwere all flat horizontal lines (Figure 3B), which revealed

that those mice samples were sufficient with higher evenness. The

index result presented no noticeable difference among the CH,MH,

and H groups (Figure 3C; Table 2).

At the phylum level, Bacteroidota (45.74%), Firmicutes_D

(34.09%), and Firmicutes_A (7.87%) were the dominating phyla

in the CH group, Campylobacterota (34.14%), Bacteroidota

(27.70%), and Firmicutes_D (17.67%) were the primary phyla

in group MH, while Proteobacteria (36.67%), Firmicutes_D

(22.09%), and Bacteroidota (22.00%) were mainly found in group

H (Figure 4A). At the class level, Bacteroidia (45.74%), Bacilli

(34.09%), and Clostridia (7.87%) were the primary classes in

group CH, Campylobacteria (34.14%), Bacteroidia (27.70%), and

Bacilli (17.67%) were the primary classes in the MH group, while

Gammaproteobacteria (36.67%), Bacilli (22.09%), and Bacteroidia

(22.00%) were the primary classes in the H group (Figure 4B).

At the order level, Bacteroidales (45.16%), Erysipelotrichales

(23.90%), and Lactobacillales (7.49%) were the dominating orders

in CH, Campylobacterales (34.14%), Bacteroidales (27.58%),

and Lactobacillales (15.30%) were the main orders in MH,

while Enterobacterales_A (36.28%), Bacteroidales (21.94%), and

Lactobacillales (17.88%) were mainly detected in H (Figure 4C).

At the family level, Muribaculaceae (38.84%), Erysipelotrichaceae

(23.46%), and Lactobacillaceae (5.75%) were the primary families

in CH, Helicobacteraceae (34.14%), Muribaculaceae (22.03%),

and Lactobacillaceae (9.07%) were the primary families in

MH, while Enterobacteriaceae_A (36.27%), Lactobacillaceae

(17.46%), and Muribaculaceae (15.98%) were the main families

in H (Figure 4D). At the genus level, Faecalibaculum (17.67%),

unclassified_Muribaculaceae (9.93%), and Paramuribaculum

(7.86%) were mainly examined in CH, Helicobacter_D (34.02%),

unclassified_Muribaculaceae (6.89%), and Lactobacillus (6.60%)

were the stable genera in MH, while Escherichia (35.67%),

Lactobacillus (12.10%), and Akkermansia (5.31%) were the primary

genera in group H (Figure 4E).

3.4 PK a�ected the bacteria abundance in
the intestinal flora of mice induced by LPS

The Venn graph revealed that there were 2,407 ASVs

detected in animals, and 239 ASVs were found in all groups.

There were 312 and 328 shared ASVs between CH and

MH, and CH and H, respectively (Figure 5A). Beta diversity

analysis showed that the distance between CH and H was

shorter than between CH and MH; however, it was not

significant (P > 0.05) (Figures 5B–E). Heatmap analysis

showed that Enterenecus, UBA3263, Bacteroides_H, Mailhella,

Malacoplasma_A, Kineothrix, Helicobacter_D, Mucispirillum,

Lawsonibacter, CAG-83, Streptococcus, and Rikenella were higher

in MH, Dubosiella, Cryptobacteroides, NM07-P-09, Anaerotruncus,

Odoribacter, Parasutterella, OLB9, UBA7173, Turicimonas,

CAG-485, Faecalibaculum, Romboutsia_B, Turicibacter,

Paramuribaculum, Prevotella, Duncaniella, Parabacteroides_B,

UBA3282, Bifidobacterium, and Muribaculum were higher

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1492710
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Qiu et al. 10.3389/fmicb.2025.1492710

FIGURE 1

PK remitted intestinal damages in mice induced by LPS. (A) body weights, (B) weight changes after LPS inducing, (C) pathological analysis of the

jejunum, (D) pathological analysis of the ileum. Scale bar 50mm. Significance is presented as **P < 0.01 and ****P < 0.0001; data are presented as the

mean ± SEM.

FIGURE 2

PK-mediated serum oxidation resistance and inflammation levels. (A) MDA, (B) SOD, (C) T-AOC, (D) GSH-Px, (E) IL-1β, (F) IL-6, (G) IL-10, (H) TNF-α.

Significance is presented as *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001; data are presented as the mean ± SEM (n = 3).
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TABLE 1 Sequencing data analysis.

Samples Input Filtered Denoised Merged Non-chimeric Non-singleton

C7 109,571 94,165 93,457 91,222 89,287 89,276

C8 77,595 66,732 66,220 64,699 62,627 62,623

C9 93,485 80,911 80,129 76,605 69,203 69,191

M7 94,503 81,298 79,642 71,955 54,068 53,984

M8 96,857 82,914 81,468 74,032 49,040 48,964

M9 69,679 57,817 56,896 54,426 54,420 54,413

H1 103,734 89,135 87,890 82,916 70,158 70137

H2 100,679 87,493 86,020 78,166 58,507 58,401

H3 98,374 85,004 84,071 79,914 68,723 68,684

FIGURE 3

Alpha diversity analysis. (A) rarefaction curve, (B) rank abundance curve, (C) indices.

in CH, while Limosilactobacillus, Lactobacilus, Adlercreutzia,

Ligilactobacillus, Escherichia, Phocaeucola_A, Helicobacter_C,

Eubacterium R, and Klebsielia is changed (Figure 6A). LEfSe

showed that Limivicinus (P < 0.05), Staphylococcaceae (P <

0.05), Peptostreptococcaceae (P < 0.05), Staphylococcales (P <

0.05), Staphylococcus (P < 0.05), Mammaliicoccus (P < 0.05),

and Romboutsia_B (P < 0.05) were significantly higher in CH,

while Helicobacter_D (P < 0.05) was significantly higher in MH

(Figure 6B).

ANOVA analysis showed that compared to group CH, the

phylum of Proteobacteria was significantly higher in H (P < 0.05),

Desulfobacterota_I (P < 0.05) was markedly higher in group MH,

while Patescibacteria was significantly higher in group CH than

in MH. The enrichment of Gemmatimonadota (P < 0.01) and

Firmicutes_B (P < 0.05) in animals in groups MH and H was

obviously lower than that in CH (Figure 7A). Compared to the

genus in group CH, Escherichia (P < 0.05) and Pseudomonas_E

(P < 0.05) were dramatically higher in H, Mailhella (P < 0.05)

was higher in MH, while Paramuribaculum (P < 0.05), NM07-

P-09 (P < 0.05), Odoribacter (P < 0.05), Nanosyncoccus (P <

0.05), SFMI01 (P < 0.05), Onthenecus (P < 0.05), Clostridium_Q

(P < 0.05), UBA6985 (P < 0.01), and Ructibacterium (P <

0.05) were significantly lower in MH, and UBA946 (P < 0.05)

and Lachnoclostridium_B (P < 0.001) were significantly lower in

group H. The abundances of Evtepia (P < 0.05), CAG-269 (P

< 0.05), Limivicinus (P < 0.05), Formimonas (P < 0.05), and
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TABLE 2 Alpha diversity index analysis.

Sample Chao1 Simpson Shannon Pielou_e Observed
species

Faith_pd

C7 498.923 0.983961 6.93431 0.776175 489.1 29.2839

C8 341.112 0.932804 5.50483 0.655437 337.5 24.949

C9 410.492 0.916575 5.76176 0.666269 401.1 27.543

M7 527.151 0.950349 5.94775 0.659001 521.1 33.0177

M8 525.47 0.958627 6.13969 0.680038 522.2 33.1186

M9 91.2128 0.274758 1.11136 0.17111 90.2 143.277

H1 424.103 0.919352 5.23389 0.601834 414.9 30.2541

H2 546.348 0.953004 6.00414 0.662206 536.3 37.2844

H3 287.919 0.79045 3.62598 0.447504 274.9 23.6465

FIGURE 4

PK-mediated the intestinal microbiota in LPS-induced mice in di�erent taxa. (A) phylum, (B) class, (C) order, (D) family, (E) genus.

Dehalobacterium (P < 0.05) in group CH were significantly higher

than those in groups BH and H. Dwaynesavagella (P < 0.05) and

UBA6985 (P < 0.05) in group H were significantly higher than

those in group MH (Figure 7B).

3.5 PK a�ected the intestinal flora function
of mice induced by LPS

The KEGG analysis found that styrene degradation in group

CH (P < 0.05) and H (P < 0.05) was significantly lower

than that in group MH. The degradation of chloroalkane and

chloroalkene in H was observed to be lower than that in MH

(P < 0.05). Pathways of bacterial invasion of epithelial cells

(P < 0.0001), mRNA surveillance pathway (P < 0.0001), and

caprolactam degradation (P < 0.0001) were significantly higher

in CH, while toluene degradation (P < 0.0001), meiosis yeast

(P < 0.0001), hypertrophic cardiomyopathy (P < 0.0001), for

benzoate degradation (P < 0.0001), biosynthesis of annamycin’s (P

< 0.001), phosphonate and phosphonate metabolism (P < 0.001),

histidine metabolism (P < 0.01), valine, leucine and isoleucine

biosynthesis (P < 0.01), epithelial cell signaling in Helicobacter

pylori infection (P < 0.01), phenylalanine, tyrosine and tryptophan

biosynthesis (P < 0.01), NOD-like receptor signaling pathway
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FIGURE 5

ASV Venn map and beta diversity of the gut flora in mice in di�erent groups. (A) Venn chart, (B) PCo-A, (C) NMDS, (D) UPGMA, (E) group distance.

FIGURE 6

Heatmap and LEfSe analysis of mice microbiota in di�erent groups. (A) Heatmap, (B) LEfSe.
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FIGURE 7

Revealing microbiota di�erences in mice in di�erent groups using ANOVA analysis. (A) phyla, (B) genus. Significance is presented as *P < 0.05, **P <

0.01, and ***P < 0.001; data are presented as the mean ± SEM (n = 3).

FIGURE 8

KEGG function analysis of mice microbiota.

(P < 0.05), inositol phosphate metabolism (P < 0.05), arginine

and proline metabolism(P < 0.05), valine, leucine, and isoleucine

degradation (P < 0.05), basal transcription factors (P <0.05),

alanine, aspartate and glutamate metabolism (P < 0.05), carbon

fixation in photosynthetic organisms (P < 0.05) and glycine, serine

and threonine metabolism(P < 0.05) in H is decreased (Figure 8).

The MetaCyc pathway analysis showed that PWY-6629 (P

< 0.0001), Argdeg-PWY (P < 0.0001), Ornargdeg-PWY (P <

0.0001), Methglyyt-PWY (P< 0.0001), Kdo-Naglipasyn-PWY (P<

0.0001), Ecasyn-PWY (P < 0.0001), Entbacsyn-PWY (P < 0.0001),

Hcamhpdeg-PWY (P < 0.001), PWY-6690 (P < 0.001), PWY-

7446 (P < 0.001), 3-Hydroxyphenylacetate-Degradation-PWY (P

< 0.01), PWY0-1277 (P < 0.01), PWY0-1338 (P < 0.05), PWY-

5088 (P < 0.05), Ast-PWY (P < 0.05), Ketogluconmet-PWY (P

< 0.05), and Orndeg-PWY (P < 0.05) were markedly higher in

group CH, while PWY490-3 (P < 0.01) was higher in group MH.

P381-PWY in MH was significantly higher in group MH than in

groupH (P< 0.01). There were 186 dramatically different pathways
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FIGURE 9

MetaCyc pathway analysis of mice microbiota.

between groups CH and H, such as Methglyut-PWY (P < 0.0001),

Hcamhpdeg-PWY (P < 0.0001), and PWY-6690 (P < 0.0001) were

significantly higher in group CH, while PWY-7007 (P < 0.0001),

PWY490-3 (P < 0.0001), PWY-6478 (P < 0.0001), and others were

significantly higher in group H (Figure 9).

4 Discussion

Plant polysaccharides are natural macromolecules that have

gained increasing attention in pharmacological research (Yin et al.,

2019). These polysaccharides exhibit a range of biofunctions,

including immune adjustment, antioxidant properties, anti-

inflammation effects, anti-tumor activity, and anti-microbe

functions (Yin et al., 2019; Wang et al., 2018). Among them, PKP

is an important herbal polysaccharide that has received relatively

little attention. In this study, we examined the therapeutic effects

of PKP on intestinal injuries in mice challenged with LPS, focusing

on its antioxidant properties and microbiota composition.

The weigh analysis showed that LPS caused obvious weight

loss in mice (Figure 1), which was in agreement with a previous

study (Zhang et al., 2019), and PKP could increase the body weight

of mice significantly. Pathological results further showed that LPS

seriously damaged the villi integrity in mice with shorter villi length

and higher crypt depth, while animals supplemented with PKP had

better villi with longer villi length and lower crypt depth (Figure 1).

Those results demonstrated that PKP could alleviate weight loss in

LPS-induced animals by maintaining the integrity of the villi.

Then, we analyzed the serum antioxidant properties and

inflammation levels of mice and found that LPS increased the levels

ofMAD, IL-1β, IL-6, and TNF-α, while it reduced the levels of SOD,

T-AOC, and GSH-Px in mice (Figure 2), which were in line with

the results reported in LPS-induced animals (Bian et al., 2022; Cao

et al., 2018). GSH-Px, SOD, and T-AOC are important antioxidant

enzymes inhibiting oxidation damage caused by reactive oxygen

species accumulation due to the imbalance of oxidation–reduction

homeostasis induced by LPS (Shu et al., 2022). MAD is a well-

known biomarker of oxidative stress (Tsikas, 2017). The lower

contents of this enzyme and higher levels of antioxidant enzymes

in PKP-treated animals showed that PKY could mediate intestinal

damage by enhancing antioxidant capacity in mice. IL-1β, IL-6,

and TNF-α are commonly recognized pro-inflammatory factors in

many pathological reactions (Zheng et al., 2023). The lower levels

of those inflammatory factors in PKY-treated mice showed that this

polysaccharide could decrease inflammatory response in animals.

Furthermore, we performed microbiome sequencing of mice

and obtained 844,477 raw and 725,469 filtered reads (Table 1).

There were 2,407 ASVs detected in animals, and there were 312

and 328 shared ASVs between CH and MH, and CH and H,

respectively (Figure 5A). A noticeable difference in alpha diversity

was not detected in mice, which was in agreement with the

results in LPS-stimulated animals (Li et al., 2023a,b), but not

in line with the results in LPS-challenged laying hens (Feng

et al., 2023) and piglets (Li et al., 2024). In different taxa, LPS

changed the structure of microbiota and the potential function of

mice, and PKP could partly restore the microbiota composition

and function of mice (Figures 4, 8, 9). At the phylum level, the

ratio of Firmicutes/Bacteroidota was 0.92, 0.64, and 1.00 in CH,

MH, and H, respectively. As the Firmicutes/Bacteroidota value
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is accepted as an indicator of dysbiosis (Xu et al., 2023), the

current results confirmed that PKP could regulate the microbiota

of mice. Finally, we explored the obviously changed bacteria

among different mice groups and found 5 phyla and 20 genera of

remarkable bacteria (Figure 7). Among them, a higher enrichment

of Mailhella was examined in Mycoplasma hyorhinis-infected pigs

(Zhang et al., 2023); the lower enrichment of these genera in group

H inferred that PKP could regulate intestinal damage by inhibiting

the growth of Mailhella. A lower abundance of Clostridium was

detected in preclinical Alzheimer’s disease (Jung et al., 2022). The

higher enrichment of these genera in group H showed that PKP

could maintain intestine health by promoting the colonization

of Clostridium. Paramuribaculum is a butyrate-producing and

commensal genus (Fang et al., 2023). The higher enrichment of

these bacteria in groupH revealed that PKP could keep the intestine

healthy by promoting the growth of butyrate-producing bacteria.

5 Conclusion

We demonstrated that Polygonatum kingianum

polysaccharide could alleviate intestinal injuries by promoting

oxidation resistance, decreasing inflammatory responses,

and accommodating the intestinal microbiota of mice. Our

results suggest the possibility of developing novel therapies for

intestinal diseases.
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