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Introduction: Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) 
have attracted more attentions in fermented feed recently. However, little information 
is available on the occurrence and distribution of ARGs in ensiled forages in the alpine 
region of the Qinghai-Tibetan plateau (QTP) with an extremely harsh environment.

Methods: The study investigated the distribution and spread mechanism of ARB 
and ARGs in Elymus nutans silage along 2600 m (low), 3600 m (medium) and 
4600 m (high) altitude in the QTP.

Results: The major ARG types in Elymus nutans silage were multidrug, aminoglycoside, 
bacitracin, beta-lactam and polymyxin, while tnpA and IS91 were the dominant mobile 
genetic elements (MGEs) subtypes in the Elymus nutans silage. The dominant ARGs 
were mainly carried by Pantoea, Enterobacter, Serratia, and Lelliottia. Although altitudinal 
gradient had no influence on the diversity or abundance of other ARGs and MGEs in 
the Elymus nutans silage (p > 0.05), the network co-occurrence patterns among ARGs, 
MGEs, and bacteria in high-altitude silage were more complex than that in low- and 
medium-altitude silages. The dominant clinical ARGs in the alpine silage were bacA and 
acrF, and the abundance of clinical ARGs decreased with prolonged fermentation time.

Discussion: This study provides important data on the status of ARGs in ensiled 
forage from the alpine region of the QTP.
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1 Introduction

The overuse and misuse of antibiotics have led to the contamination and widespread 
spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). ARGs 
and ARB have garnered significant attention in livestock feed (Ondon et al., 2021; Zhang 
Q. et al., 2022). Antibiotic residues can be absorbed by feed crops. Feed crops are made into 
silage that is used by animals, thereby posing a risk of resistance selection in the animal’s gut 
flora (Gudda et al., 2020; Sorinolu et al., 2021). Therefore, silage, as a main quality feed for 
herbivorous livestock, biosafety is closely related to livestock health.

The Qinghai–Tibetan Plateau (QTP), with its high average altitude, cold climate, and low 
oxygen content, has a negative impact on the development of herbivorous animal husbandry. 
The natural pasture yield is low and seasonal, and the availability of high-quality feed resources 
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is limited. The feed shortage problem is particularly serious in winter, 
which makes livestock face the dilemma of insufficient nutrition and 
consequently makes it difficult to meet their increasing nutritional 
demands (Ren et al., 2021). Elymus nutans (E. nutans) is a widely 
distributed alpine grass on the QTP with high nutritional value and 
palatability for livestock. It has been reported that E. nutans silage can 
help alleviate the feed supply problem in the QTP regions during the 
long cold season from November to June (Su et al., 2023). The QTP is 
a well-developed area for animal husbandry, particularly for breeding 
yak and Tibetan sheep. In general, the widespread use of antibiotics in 
animal husbandry induces the production and spread of ARGs. ARGs 
can enter the environment through animal waste, thereby 
contaminating soil and vegetation (Sazykin et al., 2021; Shao et al., 
2021). Meanwhile, ARGs from wetlands, rivers, and other water 
resources on the QTP may enter the vegetative growth environment 
through the water cycle or soil erosion. A study has revealed that 
ARGs are abundant in the water and sediment of the QTP (Li et al., 
2020). Antibiotic resistance in plants can lead to the accumulation of 
resistance genes in herbivorous livestock products, thereby affecting 
human health and posing potential health risks (Shao et al., 2021). 
However, although the presence of ARGs in silage has been found 
(Wu et al., 2020; Zhang Z. et al., 2022; Zhang et al., 2023), limited 
information is available on the distribution and transmission 
mechanisms of ARGs and their risks in ensiled forage from the QTP.

Climatic conditions are among the major factors affecting the 
biosphere and organisms (Heidari et  al., 2020; Shi F. et  al., 2023). 
Temperature and oxygen concentration gradually decline with 
increasing altitude. Meanwhile, both the soil nutrient and water 
conditions and the nutrient composition of the vegetation change 
accordingly (Shi H. et al., 2023). Liu et al. (2022) reported that altitudinal 
variation affects the succession of microbial communities. A previous 
study reported that altitude affects the epiphytic microbial structure, 
nutrient distribution, and fermentation quality of E. nutans forage (Su 
et al., 2023). Yang et al. (2022) confirmed that elevation is a key factor 
affecting the epiphytic bacterial and fungal communities in Kobresia 
pygmaea. Similarly, Ding et al. (2020) found notable differences in the 
epiphytic microbial flora among peanut silages in different grasslands. 
However, the effect of altitude on the distribution characteristics and 
transmission mechanisms of ARGs in E. nutans silage from the QTP 
remains unclear. Therefore, this study aimed to investigate the response 
of the distribution and spread of resistant bacteria and ARGs in 
E. nutans silage from the QTP to an altitude gradient. This study is 
important for understanding the spatial distribution of antibiotic 
resistance in alpine environments and its influencing factors.

2 Methods

2.1 Elymus nutans silage making

From 13 to 21 August 2021, E. nutans plants were collected from 
three distinct grasslands located in Huangyuan, Xinghai, and Chenduo 
counties of Qinghai Province. The samples were collected at comparable 
growth stages from each grassland. In Huangyuan County, the elevations 
of the three sites were 2,567 m, 2,610 m, and 2,662 m. In Xinghai County, 
the respective altitudes were 3,555 m, 3,634 m, and 3,647 m. Similarly, in 
Chenduo County, the sites were situated at altitudes of 4,550 m, 4,582 m, 
and 4,636 m. We randomly selected each grassland sample from four 

different locations. The gathered material was promptly sent to the 
nearby laboratory, where it was then cut into 2 cm pieces with a paper 
cutter. Once thoroughly mixed, approximately 450 ± 10 g of the cut 
material was placed into a polyethylene bag (38 cm × 50 cm) and sealed 
under vacuum. A total of 36 bags were made according to three plots 
times four replicates times three ensiling periods. These bags were then 
kept at ambient temperature, approximately 25°C, for 60 days. To assess 
fermentation traits and conduct metagenomic sequencing, silage 
samples were extracted at intervals of 7, 14, and 60 days during the 
ensiling process.

2.2 DNA extraction and metagenomic 
sequencing

DNA was extracted from 20 g of E. nutans silage using a Plant 
Genome DNA Extraction Kit (DP305; TIANGEN, China) according 
to the manufacturer’s instructions. The extracted DNA was stored at 
−80°C before analysis. DNA quality was determined using agarose gel 
electrophoresis (0.5%). DNA concentration was quantified using a 
NanoDrop 1,000 spectrophotometer (Thermo Scientific, USA).

The metagenomic sequencing library generation was conducted 
using a DNA Library Prep Kit for Illumina (NEB, USA) following the 
manufacturer’s specifications (Wu et  al., 2020). After library 
preparation, metagenomic sequencing was performed on an 
IlluminaSeq 6,000 platform using the 150 paired-end read strategy. 
For the sample metagenomic datasets, more than 10.0 Gb of reads 
were sequenced. The metagenomic sequences were filtered to remove 
low-quality sequences and adapters to obtain clean data (Chen et al., 
2018). The clean data were assembled using MEGAHIT software 
(−-presets meta-large) (Li et al., 2015). The assembled scaffolds were 
interrupted at the N-junction to obtain sequence fragments called 
scaftigs (Nielsen et al., 2014). Filtered scaftigs (>500 bp) were used for 
statistical analysis and gene prediction. Gene prediction was 
performed as described by Wu et al. (2020).

2.3 Annotation and identification of ARGs 
and mobile genetic elements

The unigenes were compared to the Structured Antibiotic 
Resistance Genes (SARG) using BLASTN software to search for ARGs 
(identity >80%, coverage >80%; Yin et  al., 2018). Each compared 
sequence with an identity value greater than the minimum identity 
value required by the database was assessed to ensure the reliability of 
resistance gene annotation. The abundance of ARGs in each sample 
and the resistance mechanism of ARGs were determined after the 
filtration of comparison results. The ARG and species annotation were 
conducted based on contigs. Gene coverage was determined using 
BWA-MEM default cutoff parameters and metagenomic reads 
mapped to assembled genes (Bogaerts-Márquez et al., 2020).

For MGE annotation, the unigenes obtained from metagenomic 
sequencing were directly used according to the MGE database (Ma 
et al., 2013). The unigenes were annotated as plasmid-like, integron-
like, transposase-like, insertion sequence transposase (ist)-like, or 
insertion sequence (IS)-like genes if the threshold similarity for gene 
annotation was >90%and the length of the unigenes matched the 
reference sequence by at least 25 amino acids.
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2.4 Host identification analysis

After quality control, the contigs were spliced using MEGAHIT (Li 
et  al., 2015). The open reading frame (ORF) was identified using 
Prodigal (Hyatt et al., 2010), and then the ORFs were made on redundant 
using CD-HIT to obtain a non-redundant gene set (Fu et al., 2012). The 
abundance of each gene was calculated using Salmon software (Patro 
et al., 2017). The non-redundant gene set was compared to the SARG 
and MGE databases using BLASTX for ARG and MGE annotation, 
respectively, and then the annotated ARG and MGE contigs were further 
compared to the NCBI-NR database for taxonomic classification. The 
data processing and graph drawing were completed using the “dplyr” 
package and “ggplot 2” package (Wickham et al., 2020), respectively.

2.5 Identification of clinical ARGs

To identify clinical resistance genes in E. nutans silage, a BLAST 
search was conducted between the ARG reference sequence in the SARG 
database and the Pathosystems Resource Integration Center (PATRIC) 
database (Snyder et al., 2007). The threshold of comparison was that the 
consistency and matching length were >80%. The final matched SARG 
reference sequence was the clinical ARGs. Subsequently, the reference 
sequence-level gene abundance obtained using the ARG-OAP tool was 
matched with the identified clinical ARGs to determine the gene 
abundance of clinical ARGs in the samples (Yin et al., 2018).

2.6 Data analysis

Tukey’s test was used to compare the means of ARG types, ARG 
hosts, and MGE types in R statistical software, and the means were 
considered significantly different when the p-value was <0.05. The 
total ARG abundance in each group was visualized using box plots. 
Principal coordinate analysis (PCoA) was carried out using the “ape” 
package. The “linkET” package was used to perform a Mantel analysis 
of the relationship between fermentation quality and ARGs, MGEs, 
and bacteria (Huang et al., 2021). All additional charts not specifically 
mentioned were created using the “ggplot 2” package of the R software. 
Network analysis was performed using BH calibration and Spearman’s 
correlation. Genes or species with discovery rates <60% were 
eliminated before correlation analysis, and genes or species with low 
abundance (gene abundance >5 ppm and bacterial species abundance 
>0.5%) were removed to lower the number of false-positive results. 
Gephi version 0.9.6 was used to create network diagrams, which were 
reserved for results with correlation coefficients >0.8 and p-values <0.5.

3 Results

3.1 Effects of altitude on ARG distribution 
and resistance mechanisms in Elymus 
nutans silage

The diversity and total abundance of ARGs in E. nutans silage were 
not significantly affected by altitude (p > 0.05) (Figures 1A,B). After 
60 days of ensiling, the number of ARGs at low altitudes was higher 
than that at medium and high altitudes (p < 0.05) (Figure 1A). The 

results showed that multiple drugs, aminoglycosides, bacitracin, beta-
lactams, and polymyxins were the major ARG types in E. nutans silage 
(Figure 1C). Similarly, the abundance of ARG types in E. nutans silage 
was not affected by altitude (p > 0.05). After 60 days of ensiling, the 
abundance of streptothricin was higher at low altitudes than at medium 
and high altitudes (p < 0.05). The results of the ARG subtypes showed 
that bacA, mdtK, acrF, tolC, cpxA, CRP, and acrD were the major ARG 
subtypes in E. nutans silage (Figure 1D). At the same altitude, the effect 
of fermentation time on ARG was negligible. The efflux pump was the 
major ARG resistance mechanism in each group, followed by regulation 
and antibiotic target alteration (Figure 1E). Altitude and fermentation 
time had no major effects on ARG resistance in E. nutans silage.

3.2 Effects of altitudes on changes in 
microbial communities in Elymus nutans 
silage

During ensiling, the abundance of Pantoea and Pantoea 
agglomerans gradually decreased with increasing altitude (p < 0.05) 
(Figure  2). The abundances of Serratia, Serratia proteamaculans, 
Pediococcus, and Pediococcus acidilactici were the highest at middle 
altitudes (p < 0.05). The abundances of Hafnia and Hafnia alvei were 
the highest at low altitudes (p < 0.05). At all three altitudes, the 
abundances of Lactiplantibacillus and Lactiplantibacillus plantarum 
increased with increasing fermentation time.

3.3 Effects of different altitudes on ARG 
hosts in Elymus nutans silage

At low altitudes, Hafnia, Pantoea, and Enterobacter were the major 
carriers of some dominant ARGs (multidrug, aminoglycoside, 
bacitracin, beta-lactam, and polymyxin) in Elymus nutans silage 
(Figure 3A). At mid-altitudes, Serratia, Lelliottia, and Pantoea were the 
primary carriers of the dominant ARGs (multidrug, aminoglycoside, 
bacitracin, beta-lactam, and polymyxin) in Elymus nutans silage 
(Figure  3B). At high altitudes, Hafnia, Serratia, Enterobacter, and 
Atlantibacter were the main carriers of the dominant ARGs in Elymus 
nutans silage (Figure 3C). In addition, QANA01 was the only carrier 
of streptothricin at all three altitudes. Atlantibacter was the only carrier 
of florfenicol. Staphylococcus was the only carrier of fusidic acid.

3.4 Effects of altitude on the distribution 
and carriers of MGEs in Elymus nutans 
silage

As shown in Figure  4A, the MGE-based PCoA showed no 
remarkable separation among the different altitudes. During ensiling, 
altitude had no effect on the total abundance of MGEs, except that at 
60 days of fermentation, the total abundance of MGEs at high altitudes 
was higher than that at low and medium altitudes (p < 0.05) 
(Figure 4B). The tnpA and IS91 were the dominant MGE subtypes in 
each group (Figure 4C). After ensiling for 7 days, the abundances of 
IS26 and tnpA1 increased at high altitudes compared to low and 
medium altitudes (p < 0.05). After 60 days of ensiling, the abundances 
of tnpAB and tnpA1-IS981 were higher at high altitudes than at low and 
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medium altitudes (p < 0.05). Pantoea was the main carrier of the 
plasmid (Figure  4D). Enterobacter, Pediococcus, Hornefia, and 
Lacticaseibacillus were the major transposase carriers. The dominant 
hosts of ist were Pantoea and Buttiauxella. The dominant IS hosts were 
Buttiauxella, Yersinia, Enterobacter, Erwinia, and Rahnella. Enterobacter, 
Pantoea, and Pediococcus were the main carriers of integrases.

3.5 Correlation among MGEs, ARGs, and 
bacterial communities

At low altitudes, 33 ARGs and 4 MGEs highly co-occurred with 
15 bacteria (Figure  5A). Among these visual associations, 

tnpA2B2-ISLL6 was highly correlated with the majority of the target 
ARGs. Weissella confusa, Bacterium acnes, and Erwinia persicina were 
the major bacteria associated with ARGs. These results suggest that 
tnpA2B2-ISLL6 may be  the major mediator that promotes ARG 
transmission in E. nutans silage at low altitudes. At medium altitudes, 
36 ARGs and 5 MGEs showed high co-occurrence with 16 bacteria 
(Figure  5B). Erwinia persicna, Serratia liquefaciens, and Klebsiella 
pneumoniae were the major bacteria associated with ARGs. tnpA-
IS683, int2, and tnpA27 were MGEs highly correlated with most target 
ARGs. At high altitudes, 32 ARGs and 8 MGEs highly co-occurred 
with 16 bacteria (Figure 5C). Lactiplantibacillus plantarum, Pantoea 
agglomerans, and Enterobacter cloacae were the chief bacteria 
associated with ARGs. tnpAB was an MGE that correlated with the 

FIGURE 1

Variation in the diversity and abundance of antibiotic resistance genes (ARGs) in Elymus nutans silage at different altitudes. (A) Total number and 
abundance of ARGs; (B) principal coordinate analysis (PCoA) of ARGs. (C) Abundance of ARG type; (D) abundance of ARG subtype; and (E) abundance 
of ARG resistance mechanism. L, low altitude; M, middle altitude; H, high altitude; 7, 14, and 60 represent 7, 14, and 60 days of fermentation, 
respectively.

https://doi.org/10.3389/fmicb.2025.1494538
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2025.1494538

Frontiers in Microbiology 05 frontiersin.org

majority of the target ARGs. Notably, the coexistence patterns of 
ARGs, MGEs, and bacterial species at high altitudes were more 
complex than those at low and medium altitudes, and more ARG 
subtypes were present at high altitudes. This suggests that high-
altitude conditions may increase the risk of horizontal gene transfer 
(HGT) of ARGs in E. nutans silage. Procrustes analysis further showed 
a close correlation among the three (Figures 5D–F).

3.6 Influences of fermentation quality on 
ARGs, MGEs, and microbes in E. nutans 
silage

Data on the fermentation quality have been presented in a 
previously published paper (Su et al., 2023). The correlation between 
fermentation characteristics, ARGs, MGEs, and microbial 
composition was analyzed using the Mantel test (Figure 6A). Lactate 
and starch levels were highly correlated with ARG levels (r > 0.4, 
p < 0.01). Changes in MGEs were highly correlated with lactate, 
acetate, DM loss, and starch content (r > 0.4, p < 0.01). Bacterial 
communities were associated with the majority of the fermentation 

indicators, with pH and lactate levels as the key factors. Figure 6B 
further shows that there was a positive correlation between the 
dissimilarity of ARGs and the dissimilarity of environmental factors. 
The correlation between them increased with the increase in altitude.

3.7 Clinical ARGs in E. nutans silage from 
different altitudes

Some ARGs in human pathogens have been obtained from 
environmental bacteria through HGT. Therefore, evaluating the 
clinical ARGs carried by pathogens in E. nutans silage at different 
altitudes is important. In the present study, the top 12 clinical ARGs 
in E. nutans silage collected at different altitudes were screened 
(Figure 7). The top 12 clinical ARGs included one beta-lactam (penA), 
one bacitracin (bacA), one kasugamycin (ksgA), two polymyxins (rosA 
and rosB), and seven multidrug genes (acrA, acrF, CRP, emrD, H-NS, 
mdfA, and mdtE) in E. nutans silage collected at different altitudes. 
The bacA and acrF were the predominant clinical ARGs in each group. 
In addition, the abundance of clinical ARGs was decreased with 
prolonged fermentation time, in particular, the abundances of acrA, 

FIGURE 2

Succession of bacterial communities in Elymus nutans silage at different altitudes. (A) Relative abundance of dominant bacteria at the genus level; 
(B) Relative abundance of dominant bacteria at the species level. L, low altitude; M, middle altitude; H, high altitude; 7, 14, and 60 represent 7, 14, and 
60 days of fermentation, respectively.
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CRP, ksgA, penA, and rosB. Notably, the majority of clinical ARGs 
(acrA, acrF, CRP, emrD, H-NS, mdfA, mdtE, and penA) with 90% 
amino acid homology in E. nutans silage have high sequence similarity 
to ARGs in human pathogens. This indicates that ARGs in E. nutans 
silage from different altitudes on the QTP pose a concern, with at least 
some potentially entering the clinical domain.

4 Discussion

Key ARGs in E. nutans silage from the QTP include those 
conferring resistance to multidrug, aminoglycoside, bacitracin, beta-
lactam, and polymyxin antibiotics, which are commonly used in both 

animals and humans. The reasons for the presence of ARGs in E. nutans 
silage from the QTP include environmental factors and anthropogenic 
activities, according to Wang N. et al. (2024). The QTP is a developed 
area for animal husbandry, particularly the breeding of Tibetan livestock 
breeds (Zhou et al., 2018). The widespread use of antibiotics in animal 
performance may induce ARG production in animals, which may then 
enter the environment through animal waste, thereby contaminating 
the soil and vegetation (Muhammad et al., 2020; Zhang Q. et al., 2022). 
In addition, although the agricultural activity on the QTP is relatively 
low, any agricultural or other economic activities may involve the use 
of antibiotics, thereby indirectly contributing to the spread of ARGs in 
the environment. The present study showed that altitude did not affect 
the abundance of ARG type in E. nutans silage. Yang et al. (2019) also 

FIGURE 3

Antibiotic resistance gene (ARG) hosts information in Elymus nutans silage at different altitudes. (A) Low altitude; (B) middle altitude; and (C) high 
altitude.
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found no correlation between altitude and ARG abundance. Although 
altitude has an important effect on the ecological environment, it is not 
a unique factor in determining the abundance of anoxia or ARGs on the 
QTP (He et al., 2016; Wang S. et al., 2024). A previous study has found 
that many environmental factors, such as air temperature, vegetation 
coverage, soil, and precipitation, can affect ARG abundance (Shi F. et al., 
2023; Miao et al., 2023). Therefore, the direct effect of altitude on ARG 
abundance may be weakened by a combination of multiple factors. In 
addition, we found that fermentation time had less effect on the ARG 
of E. nutans silage at the same altitude. This result contributes to the 
combined action of the anaerobic environment, microbial community, 
silage quality, raw materials, and ensiling conditions (Yang et al., 2019). 
Finally, the abundance of streptothricin in low-altitude silage was higher 
than that in middle- and high-altitude silages. This could be because the 
soil microbial communities at low altitudes are richer and more diverse 
due to the relatively warm and humid climate. These microbes may 
carry streptothricin, which is passed on to E. nutans through horizontal 
gene transfer.

Different altitudes have different environmental factors (such as 
climate and soil properties), vegetation types, biological interactions, 
and human disturbances. These factors affect the succession of 
microbial communities (Xie et al., 2023). The current study also found 
that changes in altitude caused changes in certain microbes (Pantoea, 
Serratia, Pediococcus, and Hafnia). ARG host analysis showed that the 
carriers of the dominant ARG differed at the three altitudes. The 
carriage and distribution characteristics of ARG at different altitudes 
may be determined by environmental factors, microbial communities, 
genetic elements, and anthropogenic activities (Qian et al., 2021). In 
addition, it was found that the ARG carriers in E. nutans silage on the 
QTP were mainly harmful bacteria (Hafnia, Pantoea, Enterobacter, 
Serratia, Lelliottia, and Atlantibacter). A previous study found that 
ARG carriers in alfalfa silage are also harmful epigenetic bacteria 
(Zhang et al., 2023). Mobile genetic elements play an important role 
in the HGT of ARG by capturing, integrating, and transferring them. 
The current study found that altitude has no significant effect on the 
total MGE abundance. However, the abundances of tnpAB, 

FIGURE 4

Variation in the diversity and abundance of mobile genetic elements (MGEs) in Elymus nutans silage at different altitudes. (A) Principal coordinate 
analysis (PCoA) of MGEs; (B) total abundance of MGEs; and (C) composition and abundance of top 30 MGE subtypes. (D) Hosts of MGE types 
(including IS, integrase, plasmid, and transposase). L, low altitude; M, middle altitude; H, high altitude; 7, 14, and 60 represent 7, 14, and 60 days of 
fermentation, respectively.
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TNPA1-IS981, IS26, and tnpA1 increased in high-altitude silage. The 
tnpA and IS91 were the dominant MGE subtypes in each group, and 
the major hosts of the different MGE subtypes were different. These 
results may be attributed to the fact that different MGEs carry different 
genetic codes that determine their host type (Frost et al., 2005).

The major carriers (Pantoea, Enterobacter, and Pediococcus) of 
MGEs and ARGs were identical. This indicated that MGEs and 

ARGs formed close symbiotic and co-evolutionary relationships 
during the evolutionary process (Bengtsson-palme et al., 2018; 
Zhou et al., 2021). Procrute analysis showed that the correlation 
between the number of MGEs and ARGs was relatively strong 
compared to that between microbes and the number of ARGs. It 
was inferred that the influence of microbes on ARGs was obtained 
through HGT mediated by MGEs (Duan et al., 2019). Notably, the 

FIGURE 5

Network co-occurrence pattern of bacteria with antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in Elymus nutans silage at 
low, middle, and high altitudes, respectively (A–C). Procrute analysis of bacteria with ARGs and MGEs in Elymus nutans silage with low, middle, and 
high altitudes, respectively (D–F).

FIGURE 6

Influences of fermentation quality on bacteria, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) in Elymus nutans silage. 
(A) Mantel analysis shows the correlation between fermentation quality and ARGs, MGEs, and bacterial community. (B) Distance-dependent curve of 
dissimilarity between ARGs and fermentation quality. The closer the slope of the fitted curve is to one, the weaker the distance-dependent similarity 
between environmental factors and ARGs. DM, dry matter; WSC, water-soluble carbohydrates.
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network concurrence patterns of ARGs, MGEs, and bacteria in 
high-altitude silage were more complex than those in the low- and 
medium-altitude silages. This further suggested that high-altitude 
conditions increased the risk of ARG transmission in 
E. nutans silage.

Environmental factors play an important role in the ARG 
distribution. It was considered that environmental factors directly 
affect the survival of microorganisms and indirectly change the 
distribution of ARGs (Wang et al., 2020; Delgado-Baquerizo et al., 
2022; Li et al., 2023). Zhang et al. (2024) reported that the dry matter 
content and fermentation property indirectly affected the changes in 
ARGs in whole-plant corn silage. Therefore, determining the factors 
influencing ARGs in E. nutans silage was helpful for controlling 
resistance propagation. The present results showed that the 
fermentation quality (DM loss, pH, lactic acid, and acetic acid) 
affected ARGs, MGEs, and microbes in E. nutans silage, especially 
lactate and starch contents. In summary, the occurrence and spread 
of ARGs in E. nutans silage were affected by several factors. Notably, 
ARGs in ecological environments may be transmitted to animals or 
humans through the food chain and pose a potential threat to public 
health. This study found that the ensiling process reduced the 
abundance of clinical ARGs, especially acrA, CRP, ksgA, penA, and 
rosB. The majority of the clinical ARGs (acrA, acrF, CRP, emrD, 
H-NS, mdfA, mdtE, and penA) in E. nutans silage had a high 
sequence similarity to ARGs found in human pathogens. This 
suggests that at least some of these ARGs have possibly entered the 
clinical domain, posing potential risks to public health and medical 
treatment. Therefore, it is important to strengthen the monitoring 
and management of ARGs related to human health in E. nutans 
silage. This can help prevent and control the spread of antibiotic 
resistance. In addition, it is necessary to further explore the 
possibility, transmission mechanism, and potential risks of ARGs 
from silage transfer to humans through the food chain in 
future studies.

5 Conclusion

The results of this study indicate that multidrug, aminoglycoside, 
bacitracin, beta-lactam, and polymyxin are the major ARG types in 
E. nutans silage from the alpine region of the QTP. The dominant 
MGE subtypes in E. nutans silage were tnpA and IS91, and the efflux 
pump was the major resistance mechanism against ARGs. Pantoea, 
Enterobacter, Serratia, and Lelliottia were the primary carriers of the 
dominant ARGs in E. nutans silage. Although altitude and ensiling 
time had no effect on the abundance of the majority of ARGs and 
MGEs in E. nutans silage, the abundance of streptothricin was higher 
in low-altitude silage than in middle- and high-altitude silages. 
Moreover, the abundances of tnpAB and tnpA1-IS981 were higher in 
high-altitude silage than in low- and middle-altitude silages. 
Network co-occurrence patterns of ARGs, MGEs, and bacteria in 
high-altitude silage were more complex than those in low- and 
medium-altitude silages. Clinical ARGs were also found in E. nutans 
silage, but their abundance was decreased with prolonged 
fermentation time, particularly the abundances of acrA, CRP, ksgA, 
penA, and rosB.
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