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Introduction: The global rise in antibiotic resistance and emergence of

new bacterial pathogens pose a significant threat to public health. Novel

approaches to uncover potential novel diagnostic and therapeutic targets for

these pathogens are needed.

Methods: In this study, we conducted a large-scale, phylogenetic-based

orthology analysis (OA) to compare the proteomes of pathogenic to humans

(HP) and non-pathogenic to humans (NHP) bacterial strains across 734 strains

from 514 species and 91 families.

Results: Using a dedicated workflow, we identified 4,383 hierarchical

orthologous groups (HOGs) significantly associated with the HP label, many of

which are linked to critical factors such as stress tolerance, metabolic versatility,

and antibiotic resistance. Both known virulence factors (VFs) and potential novel

widespread pathogenicity determinants were uncovered, supported by both

statistical testing and complementary protein domain analysis.

Discussion: By integrating curated strain-level pathogenicity annotations from

BacSPaD with phylogeny-based OA, we introduce a novel approach and provide

a novel resource for bacterial pathogenicity research.

KEYWORDS

bacterial pathogenicity, orthology analysis, comparative proteomics, therapeutic
targets, diagnostic methods

1 Introduction

The growing threat of antibiotic-resistant bacterial pathogens emphasizes the critical
need to discover potential new determinants of pathogenicity for advancing therapeutic
strategies. Databases such as the Virulence Factor Database (VFDB) catalog experimentally
validated virulence factors (VFs) of pathogenic to humans (HP) bacteria (Liu et al., 2022),
but the continual emergence of new pathogens underscores the need for methods that
can uncover potential novel widespread pathogenicity determinants not yet captured in
existing resources to be prioritized for future research.
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Efforts to computationally identify genes, proteins, or domains
associated with bacterial pathogenicity have been conducted in
both plant- and human-associated bacteria. Studies by Studholme
et al. (2005) and te Molder et al. (2021) have developed
pathogenicity prediction tools and assessed protein domain-based
analysis respectively for plant pathogens, while research by Naor-
Hoffmann et al. (2022), Lobb et al. (2021), and Cosentino et al.
(2013) have developed pathogenicity prediction tools for human
pathogens. These studies have provided broad-spectrum insights
into pathogenic traits. However, they primarily relied on protein
families defined through sequence-based comparisons, which may
overlook deeper evolutionary relationships (Altenhoff et al., 2019;
Emms and Kelly, 2019). This is particularly important to be
considered in bacteria, where processes such as horizontal gene
transfer and gene duplications can introduce functionally similar
proteins from different species or result in multiple copies of
a gene within the same organism. Both mechanisms contribute
to genetic diversity, even among proteins with similar functions,
complicating sequence-based comparisons and the identification
of potential novel conserved pathogenicity determinants. This
complexity necessitates advanced computational approaches that
consider both sequence and evolutionary context, such as orthology
analysis (OA), which group proteins by shared ancestry (Altenhoff
et al., 2019; Emms and Kelly, 2019).

Several studies have combined comparative genomics and
proteomics with orthology-based analysis in bacteria to uncover
conserved genes and identify potential novel therapeutic targets.
For example, Aswal et al. (2020) utilized cross-genus proteomic
analysis to identify granuloma-associated proteins in Yersinia
pseudotuberculosis. Similarly, studies on Pseudomonas aeruginosa
(Sood et al., 2019) and Corynebacterium species during a diphtheria
outbreak (Xiaoli et al., 2023) focused on genomic plasticity and
positive selection in core genes associated with virulence. In
addition, Cuadrat et al. (2014) investigated conserved genes across
diverse organisms, including protozoa, prokaryotes, and model
eukaryotes, with a focus on gene function conservation. The latter
relied on model organisms to provide a comparative framework.

However, the algorithms applied for OA in these studies lacked
phylogenetic context, limiting their ability to reliably uncover
potential novel pathogenicity determinants. An approach based
on hierarchical orthogroups (HOGs), on the other hand, could
overcome this challenge by accounting for both speciation events
(evolutionary divergence) and gene duplications. This generally
allows for a more accurate inference of protein function across
species (Emms and Kelly, 2019). Additionally, the mentioned
studies have a narrow focus, concentrating on specific bacterial
species, genus, pathogenic pathways or core genes. The previous
lack of a curated database for pathogenicity annotations likely
constrained these studies by limiting the inclusion of a broader
diversity of bacterial strains, species, and families. This gap may

Abbreviations: HP, Pathogenic to humans; NHP, Non-pathogenic to
humans; OA, Orthology analysis; HOGs, Hierarchical orthologous groups;
VF, Virulence factor; VFDB, Virulence Factor Database; BacSPaD, Bacterial
Strains’ Pathogenicity Database; FDA-ARGOS, U.S. Food and Drug
Administration - Advanced Research for Genomic Observations; SDR,
Short-chain dehydrogenase/reductase; FDR, False Discovery Rate; BV-BRC,
Bacterial and Viral Bioinformatics Resource Center.

have also compelled researchers to rely on erroneous assumptions
regarding their pathogenicity annotations (Ribeiro et al., 2024).

In this study, we introduce a novel approach for identifying
potential new and widespread bacterial pathogenicity determinants
by applying a phylogenetic-based OA across a wide spectrum
of bacterial taxa coupled with rigorously curated strain-level
pathogenicity annotations. Our method prioritizes genome
completeness and precise annotations. By analyzing 734 strains
from 514 species with these annotations, we could redefine
bacterial proteomes with HOGs across 23% of currently known
bacterial species able to infect humans and uncover potential novel
widespread pathogenicity determinants, including most common
pathogens, as demonstrated by a comparison with a comprehensive
list of human-associated pathogens (Bartlett et al., 2022) and the
FDA-ARGOS Wanted Organism list (Sichtig et al., 2019). This
ensured the inclusion of clinically relevant species, genera, and
families across 12 major bacterial phyla. Through the integration
of strain-level pathogenicity data from the Bacterial Strains’
Pathogenicity Database (BacSPaD) (Ribeiro et al., 2024) and a
dedicated workflow using phylogenetic-based OA, we identified
4,383 HOGs associated with HP strains, highlighting both known
VFs and potential novel widespread ones. These lists coupled with
highlighted candidates, the resulting approach, framework and
remaining HOGs data may provide important guidance for future
bacterial pathogenicity research.

2 Materials and methods

2.1 Data acquisition and statistics-based
selection

An initial dataset of annotations for high-quality and complete
genome sequences labeled according to their pathogenicity to
humans was retrieved from the BacSPaD database (Ribeiro et al.,
2024)1. This dataset is also available in Zenodo2 for reference. The
HP and non-pathogenic to humans (NHP) strain categories in
this database were defined based on documented associations with
infectious processes, using a rule-based framework that integrates
reliable metadata from medical and experimental observations.
Each entry was rigorously and manually curated to ensure accuracy.

Genomes were then subject to a rigorous filtering and selection
process to ensure a balance between data quantity and quality for
OA, while ensuring representativity for each species. This process
aimed to minimize the impact of potential assembly artifacts,
contamination, and annotation errors.

Firstly, genomes were filtered to retain only those with a
CheckM (version 1.1.6; Parks et al., 2015) completeness score over
95% and for which the corresponding proteomes contained at least
500 proteins.

Secondly, species were categorized based on the number of
available genomes, and for species with more than two genomes,
a score-based selection process was applied to select representative
genomes for each species. This process involved computing

1 https://bacspad.altrabio.com/

2 https://zenodo.org/records/13235447
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three z-scores for each, based on the number of protein-coding
sequences, CheckM completeness, and CheckM contamination
(inverted, with lower contamination being better) within its species
group. The final score for each genome was calculated as the
mean of these z-scores, providing a single metric to assess overall
genome quality and completeness. Thereafter, genomes were
ranked according to their scores. For species containing uniformly
labeled genomes (either HP or NHP), the top two genomes were
directly selected based on their final scores. For species containing
mixed labeled genomes (HP and NHP, based on manual curation
from the BacSPaD database, as previously mentioned in section
2.1), the top-scoring genome within each pathogenicity group was
selected based on quality metrics (completeness, contamination,
and number of protein-coding sequences). To further evaluate
the taxonomical representativeness of both the OA and statistical
analysis datasets, we compared it with the HP bacteria listed by
Bartlett et al. (2022). This comparison was performed at species,
genus, and family levels. Coverage percentages were calculated,
and Venn diagrams depicting overlaps were generated. In addition,
we assessed the number of the most common pathogens included
in our dataset using the FDA-ARGOS Wanted Organism List as
reference.

2.2 Inference of HOGs using OrthoFinder
for phylogenetic-based OA

HOGs were inferred using OrthoFinder v2.5.5 (Emms and
Kelly, 2019), which delineates orthogroups by combining sequence
similarity with phylogenetic relationships. The phylogeny used
in this analysis is based on the NCBI taxonomy framework,
which OrthoFinder utilizes to construct species trees and
infer hierarchical orthogroups. The phylogenetic distance in
OrthoFinder was calculated using a species tree inferred from
concatenated alignments of single-copy orthologs, following
OrthoFinder’s built-in pipeline (Emms and Kelly, 2019).
DIAMOND (Buchfink et al., 2015) was used for rapid, all-
versus-all protein sequence comparisons, with scores normalized
based on sequence length and phylogenetic distance.

2.3 Data processing, statistical analysis,
and clustering

HOG data was converted into a binary matrix indicating the
presence or absence of each HOG across the strains. The ones
present in fewer than three strains were excluded from further
analysis. Then, manually curated pathogenicity annotations from
the BacSPaD database (Ribeiro et al., 2024) were associated with the
corresponding proteomes, and each HOG was named according to
the its most frequent protein name, as determined by a majority
vote.

To identify HOGs significantly associated with either the HP
or NHP label, we applied a two-sided Fisher’s exact test. This
test, which detects significant associations in both directions,
offers a thorough and cautious evaluation, making it particularly
well-suited for identifying potential HP-related HOGs. Following
Benjamini-Hochberg correction for multiple testing, HOGs with

an FDR-adjusted p-value < 0.05 were subsequently ranked based
on the number of HP and NHP strains in which they were present,
as well as their FDR values.

To ensure the selection of a biologically and statistically
meaningful subset of HOGs for further exploration, we performed
an inflection analysis on the combined ranking scores of all
significant HOGs. This included both the application of the kneedle
algorithm (Satopaa et al., 2011) for global inflection detection and a
first derivative (slope) analysis of the ranked scores to capture local
transitions for the top 500 HOGs.

Hierarchical clustering was then applied to the top ranked
HOGs significantly associated with the HP label based on the
threshold from the inflection analysis and respective strains using
Euclidean distance and complete linkage to reveal patterns of
association with the HP strains. For this, we used a binary
presence/absence matrix of the top 100 HOGs most significantly
associated with HP, where each cell was assigned a value of 1
(presence) or 0 (absence). Euclidean distances were computed both
between rows (strains) and columns (HOGs) based on these binary
profiles, and hierarchical clustering was performed using complete
linkage. In this context, the Euclidean distance between two strains
reflects the number of HOGs for which their presence/absence
status differs; likewise, the distance between two HOGs reflects
the number of strains in which their presence/absence differs. To
determine the optimal number of HOG clusters, we performed
silhouette analysis on the hierarchical clustering results (complete
linkage, Euclidean distance). In addition, strains were clustered
within each pathogenicity or family group depending on the
analysis, and the ones lacking significant HOGs associated with the
HP label, hereafter referred to as “significant HOGs to HP” were
manually ordered based on their family classification.

3 Results

3.1 Dataset overview and genome
selection

The initial dataset, obtained from the BacSPaD database
(Ribeiro et al., 2024), comprised 5,992 genomes representing 532
species. Applying the quality filtering criteria (as described in
section 2.1) reduced the dataset to 5,932 genomes across 514
species (Figure 1). CheckM completeness-based filtering excluded
32 genomes, while the filtering step for proteomes with less than
500 proteins excluded 28 genomes. In total, 46 species of the
514 species retained (9%) contained both HP and NHP labeled
genomes. For these mixed-labeled species with more than two
available genomes, we selected one representative genome per label
(HP and NHP) based on quality scores. For uniquely labeled
species with more than two genomes, the top two genomes were
selected using the same quality criteria. Species represented by
exactly two genomes or by a single genome were all retained
without further selection. This process resulted in a final OA
dataset of 734 genomes, including 516 HP and 218 NHP strains.
The curated BacSPaD labels were preserved throughout, and
the selection procedure ensured that highest-quality genomes for
each species were selected, thereby reducing technical noise while
maintaining biological relevance. The corresponding proteomes,

Frontiers in Microbiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1494490
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1494490 April 28, 2025 Time: 16:10 # 4

Ribeiro et al. 10.3389/fmicb.2025.1494490

FIGURE 1

Workflow for selecting bacterial genomes and corresponding proteomes for orthology analysis (OA) and statistical evaluation. The process details
the filtering and selection steps, ensuring representative and high-quality data for accurate downstream analysis.

directly derived from these genomes selected from BacSPaD, were
downloaded from the BV-BRC (Olson et al., 2023) FTP site to then
be analyzed by OrthoFinder.

A comparison of this OA dataset with HP bacteria listed by
Bartlett et al. (2022) revealed the following coverage levels: At the
species level, it overlaps with 241 species (16%) of Bartlett et al.’s
1,513 listed HP species, with an effective coverage of 23% as 131
novel species were included in our data in comparison with this list.
At the genus level, 103 of 327 genera (32%) were represented, with
an effective coverage of 36% as 24 novel genera were included. At
the family level, the dataset overlaps with 69 of 131 families (53%),
rising to 55% upon inclusion of 6 novel families. Corresponding
Venn diagrams to each of these taxa are included in Supplementary
Figures 1-3.

3.2 Overview on OA results and most
relevant HOGs

In total, OrthoFinder successfully assigned 2,492,963
proteins—representing 95.5% of the total protein set—to 124,904
HOGs. Notably, half of all proteins were found in HOGs containing
351 or more proteins, concentrated within the largest 1,423 HOGs.
Additionally, we identified 52 orthogroups common to all
strains, primarily comprising ribosomal proteins and essential
housekeeping genes, which reflects evolutionary conservation and
the robustness of the HOG inference approach. These universally
conserved HOGs validate the method’s ability to capture core
biological signals, distinguishing conserved core proteins from
those related to strain-specific or pathogenicity-related functions.
Conversely, 52,322 groups were excluded as they were not present
in at least three strains. This dataset, hereafter referred to as
“OA set,” was thus refined to 72,582 HOGs (Table 1). Detailed

taxonomic information of this set can be found in the first tab of
Supplementary Table 1 (Excel file).

It is important to note that although some HOGs share
similar functional annotations due to conserved domains, they are
distinguished based on their evolutionary origins, reflecting distinct
speciation, duplication, or horizontal gene transfer events (Emms
and Kelly, 2019). Proteins from such events may retain similar
functions but differ in aspects such as sequence, regulation, or
structure, justifying their separation into distinct HOGs (Emms and
Kelly, 2019).

Furthermore, annotations containing “@” [e.g., “3-ketoacyl-
CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase
(EC 2.3.1.9)”] were part of the original functional annotation.
These denote enzymes with interchangeable or synonymous
names due to their shared or overlapping catalytic activities,
as defined in standard biochemical databases such as KEGG
(Kanehisa et al., 2023).

3.3 Identification of key HOGs linked to
HP

To evaluate the association between HOG presence and HP
label, we conducted a statistical analysis using a pre-processed
dataset that included two proteomes per species, hereafter referred
to as “statistical set” (Figure 1). This analysis encompassed 440
strains, comprising 332 HP and 108 NHP strains across 220 species
and 90 genera. After filtering for HOGs present in at least three
strains, 51,745 HOGs were retained from the initial 72,582. Detailed
taxonomic information of this set can be found in the second tab of
Supplementary Table 1 (Excel file).

A taxonomy comparison of this statistical set with the list of
pathogenic bacteria capable of infecting humans by Bartlett et al.
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TABLE 1 Summary of the set used for the orthology analysis (OA) and its resulting number of hierarchical orthogroups (HOGs) after filtering for
presence in multiple strains.

Selection Proteomes HP NHP HOGs

OA set 734 516 218 72,582

Genera Species Genera Species Genera Species

187 514 127 373 100 187

The number of proteomes and their distribution across genera and species, along with the distribution of the number of HP (pathogenic to humans) and NHP (non-pathogenic to
humans) is summarized.

TABLE 2 Summary of the set used for statistical analysis (“statistical set”) and corresponding results.

Selection HOGs Proteomes HP NHP HOGs
significantly
associated
with HP or
NHP labels

(FDR <0.05)

HOGs
significantly
associated

with HP label
(FDR <0.05)

Statistical set (2
proteomes per
species)

51,745 440 332 108 8,181 4,383

Genera Species Genera Species Genera Species

90 220 76 189 77 38

The total number of proteomes and their distribution across genera and species is presented for the selected hierarchical orthogroups (HOGs), along with the breakdown of HP (pathogenic to
humans) and NHP (non-pathogenic to humans) proteomes. The last two columns present the number of statistically significant HOGs (FDR < 0.05) after statistical analysis on this set: those
associated with either HP or NHP labels, and those exclusively associated with the HP label.

(2022) revealed the following coverage levels: at the species level,
the statistical set overlaps with 157 species (10%) of Bartlett et al.’s
1,513 listed HP species, with an effective coverage of 12% upon
inclusion of 32 novel species. At the genus level, 70 of 327 genera
(21%) were represented, with an effective coverage of 23% when
including 6 novel genera. At the family level, the test set overlaps
with 51 of 131 families (39%), rising to 44% upon inclusion of 6
novel families. Corresponding Venn diagrams to each of these taxa
are included in Supplementary Figures 4-6. In addition, we could
verify that 25 out of the 26 most common pathogens from the
FDA-ARGOS Wanted Organism List were covered in this statistical
set.

The statistical analysis described in section 2.3 revealed that
8,181 HOGs were significantly associated with either HP or NHP
strains, from which 4,383 HOGs were significantly associated with
HP strains (Table 2).

Subsequently, to prioritize the most relevant HOGs associated
with HP strains, we ranked these significant HOGs based on
three metrics: the number of strains identified as HP, the number
of strains identified as NHP, and the FDR-adjusted p-value. HP
counts were ranked in descending order to emphasize HOGs
prevalent in HP strains, while NHP counts and FDR-adjusted
p-values were ranked in ascending order to highlight HOGs
less common in NHP strains and those with stronger statistical
significance. The final ranking was calculated by summing the
ranks across these metrics, with the resulting table of HOGs sorted
by this combined rank. From this sorted table, the inflection
plot of combined ranking scores (Supplementary Figure 7)
showed a steep decline within the first few hundred HOGs.
While the kneedle algorithm identified a global inflection at
rank 2, a slope analysis revealed the most pronounced score
declines occurred within the top 100–200 ranks after the first
top 5. Thus, the top 20 and top 100 HOGs were selected for

comparative analysis, focusing on those most likely to influence
bacterial pathogenicity based on their combined statistical and
biological significance.

The inspection of the top 20 HOGs revealed key proteins
associated with HP strains (Table 3 and Supplementary Table 2),
with 4 of these 20 HOGs representing experimentally validated
VFs. Specifically, these are: Periplasmic nitrate reductase (EC
1.7.99.4), which generally enables bacterial survival under oxygen-
deprived conditions and is frequently encountered within host
environments (Van Alst et al., 2007); Isocitrate lyase (EC 4.1.3.1),
the first enzyme in the glyoxylate shunt, allowing bacteria to
metabolize fatty acids as an energy and carbon source when
primary carbon sources are limited (McKinney et al., 2000);
and efflux systems, including ABC transporters and RND efflux
pumps, which contribute to antibiotic resistance and enhance
bacterial fitness under antimicrobial pressure (Coyne et al., 2011)
(Li et al., 2016).

In addition to these experimentally validated VFs, our analysis
uncovered HOGs comprising proteins with strong associations to
HP strains, including ones previously suggested in the literature
to be linked to bacterial pathogenicity (but not yet experimentally
validated). For instance, the enzyme 3-hydroxyisobutyrate
dehydrogenase (EC 1.1.1.31) was present in 136 HP strains but
nearly absent in NHP strains. This enzyme is involved in valine
degradation, a metabolic pathway that may contribute to providing
an alternative energy source during nutrient limitation within
host environments (Shahri et al., 2024). Importantly, it belongs to
the short-chain dehydrogenase/reductase (SDR) enzyme family,
which has been associated with metabolic processes contributing to
virulence and antimicrobial resistance in other bacterial pathogens
(Shahri et al., 2024). Our results also highlight HOGs linked to
metabolic pathways essential for bacterial adaptation within the
host. Proteins involved in fatty acid and amino acid degradation,
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TABLE 3 Top 20 hierarchical orthologous groups (HOGs) significantly associated with pathogenicity.

HOG name No. of
HP

strains

No. of
NHP

strains

No. of
species

No. of
genus

Combined
rank

Experimentally
verified VF

Category

Methylcrotonyl-CoA carboxylase
biotin-containing subunit (EC
6.4.1.4)

90 0 45 21 2037.5 No Nutritional/metabolic

Methylglutaconyl-CoA hydratase
(EC 4.2.1.18)

84 0 42 18 2,277 No Nutritional/metabolic

3-hydroxyisobutyrate
dehydrogenase (EC 1.1.1.31)

136 3 74 34 2,502 No Nutritional/metabolic

Ribonuclease E inhibitor RraA 74 0 37 15 2,642 No Regulation

Uncharacterized protein, similar
to the N-terminal domain of Lon
protease

74 0 37 15 2,642 No Stress survival

3-ketoacyl-CoA thiolase (EC
2.3.1.16) @ Acetyl-CoA
acetyltransferase (EC 2.3.1.9)

97 1 51 25 2,672 No Nutritional/metabolic

Acyl-CoA dehydrogenase 72 0 36 16 2,742 No Nutritional/metabolic

Isovaleryl-CoA dehydrogenase
(EC 1.3.8.4)

70 0 35 16 2,840 No Nutritional/metabolic

Arginyl-tRNA–protein
transferase (EC 2.3.2.8)

70 0 35 14 2,840 No Regulation

Periplasmic nitrate reductase (EC
1.7.99.4)

101 2 52 21 2915.5 Yes Stress survival

Fatty acid hydroxylase family
(carotene hydroxylase/sterol
desaturase)

87 1 45 22 2980.5 No Nutritional/metabolic

Polyhydroxyalkanoic acid
synthase

68 0 34 15 3003.5 No Nutritional/metabolic

Putative hemolysin 66 0 33 14 3108.5 No, but yes for
hemolysin

Uncertain; for
hemolysin: exotoxin

Acyl-CoA dehydrogenase 65 0 33 14 3,199 No Nutritional/metabolic

Isocitrate lyase (EC 4.1.3.1) 115 4 60 29 3,316 Yes Others

Efflux ABC transporter,
permease/ATP-binding protein

100 3 52 27 3,318 Yes Effector delivery system

RND efflux system, membrane
fusion protein

63 0 34 18 3325.5 Yes Nutritional/metabolic
factor

Glucose-1-phosphate
thymidylyltransferase/RmlA (EC
2.7.7.24)

63 0 36 17 3325.5 No Nutritional/metabolic
factor

Hypothetical protein 63 0 32 17 3325.5 No No categorization
possible

Glyoxalase family protein 63 0 33 17 3325.5 No Nutritional/metabolic
factor

HOG name: Name of the HOG’s most frequent protein by majority vote; No. of HP/NHP strains: Number of pathogenic to humans (HP) and non-pathogenic to humans (NHP) strains
containing the HOG; No. of species/genus: Number of species and genus containing the HOG; Combined rank: Overall rank combining rank of enrichment in HP strains (high number
is higher ranked), enrichment in NHP strains (low number is higher ranked), and False Discovery Rate (FDR) value (low value is higher ranked). Decimal values indicate ties between
multiple HOGs for the same metric; Experimentally verified VF: Indicates whether the protein or its associated function has been experimentally verified as a virulence factor (VF) in bacterial
pathogenicity; Category: Classification based on functional roles; HOGs are ordered by the Combined rank column, with lower values indicating higher prioritization.

such as methylcrotonyl-CoA carboxylase and methylglutaconyl-
CoA hydratase, were particularly prominent. These enzymes are
integral to leucine degradation pathways, which may provide
alternative energy sources during host colonization (Kaiser and
Heinrichs, 2018). These enzymes were also previously associated
with HP strains from Pseudomonas aeruginosa (Díaz-Pérez et al.,

2004; Höschle et al., 2005). Glyoxalase family proteins were also
prominent. These proteins help mitigate oxidative stress, and
may facilitate bacterial survival within hostile host environments.
In Escherichia coli, the glyoxalase system is essential for acid
resistance and survival during starvation (Bankapalli et al.,
2015).
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3.4 Distribution patterns of top
significant HOGs to HP

To analyze the distribution of top HOGs across taxonomic
groups and extend to a broader spectrum of proteins, we
expanded the analysis to include the top 100 significant HOGs
to HP. This threshold was defined after inspection of the
slope analysis (Supplementary Figure 7) and allowed for the
identification of key patterns while maintaining a dataset size
conducive to detailed clustering and functional interpretation.
A presence/absence heatmap was generated, with strains grouped
by pathogenicity (HP or NHP) and clustered within each group
on strains containing at least one HOG. Several HOGs were
exclusively present in HP strains and absent in NHP strains across
various taxa (Supplementary Figure 8). To capture underlying
structure in HOG distribution patterns, we redefined clusters
using unsupervised hierarchical clustering, with silhouette analysis
supporting an optimal partitioning at k = 13.

From this set of top 100 significant HOGs, Figure 2 highlights
the subset of strains with the highest HOG presence (located in the
upper part of Supplementary Figure 8), comprising 82 strains in
total.

For interpretability and conciseness, we focused on the five
largest clusters—1, 3, 4, 8, and 10—which capture major trends
in HOG distribution across HP and NHP strains. Cluster 4 was
prioritized among similarly sized groups due to its inclusion of an
experimentally validated VF. These can be broadly categorized by
their protein functions and pathogen associations (Table 4).

Cluster 1 is centered on fatty acid and amino acid metabolism,
as well as transcriptional regulation and stress adaptation. It
includes previously discussed proteins of the top 20 HOGs
such as methylcrotonyl-CoA carboxylase, methylglutaconyl-CoA
hydratase, fatty acid hydroxylase, RraA, and a putative hemolysin.
Additional proteins include a predicted fatty acid degradation
regulator (FadQ), transcriptional regulators AcrR and MerR, and
a glutamine synthetase family protein, all potentially involved
in energy production and host adaptation. Notably, this cluster
also contains Lysine N-acyltransferase MbtK, a siderophore
biosynthesis enzyme in Mycobacterium tuberculosis (Harrison
et al., 2006), and a protein similar to the N-terminal domain
of Lon protease, a known VF in HP bacteria (Kirthika et al.,
2023). This cluster is predominantly associated with Burkholderia,
Pseudomonas, Acinetobacter, and Mycobacterium.

Cluster 3 highlights stress response, drug resistance, and
membrane integrity, with several proteins previously described in
the ranked table including the RND efflux system membrane fusion
protein. Also present are regulatory and structural components
such as AraC and LysR family transcriptional regulators, the
outer membrane protein W precursor, and the lipopolysaccharide
export protein LptG. A leader peptidase/N-methyltransferase
supports potential roles in protein secretion and membrane
assembly. This cluster is mainly associated with Legionella,
Vibrio, Burkholderia, Pseudomonas, and Acinetobacter, reflecting
its possible contribution to survival in stressful environments.

Cluster 4 focuses on anaerobic respiration and motility
structures. It includes the periplasmic nitrate reductase, an
experimentally verified VF linked to stress survival as previously
mentioned, along with cytochrome c heme lyase (CcmF) and a

nitrate reductase cytochrome c550-type subunit. These support
survival in oxygen-limited or biofilm-associated environments.
Structural components of the bacterial flagellum, including the
flagellar L-ring (FlgH) and P-ring (FlgI) proteins, suggest roles in
motility and host colonization. This cluster is predominantly found
in Vibrio, Burkholderia, Aeromonas, and Pseudomonas.

Cluster 8 emphasizes oxidative stress regulation and signaling,
and contains the previously discussed glyoxalase family protein,
associated with biofilm formation and stress tolerance. The
presence of DsbC, a thiol-disulfide isomerase important for outer
membrane protein folding, and a LuxR-family response regulator,
known to control quorum sensing and virulence gene expression
in species like Pseudomonas aeruginosa and Vibrio, suggests a
regulatory role. The co-occurrence of a GGDEF domain protein
implies possible involvement in cyclic-di-GMP signaling, a key
switch in biofilm and motility regulation. This cluster is primarily
found in Vibrio, Aeromonas, Burkholderia and Acinetobacter.

Cluster 10 links motility, iron acquisition, and membrane
transport, combining structural and regulatory proteins. It includes
multiple flagellar assembly proteins (FliH, FliJ, FliK), a sensor
histidine kinase, and a LysR family transcriptional regulator,
all of which are important for motility, environmental sensing,
and virulence regulation. The presence of a ferric iron ABC
transporter, iron-binding protein highlights iron scavenging as a
potential key adaptive trait in this cluster. This cluster is associated
with Vibrio and Aeromonas, Burkholderia, Pseudomonas, and
Bordetella, suggesting a role in both environmental sensing and
host adaptation.

3.5 Family-level separation reveals
HP-associated patterns

The separation of the top 100 HOGs by bacterial family,
followed by clustering of strains with at least one HOG, reveals
distinct distribution patterns that strongly correlate with the
HP label. These patterns are especially evident in bacterial
families containing both HP and NHP strains, such as in the
Enterobacteriaceae family (Figure 3), the most represented family
within the top 100 HOGs.

HOGs such as glucose-1-phosphate thymidylyltransferase, an
enzyme involved in the biosynthesis of nucleotide sugars critical
for cell wall and capsule formation (Xiao et al., 2021), were
predominantly present in HP strains such as Escherichia coli
(E. coli) and Escherichia fergusonii but absent in NHP strains within
the same family. Catalase−peroxidase KatG, which plays a dual
role in detoxifying reactive oxygen species and activating pro drugs
like isoniazid, was also found in the HP strain of E. coli (E. coli
strain G6 7), but not in the NHP strain (E. coli strain G976 372).
The presence of these proteins in HP strains may corroborate
their roles in supporting survival during infection and enhancing
host-pathogen interactions.

Furthermore, the presence of a SDR enzyme in
Corynebacteriaceae HP strains and absence in NHP strains
from the same family (Supplementary Figure 9) suggests it as a
potential novel VF for this family, as, to our knowledge, this is
not yet described in literature. We also observe that Enoyl−CoA
hydratase (EC 4.2.1.17) is consistently present in the HP strains
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FIGURE 2

Presence/absence heatmap of the top 100 significant hierarchical orthogroups (HOGs) to HP for the set of strains with the highest HOG presence
(82 strains in total). HOGs are listed below the heatmap, while strain names are displayed on the left. Hierarchical clustering was performed for both
strains (within each pathogenicity group) and HOGs, using Euclidean distance as the metric and complete linkage as the clustering method. Distinct
clusters resulting from hierarchical clustering of HOGs are annotated with different colors above the heatmap, highlighting groups with similar
presence/absence patterns. Strains lacking these significant HOGs were manually grouped based on family classification. FDA-status annotations
indicate whether a species is listed in the FDA-ARGOS Wanted Organism List (red: yes; yellow: no). Proteins sharing similar annotations are
distinguished by a numerical suffix (e.g., “hypothetical protein.1”; “hypothetical protein.2”). *Experimentally validated VFs. **Protein similar to an
experimentally validated VF.

of the Corynebacteriaceae family, but not for the NHP strains of
the same family. This enzyme catalyzes a key step in fatty acid
β-oxidation, aiding energy production and metabolic adaptation.
Similarly, 3−hydroxyisobutyrate dehydrogenase (EC 1.1.1.31)
and Oxidoreductase, short−chain dehydrogenase/reductase
family are also shown to be present in various HP strains of
this family, while absent in the corresponding NHP strains.
As mentioned, these proteins may also be involved in energy

production within host environments, by valine degradation
(Shahri et al., 2024).

Shikimate 5-dehydrogenase I gamma (EC 1.1.1.25) and
Glutaryl-CoA dehydrogenase (EC 1.3.8.6) are present in HP strains
of both K. pneumoniae and the Corynebacteriaceae family, but
absent in NHP strains of these species and family. Shikimate
5-dehydrogenase catalyzes the reduction of 3-dehydroshikimate
to shikimate, a key step in the biosynthesis of essential
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TABLE 4 The five largest clusters from the top 100 significant HOGs identified in this study are summarized.

Cluster Main functional
category

Key proteins Predominant
pathogens

Notable observations

1 Metabolism, stress adaptation,
regulation

Methylcrotonyl-CoA carboxylase,
MbtK, Lon protease-like, RraA, AcrR,
MerR

Burkholderia, Pseudomonas,
Acinetobacter, Mycobacterium

Includes Lon protease-like protein
(Lon protease is known virulence
factor); linked to energy metabolism
and adaptation.

3 Stress response, drug resistance,
membrane integrity

RND efflux pump, AraC/LysR
regulators, LptG, OMP-W precursor,
peptidase/N-methyltransferase

Legionella, Vibrio, Burkholderia,
Pseudomonas, Acinetobacter

Suggests roles in environmental
survival; involves secretion and outer
membrane integrity.

4 Anaerobic respiration, motility Periplasmic nitrate reductase, CcmF,
FlgH, FlgI, cytochrome c subunits

Vibrio, Burkholderia,
Aeromonas, Pseudomonas

May support adaptation to low
oxygen/biofilm conditions and host
colonization.

8 Oxidative stress, signaling,
biofilm regulation

Glyoxalase, DsbC, LuxR regulator,
GGDEF domain protein

Vibrio, Aeromonas,
Burkholderia, Acinetobacter

Suggests implication in stress
signaling and quorum sensing via
LuxR and GGDEF proteins.

10 Motility, iron acquisition,
membrane transport

FliH/FliJ/FliK, LysR regulator, sensor
histidine kinase, ferric iron ABC
transporter

Vibrio, Aeromonas,
Burkholderia, Pseudomonas,
Bordetella

Highlights iron scavenging and
motility as dual survival/virulence
traits.

The Cluster column lists the numerical identifier for each; Main functional category: describes the primary biological process or pathway associated with each group; Key proteins: include
representative proteins identified within each group; Predominant pathogens: highlight the main human pathogens which included these groups; notable observations: additional insights,
such as the presence of hypothetical proteins, known virulence factors, or notable distribution patterns across strains.

aromatic compounds via the shikimate pathway. Glutaryl-CoA
dehydrogenase oxidizes glutaryl-CoA to crotonyl-CoA, supporting
energy production and biosynthetic processes through lysine and
tryptophan degradation. Overall, these proteins are rarely found
in NHP strains, with only two and one occurrences, respectively,
across the entire data for the top 100 HOGs.

Interestingly, some families with prominent pathogens such
as the Streptococcaceae family showed a scarce presence of these
top 100 HOGs. When the analysis is expanded to include the top
200 HOGs, however, some HOGs are linked to HP strains within
this family, as observed in Supplementary Figure 10. This suggests
that highly conserved pathogenicity proteins are less prevalent in
Streptococcaceae.

3.6 Coverage of known VFs

To compare our results with known VFs, we performed an
overlap analysis with the VFDB database (Liu et al., 2022). The
VFDB core dataset comprises 4,255 experimentally verified VFs.
Using DIAMOND Blastp, we aligned their protein sequences
with the ones from the 4,383 HOGs significantly associated with
the HP label, applying stringent thresholds (E-value ≤ 10−5,
identity ≥ 30% alignment).

From the 4,255 experimentally verified VFs from VFDB, 4,076
successfully mapped to the OA set, from which 4,033 successfully
mapped to the statistical set.

From our set of 4,383 statistically significant HOGs to HP,
980 contained at least one experimentally verified VF recorded in
VFDB, covering a total of 1,726 VFs. This represents about 43%
of the experimentally verified VFs which mapped to the statistical
set (Supplementary Figure 11 and Supplementary Table 3).
However, the remaining 2,307 experimentally verified VFs from
VFDB were not associated with any significant HOGs to HP
(Supplementary Table 4), raising the question of why these VFs
were not captured by the statistical analysis.

To understand this gap, we assessed the non-significant
HOGs corresponding to these 2,307 unassociated VFs, which
were in total 3,726 HOGs. Specifically, we assessed their
frequency across HP and NHP strains, which consistently fell
into one of two distinct patterns: (i) some HOGs were present
in only a small number of HP strains (≤ 18) and entirely
absent from NHP strains, suggesting potential lineage-specific
associations; and (ii) other HOGs were found in both HP
and NHP strains with no substantial difference in frequency,
indicating broader distribution across HP and NHP bacteria.
These findings then suggest that the absence of these VFs
from the set of significant HOGs to HP reflects either limited
lineage specificity or broad distribution, reducing their statistical
association with pathogenicity.

3.7 Analysis of pathogenicity domains
and novel potential pathogenicity
determinants in significant HOGs

Our analysis identified 3,403 significant HOGs to HP that
were absent from the VFDB, representing a promising source
of potential novel pathogenicity determinants (Supplementary
Table 5). To evaluate their biological relevance, we started
by annotating their domain composition using HMMER (Finn
et al., 2011). Then, we compared the identified domains to
those cataloged in the PathFams dataset (Lobb et al., 2021), a
comprehensive resource of pathogenic domains in HP bacteria. For
comparison, a similar analysis was conducted on a random set of
3,403 non-significant HOGs (Supplementary Tables 6, 7).

A Fisher’s exact test demonstrated that significant HOGs to
HP that were not mapped to the experimentally verified VFs
from VFDB exhibited a statistically significant enrichment in
PathFams domains compared to non-significant HOGs (p = 6.145e-
11). Among the analyzed domains, significant HOGs contained
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FIGURE 3

Presence/absence heatmap of the top significant hierarchical orthogroups (HOGs) found within the top 100 HOGs to HP for the Enterobacteriaceae
family. To maintain consistency and comparability across analyses, the top 100 HOGs were retained for this family-based figure, with HOGs absent
in all strains of this family omitted. HOGs are listed below the heatmap, while strain names are displayed on the left. Hierarchical clustering was
performed for both strains (within each pathogenicity group) and HOGs, using Euclidean distance as the metric and complete linkage as the
clustering method. HOGs were re-clustered for this figure based on presence/absence patterns in this subset, and thus the order does not reflect
global cluster assignments. FDA-status annotations indicate whether a species is listed in the FDA-ARGOS Wanted Organism List (red: yes; yellow:
no). Proteins sharing similar annotations are distinguished by a numerical suffix (e.g., “hypothetical protein.1”; “hypothetical protein.2”).
*Experimentally validated VFs.

746 domains overlapping with PathFams and 2,463 non-
overlapping domains, whereas non-significant HOGs contained
386 overlapping and 2,000 non-overlapping domains. In addition,
the odds ratio of 1.57 (95% CI: 1.37–1.8), indicates that significant
HOGs are 1.57 times more likely to include domains associated
with pathogenicity. This result underscores the potential relevance
of the significant HOGs to HP to virulence-related functionality.

Examples of significant HOGs which did not overlap with
VFDB and may be potential novel pathogenicity determinants
for their shared domains with PathFams include Methylcrotonyl-
CoA carboxylase and methylglutaconyl-CoA hydratase (Table 3
and previously mentioned in section 3.3); Ribonuclease E inhibitor
RraA, which modulates RNase E activity and can potentially affect
RNA stability and gene regulation during infection (Chen et al.,

2024) (Table 3); and LptD, a key component of lipopolysaccharide
biosynthesis which has an indirect role in bacterial virulence
(Bertani and Ruiz, 2018).

4 Discussion

This study introduces a novel approach to identify potential
novel bacterial pathogenicity determinants. The presented
analytical framework, highlighted candidate HOGs, and resulting
HOGs data may serve as valuable resources for guiding future
research. These findings aim to support experimental efforts
by prioritizing candidates based on their biological relevance
and statistical significance. Our approach redefines bacterial
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proteomes using HOGs, uncovering potential novel widespread
targets that traditional sequence-based methods could overlook.
The representativeness of our dataset was demonstrated through
comparison with Bartlett et al. (2022), a comprehensive catalog of
HP bacteria, and with the FDA-ARGOS wanted organism list. This
analysis highlighted the inclusion of key human-associated species,
genera, and families, while also incorporating novel taxa not listed
in Bartlett et al.

Our study narrows down a vast dataset of 51,745 HOGs
to 4,383 HOGs and also a top 20 and 100 HOGs, suggesting
prioritized lists of potential novel pathogenicity determinants
for future experimental investigations besides already known
VFs. Rigorous statistical validation, including Fisher’s exact tests
and FDR correction, coupled with a domain-based analysis
strengthen the confidence of the pathogenicity associations. In
addition, the detection of known VFs also supports the reliability
of our approach.

The clustering of the top 100 significant HOGs may reveal
critical processes underlying bacterial pathogenicity. The top HOG
clusters identified through unsupervised hierarchical clustering
within this set reflected distinct functional associations, including
fatty acid metabolism, amino acid metabolism, transcriptional
regulation, stress response, anaerobic respiration, motility,
oxidative stress regulation, signaling, and iron acquisition. For
instance, methylcrotonyl-CoA carboxylase and methylglutaconyl-
CoA hydratase, exclusively associated with HP strains, may
highlight the role of amino acid metabolism in energy production
under nutrient-limited conditions. Similarly, the clustering of
Lon protease-related proteins alongside fatty acid metabolism
regulators suggests metabolic pathways contribute to bacterial
resilience and virulence. Clusters emphasizing stress response,
antibiotic resistance, and biofilm formation may further underscore
adaptive strategies crucial for survival under hostile conditions. The
presence of proteins involved in anaerobic respiration and motility
structures, such as periplasmic nitrate reductase and flagellar
proteins, may highlight adaptive mechanisms for colonization and
persistence. Furthermore, clusters associated with oxidative stress
regulation, quorum sensing, and cyclic-di-GMP signaling may
illustrate sophisticated regulatory networks supporting pathogen
adaptability. Lastly, the integration of motility, iron acquisition,
and membrane transport proteins may underscore the strategic
adaptability of HP bacteria to environmental and host-associated
challenges. Overall, the identification of uncharacterized proteins
grouped with known VFs highlights potential novel determinants
of pathogenicity and targets for therapeutic intervention.

Our results also reveal family-specific patterns of pathogenicity
determinants. For instance, within the Enterobacteriaceae family,
enzymes such as glucose-1-phosphate thymidylyltransferase,
essential for synthesizing nucleotide sugars that contribute
to bacterial cell wall, capsule and biofilm formation, were
predominantly found in HP strains. This suggests that this
protein has important role in maintaining structural integrity and
facilitating evasion of host defenses. Within the Corynebacteriaceae
family, the consistent presence of SDR enzymes in HP strains
suggests a potential novel VF for this group. These enzymes, known
to contribute to oxidative stress management, metabolic adaptation
and antimicrobial resistance in other bacterial pathogens (Shahri
et al., 2024), may play similar roles in this family. Conversely,
Streptococcaceae strains exhibited fewer conserved VFs, aligning

with the “distributed genome hypothesis,” which posits that
Streptococcus pathogens, particularly S. pneumoniae, rely on
variable VFs tailored to specific ecological niches (Shelyakin
et al., 2019; Krzyściak et al., 2013). These findings highlight the
importance of both conserved and lineage-specific adaptations in
bacterial pathogenicity.

Our HOG-based approach is aimed to complement existing
resources such as VFDB by offering a broader perspective
on pathogenicity. While VFDB focuses on species-specific,
experimentally validated VFs, our method identifies conserved and
novel pathogenicity determinants across diverse taxa, including
underrepresented and emerging pathogens. By integrating robust
statistical validation with domain-level analyses, we detected
potential biological relevance of significant HOGs absent from
VFDB, which overlap with previously listed HP-related domains.
These include indirect yet essential contributors to virulence, such
as biosynthetic and stress-response proteins. Therefore, we provide
additional insights into conserved and less-direct contributors
to virulence, particularly those involved in processes such as
host interactions or biosynthetic pathways. HOGs not statistically
associated with HP strains while present in VFDB may reflect
strain-specific adaptations, as they are either found in a low number
of HP strains or in high number in both HP and NHP strains.

However, this study is not without limitations. While statistical
associations provide valuable insights, they do not always translate
into biological relevance or practical application. Functional assays,
such as site-directed mutagenesis or infection models, will be
crucial to validate the roles of candidate HOGs in bacterial
pathogenicity. Furthermore, improved methods for functional
annotation, leveraging dedicated protein databases, are needed
to better characterize hypothetical proteins and uncover their
potential roles. Finally, incorporating multivariate analyses and
advanced classification techniques could enhance the precision of
associations between specific HOGs and pathogenicity, offering
deeper insights into the molecular mechanisms underlying
bacterial infections and their adaptations.

6 Conclusion

In conclusion, our study demonstrates the power of
phylogenetic-based OA to identify both known and potential
novel determinants of bacterial pathogenicity and may constitute a
useful resource to guide future works. By leveraging evolutionary
relationships and applying rigorous statistical and domain-based
validation, we have uncovered potential novel key HOGs that
contribute to bacterial pathogenicity. As antibiotic resistance
continues to rise, experimental validation of these potential
novel widespread pathogenicity factors may be crucial for the
development of novel strategies to combat bacterial infections
more effectively.
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