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This narrative review explores the transformative potential of artificial intelligence 
(AI) in optimizing bioremediation systems for river pollution control while addressing 
the challenges and limitations associated with its implementation. The review 
begins by examining traditional and emerging bioremediation methods, highlighting 
their limitations and the pressing need for innovative solutions. It then delves into 
the application of AI technologies in pollution monitoring and bioremediation 
optimization, providing examples and success stories from existing studies. The 
challenges of AI-driven bioremediation, including ethical concerns, technological 
constraints, and the need for responsible deployment, are critically analyzed. 
Emphasis is placed on fostering interdisciplinary collaboration to overcome these 
barriers. The review also presents future directions and actionable recommendations, 
including integrating AI with traditional approaches, addressing technological and 
policy gaps, and ensuring sustainable management of river ecosystems. Ultimately, 
this review stresses the revolutionary potential of AI in enhancing bioremediation 
systems and advocates for urgent action to address the challenges involved, 
paving the way for sustainable and effective river pollution control strategies.
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Introduction

The growing concern about environmental degradation and its consequences on human 
health has fueled the quest for creative pollution-reduction strategies (Wani et al., 2024). 
Artificial intelligence (AI) has emerged as a viable tool to change environmental science 
(Gupta et  al., 2021). This narrative study examines the paradigm change caused by the 
AI-driven optimization of bioremediation systems for river pollution mitigation, providing a 
thorough evaluation of current advancements and future perspectives.

AI technologies include a wide range of computational approaches for learning from and 
making data-driven predictions or choices (Kang et al., 2017). AI has rapidly gained popularity 
in environmental research owing to its ability to process massive volumes of complicated data, 
discover patterns, and generate critical insights for tackling environmental issues (Steffi et al., 
2022; Russell and Norvig, 2016). From pollution monitoring to remediation, artificial 
intelligence provides unprecedented opportunities to improve the efficiency and effectiveness 
of environmental management operations (Steffi et al., 2022). However, it is essential to note 
that the full potential of AI in bioremediation can only be realized through interdisciplinary 
collaboration. The complex nature of river pollution requires the expertise of environmental 
scientists, engineers, policymakers, and other stakeholders to develop comprehensive solutions.
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This narrative review focuses centres on the crucial function of 
bioremediation in river pollution reduction. According to the 
Environmental Protection Agency (EPA) (2010), Bioremediation, a 
natural or artificial process that uses microorganisms to break down 
contaminants, has emerged as a viable and cost-effective method for 
repairing polluted ecosystems. Rivers, critical freshwater supplies, are 
vulnerable to various contaminants, including industrial waste, 
agricultural runoff, and urban sewage, which pose severe challenges 
to aquatic biodiversity and human well-being (Tao et al., 2021).

Statistics have highlighted the importance of reducing river 
pollution through innovative approaches. According to the World 
Health Organization (WHO) (2021), approximately 80% of worldwide 
wastewater worldwide is discharged into the environment untreated, 
polluting rivers and worsening waterborne diseases. Furthermore, the 
United Nations Environment Programme (UNEP) (2017) states that 
more than 80% of wastewater in underdeveloped countries is dumped 
into rivers without proper treatment, thereby increasing the risk of 
waterborne sickness and environmental degradation.

Given the daunting challenges of river pollution, the potential of 
AI-driven optimization of bioremediation systems is inspiring (Tao 
et  al., 2021; Bansal and Jha, 2023). This technology empowers 
researchers and practitioners to develop tailored treatments that 
maximize pollutant removal and minimise ecological disruption. 
Using AI algorithms to assess environmental data, forecast pollutant 
behaviour, and optimise bioremediation methods, we can envision a 
future where river pollution is effectively managed, and our 
ecosystems thrive.

This narrative review aims to synthesise the existing literature on 
AI-driven optimisation of bioremediation techniques for river 
pollution, highlighting significant accomplishments, challenges, and 
prospects in this emerging topic. We  investigated the synergistic 
integration of AI and bioremediation techniques from an 
interdisciplinary perspective to provide insights into novel approaches 
for long-term river ecosystem restoration and human 
health protection.

Current bioremediation strategies

Bioremediation, which includes both natural and artificial 
techniques, is critical for repairing river-polluted ecosystems (Allen-
Adebayo et  al., 2024). According to Curiel-Alegre et  al. (2022), 
traditional bioremediation approaches such as bioaugmentation and 
biostimulation have been widely used for decades; however, they have 
significant limitations. In contrast, modern bioremediation techniques 
promise to overcome these limitations and provide innovative 
solutions for long-term pollution management (Das and Chandran, 
2011). Traditional bioremediation approaches generally rely on 
introducing microorganisms to break down contaminants or increase 
the metabolic activity of existing microbial communities (Curiel-
Alegre et  al., 2022). Bioaugmentation, for example, involves the 
introduction of specialized microbial strains capable of metabolizing 
target pollutants, thereby accelerating pollutant breakdown (Das and 
Chandran, 2011). Similarly, biostimulation encourages indigenous 
microorganisms by adding nutrients, oxygen, or electron acceptors to 
improve their pollutant-degrading capacity (Atlas and Philp, 2005).

However, typical bioremediation technologies have significant 
drawbacks that restrict their effectiveness in reducing river pollution 

(Allen-Adebayo et al., 2024). One fundamental difficulty is the limited 
efficiency of the introduced microbial consortia in complex 
environmental matrices with varying physicochemical conditions 
(Head et  al., 2006). In addition, the sluggish rate of pollutant 
degradation and partial transformation of pollutants into innocuous 
byproducts reduce the efficacy of standard bioremediation procedures, 
extend remediation time, and perhaps create secondary environmental 
consequences (Steffi et al., 2022). In contrast, modern bioremediation 
techniques use cutting-edge technologies and novel approaches to 
overcome the limitations of existing procedures (Das and Chandran, 
2011; Patowary et  al., 2023). For example, advanced oxidation 
processes (AOPs) use chemical reactions involving hydroxyl radicals 
to destroy various resistant contaminants (Gogate and Pandit, 2004). 
Nanotechnology-based bioremediation systems use designed 
nanoparticles to improve pollutant sorption, microbial activity, and 
degradation kinetics, resulting in higher efficiency and selectivity than 
traditional methods (Guerra et al., 2018). Recent research has shown 
that AI-driven optimization can improve new bioremediation systems 
by allowing for real-time monitoring, adaptive control, and predictive 
modelling of remediation processes (Steffi et al., 2022). By combining 
AI algorithms with bioremediation methodologies, researchers can 
improve pollution removal efficiency, reduce environmental effects, 
and maximize resource use in a new era of precision environmental 
management (Gupta et al., 2021). Although classic bioremediation 
technologies, as shown in Table 1, have long been used to reduce river 
pollution, their limitations necessitate the investigation of new 
strategies. The combination of AI-driven optimisation and new 
bioremediation technologies holds promise for overcoming these 
problems, paving the way for more effective and sustainable responses 
to river pollution.

Schematic representation of bioremediation strategies based on 
contaminant type and remediation methods. Figure  1 categorises 
contaminants as inorganic (e.g., metals, halogens) or organic (e.g., 
hydrocarbons, pesticides), highlighting specific remediation 
mechanisms such as electrochemical (im)mobilisation and adsorption 
onto biomass for inorganic contaminants and metabolic oxidation for 
organic contaminants. Remediation methods are further divided into 
biostimulation, involving the addition of nutrients or oxygen to 
enhance native microbial activity, and bioaugmentation, which 
involves the introduction of foreign microbial species to improve 
pollutant degradation efficiency. This framework emphasises the 
tailored approach required for practical bioremediation of diverse 
environmental pollutants.

Application of AI in bioremediation

According to Patowary et  al. (2023), integrating artificial 
intelligence (AI) technology has enormous potential for transforming 
bioremediation systems targeted at reducing river pollution. AI 
shows excellent potential in data-driven pollution monitoring 
systems and AI-driven bioremediation process optimization (Liu 
et  al., 2022). By leveraging the capabilities of AI algorithms, 
researchers can improve the efficiency, accuracy, and sustainability 
(Bansal and Jha, 2023). Data-driven pollution monitoring systems 
use artificial intelligence algorithms to analyze vast amounts of 
environmental data acquired from diverse sources such as remote 
sensing, sensor networks, and water quality monitoring stations  
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(Liu et al., 2022), as shown in Figure 2. AI methods such as machine 
learning and neural networks can recognise spatial and temporal 
patterns in pollutant concentrations, allowing for early detection of 

pollution hotspots and trends (Sun and Scanlon, 2019). AI-powered 
pollution monitoring systems integrate multiple datasets to provide 
complete insights into the dynamics of river pollution, allowing 

TABLE 1 Various applications of AI in bioremediation research and approaches.

AI application Bioremediation approach Description References

Pollution Monitoring Data-Driven Monitoring

AI algorithms analyse data from 

sensors and remote sensing to identify 

pollution hotspots.

Wani et al. (2024); Tao et al. (2021)

Microbial Selection Bioaugmentation

Machine learning models predict the 

best microbial strains for degrading 

specific pollutants.

Patowary et al. (2023); Gupta et al. 

(2021)

Optimising Nutrient Supplementation Biostimulation

Genetic algorithms optimise nutrient 

addition to enhance microbial activity 

in contaminated sites.

Sahu et al. (2023); Bibri et al. (2024)

Heavy Metal Removal Constructed Wetlands

AI frameworks optimise constructed 

wetlands for efficient heavy metal 

remediation.

Qasaimeh (2003); Gupta et al. (2021) 

Biswas et al. (2024)

Predicting Pollutant Transport Sediment and Water Flow Prediction

Neural networks predict sediment and 

pollutant transport patterns for 

targeted interventions.

Tao et al. (2021); Sun and Scanlon 

(2019)

Real-Time Adaptive Control Dynamic Bioremediation

Reinforcement learning adjusts 

treatment parameters dynamically 

based on real-time data.

Naveed et al. (2024); Chang et al. 

(2015)

Nanotechnology Integration Nanoparticle-Enhanced Bioremediation

AI models design and deploy 

nanomaterials for targeted pollutant 

degradation.

Patowary et al. (2023); Guerra et al. 

(2018)

AI-Powered Autonomous Vehicles Autonomous Monitoring

AI-equipped AUVs map pollutant 

plumes and collect water samples for 

precise cleanup strategies.

Anand et al. (2024); Gupta et al. (2021)

Enhanced Wastewater Treatment AI-Optimized Constructed Wetlands

Machine learning predicts nutrient 

removal efficiency in constructed 

wetlands.

Sahu et al. (2023); Qasaimeh (2003)

Policy and Decision Support Systems Environmental Decision-Making

AI tools support policymakers by 

predicting the long-term impacts of 

bioremediation strategies.

Liu et al. (2022); Floridi et al. (2018).

Ukpaka (2017)

FIGURE 1

Bioremediation strategies. Source: Western University Tech Review.
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stakeholders to make informed decisions regarding cleanup tactics 
and resource allocation (Wani et al., 2024).

Furthermore, the AI-driven optimization of bioremediation 
processes presents an excellent opportunity to improve the efficacy and 
efficiency of pollutant removal from river ecosystems (Steffi et al., 2022). 
Researchers can use AI algorithms to optimize critical parameters, such 
as microbial consortia selection, nutrient supplementation, and process 
conditions, to maximize pollutant degradation rates while minimizing 
resource consumption and environmental impacts (Gupta et al., 2021). 
AI-based optimization methods, such as genetic algorithms and particle 
swarm optimisation, allow the exploration of complex solution spaces 
and the identification of optimal remediation strategies based on unique 
environmental circumstances and pollution profiles (Sahu et al., 2023). 
In contrast to classic empirical methodologies, AI-driven optimisation 
techniques provide a data-driven, adaptive approach to bioremediation 
that considers the dynamic character of environmental systems and the 
inherent unpredictability of pollutant degradation processes (Liu et al., 
2022). AI-powered bioremediation systems can dynamically adapt 
operational parameters and treatment procedures as environmental 
circumstances change, thereby ensuring optimal performance (Bansal 
and Jha, 2023). Overall, the use of AI in bioremediation shows 
considerable promise in enhancing pollution monitoring and 
remediation efforts in river ecosystems.

The workflow begins with hyperspectral/LiDAR data analysis to 
generate outputs such as land cover/use mapping, object detection, 
and change detection. These outputs are enhanced through data 
fusion and integration, enabling practical applications of AI in remote 
sensing. Challenges such as data quality, availability, training 
optimization, uncertainty, integrity, security, and diversity are 
identified as critical factors for successful implementation. The right 
panel illustrates potential applications of practical AI, including 
wildlife detection, deforestation monitoring, marine ecosystem 
analysis, airborne disease tracking, resilience planning, biodiversity 
assessment, precision agriculture, water security, and urban heat 
island management, showcasing the versatility of AI in addressing 
complex environmental issues.

Types of algorithms used in AI for 
bioremediation

Artificial Intelligence (AI) employs a range of algorithms to 
optimise bioremediation processes by analysing environmental data, 

predicting pollutant behaviour, and enhancing remediation strategies 
(Gupta et al., 2021). These algorithms fall into several categories, each 
suited to specific applications in environmental management.

 1) Machine Learning Algorithms: Supervised learning algorithms, 
such as support vector machines (SVMs) and decision trees, 
are frequently used to analyse water quality and predict 
pollutant levels. For unsupervised learning, clustering methods 
such as k-means help identify pollution hotspots, whereas 
dimensionality reduction techniques such as Principal 
Component Analysis (PCA) aid in simplifying complex 
datasets (Curiel-Alegre et al., 2022). A decision tree describes 
graphically the decisions to be made, the events that may occur, 
and the outcomes associated with combinations of decisions 
and events. It is a tree structured algorithm where nodes 
represent decision rules and leaves represent outcomes, this is 
quite easy to interpret, although it is less effective with complex 
data (Ukpaka, 2017). Their primary advantage lies in their 
simplicity and interpretability, which makes them accessible to 
researchers and practitioners. However, they may struggle with 
capturing highly complex or nonlinear relationships in data, 
limiting their use in more intricate bioremediation scenarios.

 2) Neural Networks: Deep learning algorithms, including 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), are pivotal for analyzing spatial and 
temporal pollution data (Wani et al., 2024). Artificial neural 
networks (ANN) mimic the brain function through 
interconnected neurons. They have the advantage of being 
highly adaptable, able to process complex data sets, identify 
patterns and make predictions. These algorithms excel in 
processing large datasets from sensors and satellite images, 
enabling the real-time monitoring of pollutants. A major 
disadvantage is the requirement for significant computation 
resources and being prone to overfitting (Biswas et al., 2024)).

 3) Optimization Algorithms: Genetic algorithms (GAs) and 
particle swarm optimization (PSO) are widely used to optimise 
microbial consortia selection, nutrient supplementation, and 
process parameters for pollutant degradation (Steffi et  al., 
2022). These algorithms efficiently explore solution spaces to 
identify the optimal remediation strategies. A significant 
advantage of Genetic Programming is its ability to generate 
explicit mathematical models from data, providing users with 
interpretable results. This is particularly valuable in 

FIGURE 2

AI in remote sensing. Source: MDPI.
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bioremediation, where understanding pollutant degradation 
kinetics or environmental interactions is critical. However, this 
approach can be computationally intensive and may produce 
models that are complex to interpret without expert knowledge.

 4) Reinforcement Learning: Adaptive control systems leveraging 
reinforcement learning dynamically adjust bioremediation 
parameters based on environmental feedback, ensuring 
sustained efficiency despite changing conditions (Allen-
Adebayo et al., 2024). This approach is well-suited for adaptive 
control systems in bioremediation, where environmental 
conditions are dynamic and require real-time adjustments. Its 
primary advantage is its ability to optimise processes 
continuously based on feedback. However, reinforcement 
learning often requires extensive training data and is highly 
sensitive to the design of the reward functions, which can 
influence outcomes significantly.

Interpretative frameworks in AI-driven 
bioremediation

The interpretative frameworks are important in improving the 
transparency and predictability of machine learning (ML) approaches 
in different fields. It assists in understanding the workings of machine 
learning algorithms and hence enhances confidence in the predictions 
made. These interpretative frameworks, which include LIME, SHAP, 
and InterpretML, have been used in making models into very 
interpretable insights by explaining artificial neural networks (ANN) 
and support vector machines (SVM), making them easy to use 
and understand.

 1) SHAP (SHapley Additive exPlanations): SHAP assigns 
importances of each input feature to a model’s output using 
Shapley values which are the measurements from cooperative 
game theory. This provides a way of giving equal importance 
to all features while explaining their importance. In 
Bioremediation, SHAP has been applied to determine the most 
important ecological parameters that affect the microbial 
degradation rate. For instance, SHAP was applied to a Random 
Forest model that was developed to predict the removal of 
heavy metals in wetlands. The analysis results indicated that 
nutrients and microbial diversity were the most crucial factors 
that contributed to effective remediation processes (Lamane 
et al., 2024). Another study incorporated SHAP with XGBoost 
to model the estuarine water quality and thus proved the 
flexibility of the model in various ecological conditions 
(Lamane et al., 2024).

 2) LIME (Local Interpretable Model-agnostic Explanations): LIME 
generates simple, local surrogate models to predict the 
behaviour of complex ML models. These surrogates provide 
intuitive explanations for individual predictions. LIME has 
been used on ANN models to predict pollutant concentration 
predictions. With the help of LIME, the importance of 
parameters such as temperature and pH has been established 
and the experimental designs have been enhanced. For 
example, Ribeiro et  al. applied LIME to show how it can 
be employed for identifying the most important factors that 
affect the performance of water quality models.

 3) InterpretML: InterpretML is a comprehensive framework 
offering tools for both global and local interpretability, 
including Explainable Boosting Machines (EBMs) and 
SHAP. This framework has been utilised to evaluate SVM and 
Random Forest models in pollutant transport studies. By 
elucidating the influence of hydrological and chemical 
parameters, InterpretML has informed effective cleanup 
strategies in river ecosystems (Nori et al., 2019).

Case studies and success stories

The use of artificial intelligence (AI) in river pollution remediation 
has produced encouraging results, with multiple case studies 
demonstrating the effectiveness of AI-driven solutions for increasing 
pollutant removal efficiency and recovering aquatic ecosystems (Wani 
et al., 2024; Allen-Adebayo et al., 2024; Chang et al., 2015). Researchers 
have shown that using AI algorithms for real-time monitoring, 
adaptive control, and optimisation of bioremediation processes 
significantly improves pollutant degradation rates and environmental 
consequences (Patowary et al., 2023).

A significant example of AI application in river pollution 
remediation is the use of AI-powered autonomous underwater 
vehicles (AUVs) to monitor water quality and detect pollutants 
(Anand et  al., 2024). Researchers have created advanced sensor 
networks using AI algorithms capable of detecting and mapping 
polluted plumes in real-time (Chang et al., 2015). AI-powered AUVs 
provide a rapid and precise assessment of pollution levels by 
autonomously navigating river systems, collecting water samples at 
crucial places, supporting targeted cleanup operations, and early 
intervention to minimize environmental impact (Anand et al., 2024).

Additionally, the AI-driven optimization of bioremediation 
procedures has considerably improved pollutant removal efficiency 
while decreasing remediation costs. For example, researchers have 
used machine learning algorithms to optimize the selection and 
deployment of microbial consortia to degrade specific contaminants 
in contaminated river sediments (Sun and Scanlon, 2019). AI models 
can forecast the best mix of microbial species and treatment settings 
to maximise pollutant degradation rates by assessing environmental 
data and microbial community dynamics (Naveed et al., 2024).

Several success stories in the literature show how AI-driven 
solutions improve pollutant removal efficiency. Qasaimeh (2003) used 
an AI-based optimization framework to bioremediate a heavy metal-
contaminated river environment. By combining AI algorithms with 
bioremediation models, researchers can significantly reduce pollutant 
concentrations and quickly enhance water quality (Anand et al., 2024). 
Similarly, Gupta et  al. (2021) and Qasaimeh (2003) found that 
AI-driven optimization improved the efficiency of created wetlands 
for treating agricultural runoff and reducing nutrient pollution in 
river systems.

Despite these advances, there are still obstacles to converting 
AI-driven solutions from research to reality and scaling them up for 
large-scale river pollution cleanup operations (Tao et al., 2021). Data 
availability, model robustness, and stakeholder participation are 
essential considerations for the effective deployment and long-term 
viability of AI-driven bioremediation initiatives (Bansal and Jha, 
2023). In addition, Genome-scale modelling (GSM) and systems 
biology integrated with machine learning techniques represent 
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advanced approaches for optimizing bioremediation processes. These 
methodologies allow researchers to model and predict the behaviour 
of microbial communities under varying environmental conditions, 
enabling the design of high-performance microbial factories for 
pollutant degradation.

Systems biology provides a comprehensive framework for 
understanding the complex interactions within microbial 
communities. By integrating omics data, such as genomics, 
transcriptomics, and proteomics, machine learning algorithms can 
identify key metabolic pathways and regulatory networks that are 
essential for pollutant breakdown. Genome-scale metabolic models 
(GEMs) are particularly useful for simulating microbial metabolism 
and predicting optimal conditions for pollutant degradation. For 
example, GEMs have been used to enhance the performance of 
Pseudomonas putida in the breakdown of hydrocarbons in 
contaminated water systems.

Machine learning enhances GSM by identifying critical 
parameters that influence microbial activity. For instance, supervised 
learning algorithms can optimise nutrient supplementation, whereas 
clustering methods aid in grouping microbial strains with 
complementary metabolic functions. These approaches have 
succeeded in bioaugmentation strategies for removing persistent 
organic pollutants.

Challenges and limitations

Although the incorporation of artificial intelligence (AI) into 
bioremediation has enormous promise for improving pollution 
remediation efforts, many obstacles and constraints must be addressed 
to enable the ethical and effective implementation of AI-driven 
solutions. Ethical considerations in AI-driven bioremediation include 
concerns about environmental justice, socioeconomic repercussions, 
and unexpected consequences (Steffi et al., 2022). As AI technologies 
become more prevalent in environmental management, concerns arise 
about fair access to advanced bioremediation methods and the 
distribution of benefits and dangers across different populations 
(Chang et  al., 2015). Floridi et  al. (2018) discussed the ethical 
difficulties that may arise regarding using AI algorithms to make 
decisions with potentially far-reaching ecological and societal 
consequences, raising concerns about accountability, transparency, 
and democratic governance in environmental decision-
making processes.

Technological challenges and data availability impede the 
mainstream adoption of AI-driven bioremediation techniques 
(Asquith et al., 2012). Although AI algorithms require vast amounts 
of high-quality data to train and evaluate predictive models, gathering 
comprehensive environmental datasets can be difficult, particularly in 
distant or resource-constrained areas (Liu et al., 2022). Also, Bibri 
et al. (2024) state that the interoperability of data sources and data 
format compatibility provide technical challenges to combining varied 
datasets from multiple sources, limiting the efficiency of AI-powered 
pollution monitoring and remediation systems. Addressing these 
difficulties necessitates interdisciplinary collaboration and novel 
solutions that prioritise ethical considerations, encourage data sharing 
and openness, and ensure an equal distribution of the advantages and 
dangers of AI-driven bioremediation interventions (Bansal and Jha, 
2023). Researchers can develop socially, economically, and 

environmentally sustainable AI-driven bioremediation strategies by 
adopting a participatory approach that includes stakeholders from 
various backgrounds, such as local communities, policymakers, and 
industry representatives (Gupta et al., 2021).

Moreover, advances in data analytics, sensor technologies, and 
remote sensing techniques have provided an opportunity to overcome 
technological constraints while improving the quantity and quality of 
environmental data for AI-driven bioremediation applications (Sagan 
et al., 2020; Yang et al., 2022). Researchers can solve data privacy and 
security problems by embracing emerging technologies, such as 
blockchain and federated learning, as well as facilitating data sharing 
and collaboration among stakeholders (Naveed et al., 2024). Overall, 
while AI-driven optimization has the potential to revolutionize 
bioremediation tactics for river pollution, ethical concerns and 
technological challenges must be carefully addressed to ensure the 
responsible and effective deployment of AI-powered solutions. By 
incorporating ethical principles, encouraging interdisciplinary 
collaboration, and harnessing emerging technologies, researchers can 
overcome these obstacles and pave the way for a more sustainable and 
equitable approach to environmental management.

Future directions and recommendations

The future of AI-powered bioremediation holds significant 
promise for enhancing river pollution management initiatives through 
innovation, integration, and legislative changes. Researchers and 
stakeholders may design a road for more effective, sustainable, and 
equitable solutions to river pollution by harnessing emerging 
technologies, encouraging interdisciplinary collaboration, and 
prioritizing policy initiatives (Tao et al., 2021). Potential developments 
in AI-driven bioremediation include a variety of technological 
innovations aimed at increasing pollution removal efficiency, lowering 
environmental impacts, and improving decision-making processes 
(Liu et  al., 2022; Chang et  al., 2015). Future research directions, 
ranging from developing autonomous robotic systems for in-situ 
pollutant remediation to applying advanced machine learning 
algorithms for predicting pollutant fate and transport, can 
revolutionize environmental management (Gupta et  al., 2021). 
Furthermore, advancements in nanotechnology, biotechnology, and 
sensor technologies have provided opportunities to improve the 
specificity, selectivity, and sensitivity of bioremediation techniques, 
allowing for targeted interventions based on pollutant profiles and 
environmental conditions (Manjakkal et al., 2021; Ometto et al., 2014).

Strategies for merging AI with traditional bioremediation 
methods constitute another area for future research and development. 
Researchers can develop hybrid techniques that combine the strengths 
of AI algorithms with the practical knowledge and experience of 
environmental practitioners. For example, implementing AI-powered 
predictive modelling in decision support systems for pollution source 
identification and remediation prioritisation can improve the 
efficiency and effectiveness of traditional cleanup procedures (Steffi 
et al., 2022).

Policy implications and research goals are critical for 
determining the future of river pollution control and environmental 
management (Ometto et  al., 2014). Policymakers are advised to 
prioritize investments in research, infrastructure, and capacity-
building efforts to promote the responsible use of AI-powered 
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bioremediation technology (Floridi et al., 2018). Furthermore, legal 
frameworks and governance mechanisms must be modified to meet 
the high speed of technological innovation while maintaining 
environmental integrity, human health, and social equality (Patowary 
et al., 2023).

Interdisciplinary studies that combine ecological, social, and 
technological aspects to establish holistic pollution management 
systems are among the research goals for improving river pollution 
control (Wani et al., 2024). Furthermore, initiatives to improve data 
sharing, standardisation, and interoperability are critical for 
optimizing the utility of AI-powered bioremediation systems and 
fostering stakeholder engagement (Steffi et al., 2022). Finally, future 
directions and recommendations for the AI-driven optimization of 
bioremediation solutions for river pollution include technological 
advances, integration tactics, and legislative initiatives that promote 
innovation, collaboration, and sustainability (Tao et al., 2021). By 
implementing these recommendations, researchers and policymakers 
can realize the revolutionary potential of AI-driven bioremediation to 
address the complex challenges of river pollution and protect 
freshwater ecosystems for future generations.

Conclusion

In conclusion, this narrative review thoroughly investigates the 
revolutionary potential of AI-driven optimisation in bioremediation 
systems to reduce river pollution. An assessment of the present 
bioremediation approaches, use of AI technology, case studies, 
obstacles, and prospects reveals that AI has enormous potential for 
changing pollution control efforts in river ecosystems. From data-
driven pollution monitoring to AI-driven remediation process 
optimization, integrating AI algorithms provides opportunities to 
improve pollutant removal efficiency, reduce environmental impacts, 
and promote sustainable river management practices. However, 
ethical concerns, technological barriers, and regulatory ramifications 
must be addressed to ensure the effective deployment of AI-powered 
solutions. Interdisciplinary collaboration, new research, and policy 

initiatives will be  critical in influencing the future of AI-powered 
bioremediation and protecting freshwater ecosystems for 
future generations.
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