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The demand for early disease detection, treatment monitoring, and personalized

medicine is increasing, making it more imperative than ever to create effective,

accurate, portable, intelligent, multifunctional diagnostic equipment. Bacteria

possess a remarkable perception of their surroundings and have the capacity to

adapt by altering the expression of specific genes. Bacteria interact with target

substances and produce detectable signals in response to their presence or

concentration. This unique property has been harnessed in the development

of bacterial biosensors. Due to groundbreaking advancements in synthetic

biology, genetic engineering now enables the creation of bacteria tailored with

exceptional detecting traits. In addition to meeting a wide range of application

needs, this allows quick and precise detection in intricate settings and offers a

strong technological basis for early disease diagnosis and treatment monitoring.

This article reviews the applications and recent advancements of bacterial

biosensors in the medical field and discusses the challenges and obstacles that

remain in their research and application.
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1 Introduction

With the rapid advancement of biotechnology and growing demands for affordable
healthcare, particularly in resource limited settings, traditional diagnostic methods reliant
on complex instrumentation such as PCR and mass spectrometry face challenges in
achieving rapid, sensitive, and portable testing solutions (Law et al., 2015). Bacterial
biosensors, which employ engineered bacteria as programmable sensing elements, offer
a cost effective and scalable alternative. These devices detect target analytes including
pathogens, metabolites and biomolecules, through synthetic genetic circuits, converting
biological signals into quantifiable outputs such as electrical currents or fluorescence
via electrochemical or optical interfaces (Nakamura et al., 2008). Recent advances in
synthetic biology, such as CRISPR-based gene circuits and synthetic circuit, have enabled
precise tuning of bacterial sensing pathways. Such innovations expand medical applications
from early disease diagnosis to personalized therapeutics (Riglar and Silver, 2018).
However, critical barriers such as biosafety concerns and functional stability hinder clinical
translation. This article broadly examines recent advances in bacterial biosensor design,
highlights their emerging roles in precision medicine, and critically discusses unresolved
technical and regulatory hurdles.
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2 Principles and mechanisms of
bacterial biosensors

Bacteria possess remarkable environmental adaptability,
allowing them to detect and react to environmental alterations,
such as variations in chemical concentrations, temperature, and
pH levels (Andrianantoandro et al., 2006; Park et al., 2013). This
unique trait makes bacteria one of the most suitable biological
recognition components for biosensors (Soltani Zarrin et al., 2018).
Bacterial biosensors achieve specific detection of target molecules
or environmental factors by converting biological responses into
quantifiable signals. Their functionality relies on the coordinated
operation of three core components: the input module (sensing
unit), signal transduction module (processing unit), and output
module (response unit) (Chen et al., 2023). The input module of
bacterial biosensors functions as the sensing element responsible
for the specific recognition of and response to target signals, relying
on selective molecular interactions between biomolecules (Saltepe
and Kehribar et al., 2018). This module employs both naturally
occurring components such as transcription factors and membrane
receptors and engineered constructs, including aptamers or nucleic
acid switches, to directly capture external stimuli (e.g., chemical
signals, physical cues, or biomarkers) and convert them into
intracellular signals amenable to processing (Ding et al., 2021).
Upon target recognition, the sensing elements activate the signal
transduction module through distinct triggering mechanisms:
conformational changes, induced dimerization, conditional
stabilization, or enzymatic reactions (Miller et al., 2022). For
example, conformational changes occur when transcription
factors or membrane receptors bind target molecules, inducing
structural rearrangements that initiate downstream responses
(Serganov and Nudler, 2013; Zhong et al., 2016); induced
dimerization involves the binding of two monomeric molecules
under specific conditions to form a functional dimer, thereby
activating signaling pathways (Capra and Laub, 2012; Lazar and
Tabor, 2021); conditional stabilization refers to molecular stability
regulated by environmental parameters such as temperature
(Schuster and Greenberg, 2008); and enzymatic amplification
leverages enzyme-catalyzed substrate to product conversions to
enhance detection sensitivity (Miller et al., 2022). Acting as the
central hub, the signal transduction module bridges the input
and output modules by transforming initial detection signals into
processable intracellular signals while enabling amplification,
integration, or logical operations. Natural bacterial systems
predominantly utilize pathways such as two-component systems
(TCS), in which histidine kinases (HK) recognize extracellular
signals via their sensor domains, undergo autophosphorylation
at histidine residues, and transfer phosphate groups to aspartate
residues on response regulators (RR), thereby activating RR’s
DNA-binding or enzymatic functions to regulate gene expression
(Lazar and Tabor, 2021; Salis et al., 2009; Tanna et al., 2021);
quorum sensing (QS), a density-dependent communication
mechanism mediated by autoinducers (AIs) that accumulate to
threshold concentrations to trigger QS-regulated behaviors such as
bioluminescence, virulence factor production, or biofilm formation
(Kumari et al., 2006; Lee et al., 2013); and chemotaxis systems,
which direct bacterial motility toward nutrient-rich environments
or away from harmful substances (Karmakar, 2021). The output

module translates processed intracellular signals into detectable
and quantifiable physical, chemical, or biological responses
(Lopreside et al., 2019). Optical outputs such as fluorescence (green
fluorescent protein, GFP) or bioluminescence (luciferase) rely on
promoter-driven reporter gene expression, where fluorescence
intensity correlates linearly with target concentration to achieve
high-sensitivity detection (Belkin, 2003; Roda et al., 2011; van der
Meer and Belkin, 2010). Chromogenic outputs exploit enzymatic
cleavage of substrates, including X-gal hydrolysis by lacZ-encoded
β-galactosidase to produce a blue chromogen (Mascher et al.,
2004), enabling semi-quantitative visual or spectrophotometric
analysis without specialized equipment, a feature particularly
advantageous for point-of-care or resource-limited settings.
Electrochemical outputs detect target-induced changes in redox
reactions, ion concentrations, or charge distributions at electrode
surfaces, with signals quantified through current, voltage, or
impedance measurements (Johnson et al., 2017; Zhu et al., 2023).
Collectively, these modular frameworks enable bacterial biosensors
to address diverse biomedical challenges by balancing sensitivity,
specificity, and practicality for applications spanning diagnostics,
environmental monitoring, and therapeutic evaluation.

Synthetic biology holds significant potential to advance the
development of bacterial biosensors. A cornerstone of this
advancement lies in the strategic deployment of gene-editing tools,
particularly CRISPR-Cas9 technology (Doudna and Charpentier,
2017). By enabling targeted knockout of genes responsible for
non-specific responses or background interference, CRISPR-
Cas9 enhances sensor specificity through noise reduction (de
la Fuente-Núñez and Lu, 2017). Complementarily, gene knock-
in techniques integrate functional genetic elements to amplify
both sensitivity and specificity, permitting reliable detection even
at ultralow target concentrations. The redesign of endogenous
signaling circuits constitutes another critical strategy (Jung et al.,
2018). Native bacterial signal transduction pathways, composed
of receptor proteins, transcription factors, and effector proteins,
are systematically engineered to maintain their intrinsic efficiency
while enhancing analytical versatility (Jung et al., 2018; Raut et al.,
2013; Skjoedt et al., 2016). For example, modifying receptor binding
sites to accommodate structurally analogous targets expands the
detectable analyte spectrum, thereby addressing diverse diagnostic
needs. Synthetic genetic circuit construction further introduces
novel functionalities (Sedlmayer et al., 2018; Wang et al., 2013).
Modular components, including AND, OR, and NOR logic gates,
enable coordinated multi-signal processing, allowing biosensors to
function with high precision in complex matrices (Bonnet et al.,
2013; Tang et al., 2021; Wang et al., 2011). Memory modules such
as transcription factor-based toggle switches and recombinase-
mediated memory circuits confer bacteria with programmable
“memory storage,” recording prior exposure to specific analytes
(Riglar et al., 2017). This capability facilitates accelerated, context-
dependent responses upon re-exposure, which is essential for
monitoring dynamic fluctuations in environmental conditions or
disease biomarkers (Archer et al., 2012; Park et al., 2013). To
optimize performance, circuit design integrates signal amplification
coupled with feedback control mechanisms. Positive feedback
loops serve as biological amplifiers (Wan et al., 2019), heightening
sensitivity to low-abundance signals, whereas negative feedback
mechanisms act as stabilizers, preventing signal oversaturation
and preserving cellular homeostasis (Jia et al., 2019). This dual
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regulatory framework ensures sustained operational stability across
prolonged and variable detection scenarios (Tiwari et al., 2013).
Collectively, these innovations position synthetic biology-driven
bacterial biosensors as robust tools for applications spanning
environmental monitoring to clinical diagnostics Figure 1.

3 Applications of bacterial
biosensors in disease detection and
treatment monitoring

Bacterial biosensors are an innovative biotechnological tool
with significant potential across various fields (Plotnikova et al.,
2016). In environmental monitoring, they are used to detect organic
pollutants, heavy metal ions, and other harmful substances in
soil and water (Plotnikova et al., 2016). These sensors employ
engineered bacteria to generate specific biological reactions to
pollutants, which are then converted into measurable signals
(Coelho et al., 2015). For instance, bacterial biosensors can
detect organic pollutants like phenolic compounds and polycyclic
aromatic hydrocarbons (Plotnikova et al., 2016), as well as heavy
metals such as mercury (Chen et al., 2020), arsenic (Hui et al.,
2023), and chromium (Francisco et al., 2019). Their high sensitivity
and selectivity enable rapid detection and early warning of
environmental pollutants. In food safety, bacterial biosensors offer
a faster, more cost-effective alternative to traditional methods (Gao
et al., 2023), detecting harmful substances like antibiotics, hydrogen
peroxide, pesticide residues, and pathogenic bacteria (Poikulainen
et al., 2020). These sensors allow for quick screening and early
warning, ensuring food safety and reliability (Liao et al., 2006).
Additionally, bacterial biosensors are gaining attention in the
medical field for their role in diagnosing gastrointestinal diseases,
cancer, and other applications Table 1. We will now explore their
specific uses and potential value in these areas.

3.1 Applications of bacterial biosensors in
gastrointestinal diseases

Inflammatory bowel disease (IBD) is a chronic inflammatory
disorder driven by genetic susceptibility, immune dysregulation,
and gut microbiota dysbiosis (Bourgonje et al., 2020; Reese
et al., 2018; York, 2023). Quorum sensing (QS), a bacterial
communication mechanism mediated by signaling molecules such
as AI-2, AHLs, and AIP, plays a dual role in gut homeostasis
(Ge et al., 2020; Raut et al., 2013). Early studies established the
clinical relevance of QS molecules in gastrointestinal diseases. For
instance, Kumari et al. engineered E. coli JM109 as a biosensor
by introducing Pseudomonas aeruginosa QS regulatory systems
(LasR/RhlR) through plasmids pSB406 and pSB1075, coupled
with the luxCDABE bioluminescent reporter. This system enabled
sensitive detection of N-acyl homoserine lactones (AHLs) in
human saliva and stool samples, achieving a detection limit of
1 × 10−9 M without extensive sample preparation. Their work
demonstrated that AHLs are present in both healthy individuals
and Crohn’s disease patients, with levels correlating to microbial
dysbiosis (Kumari et al., 2006, 2008). The use of E. coli as

a chassis organism highlighted its adaptability in heterologous
QS circuit engineering, though the role of AHLs in IBD-
associated inflammation remained to be fully elucidated. While
QS coordinates beneficial microbial interactions, its dysregulation
may promote pathogenic behaviors and amplify inflammation
in IBD (Chang, 2015; Zhang J. et al., 2023). To leverage QS
for IBD monitoring, Nilesh Raut’s team developed a biosensor
using Vibrio harveyi BB170. In this system, AI-2 binds to the
cytoplasmic receptor LuxP, triggering a phosphorylation cascade
(LuxQ→LuxU→LuxO) that activates the luxCDABE promoter,
producing bioluminescence proportional to AI-2 concentration
(Kumari et al., 2006; Raut et al., 2013; Figure 2). Feces
provide limited spatiotemporal resolution for monitoring intestinal
inflammation, despite reflecting gut microbiota dynamics (Chang,
2015; Naydich et al., 2019). To overcome this, synthetic biology
strategies deploy engineered bacteria as living biosensors capable
of in situ signal recording (Chang, 2015; Naydich et al., 2019).
Kotula et al. (2014) designed and constructed a two-part system
that comprised a “trigger element” and a “memory element.” Kotula
et al.’s (2014) team pioneered a two-component memory system
in E. coli, comprising a trigger element (tetracycline-responsive
promoter) and a λ phage-derived cI/Cro memory switch. In
tetracycline-treated mice, the trigger activated Cro expression,
irreversibly switching the bacterial state from cI (silent) to Cro
(active), which persisted for ≥ 5 days without inducer (Burrill
et al., 2012; Kotula et al., 2014; Moon et al., 2012). This system
laid the foundation for chronic gut monitoring. Thiosulfate and
tetrathionate is a transient product of reactive oxygen species
(ROS), which are produced during inflammation (Winter and
Bäumler, 2014; Winter et al., 2013). Expanding on this, Riglar et al.
(2017) integrated the Salmonella Typhimurium PttrBCA promoter
(responsive to tetrathionate) with the λ memory module and
lacZ reporter in E. coli NGF-1. Upon detecting tetrathionate,
β-galactosidase hydrolyzed X-gal to generate blue fecal colonies.
Remarkably, this sensor functioned for > 6 months in mice,
demonstrating sustained in vivo operation (Riglar et al., 2017). In
parallel, Daeffler et al. (2017) engineered an E. coli Nissle 1917
biosensor using a Shewanella oneidensis-derived two-component
system (TsrA/TsrR) to detect thiosulfate, a biomarker of gut
inflammation. The sensor activates a fluorescent reporter via
phosphorylation cascades, achieving a detection limit of 50 µM
within 2 h. In murine colitis models, thiosulfate levels correlated
strongly with histopathological scores (r = 0.68, p < 0.01) (Daeffler
et al., 2017). These advances demonstrate the potential of synthetic
biology in developing multiplexed, long-term gut surveillance
systems capable of non-invasively tracking dynamic inflammatory
processes.

The interactions between the gut microbiota and the human
host, as well as changes in its metabolic products, have
been linked to a variety of pathological conditions, such as
metabolic disorders, immunological diseases, cancer, neurological
diseases, and behavioral disorders (Pesce et al., 2022). Bacterial
biosensors represent non-invasive instruments pivotal in intestinal
health monitoring, capable of detecting intestinal metabolites
and translating these signals into readily observable outcomes,
encompassing colorimetric changes, fluorescence emission, and
electrical signals, thereby facilitating accurate assessment of gut
health status (Pesce et al., 2022; Winter et al., 2010). Transient
molecules in the gastrointestinal system, such as nitric oxide (NO)
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TABLE 1 Application of bacterial biosensors in medicine.

Input target Engineered bacterial
strain

Mechanism Report gene Associated disease References

N-acyl homoserine lactones
(AHLs)

E.coli JM109 Quorum sensing (QS) luxCDABE (luciferase) Gastrointestinal diseases Kumari et al., 2006

Autoinducer-2 (AI-2) Vibrio harveyi BB170 Quorum sensing luxCDABE (luciferase) Gastrointestinal diseases Raut et al., 2013

Tetrathionate E. coli NGF-1 Synthetic biology cI/Cro memory switch and lacZ
reporter

Gastrointestinal diseases Kotula et al., 2014

Thiosulfate E. coli Nissle 1917 Two-component system Fluorescence Gastrointestinal diseases Riglar et al., 2017

Thiosulfate E. coli Nissle 1917 Two-component system Fluorescence Gastrointestinal diseases Daeffler et al., 2017

Nitric Oxide (NO) E. coli Nissle 1917 Synthetic circuit Fluorescence (GFP) Gut inflammation McKay et al., 2018

Nitric Oxide E. coli Nissle 1917 Positive feedback circuit Fluorescence (GFP) Gut inflammation Chen et al., 2021

Lactate E. coli Nissle 1917 Synthetic biology lacZ (β-galactosidase) and luxCDABE
(luciferase)

Liver metastases Danino et al., 2015

Tumor microenvironment Salmonella Typhimurium 1ppGpp ChemotaxisSynthetic circuit ClyA (oncolytic protein) and
LuxCDABE (luciferase)

Colon/liver cancer models Nguyen et al., 2010

Tumor microenvironment Salmonella Typhimurium Chemotaxis Synthetic circuit RLuc8 (Renilla luciferase) and ClyA
(therapeutic gene)

Colon/liver cancer models Jiang et al., 2013

Tumor microenvironment Salmonella VNP20009 (1msbB) Chemotaxis Synthetic circuit Dual-channel imaging Pancreatic ductal adenocarcinoma
(PDAC)

Zhou et al., 2016

Mutant KRAS DNA Acinetobacter baylyi Chemotaxis Fluorescence (GFP) and Kanamycin
resistance gene

Gastric/colorectal cancer detection Cooper et al., 2023

Hypoxia/ATP Salmonella Typhimurium 1ppGpp Chemotaxis RLuc8 (Renilla luciferase) Myocardial Infarction Le et al., 2011

Urinary glucose E. coli Synthetic circuit Fluorescence (GFP/RFP) Diabetes mellitus Courbet et al., 2015

Cytarabine (Ara-C) E. coli MG16551cdd Synthetic circuit luxCDABE (luciferase) Leukemia Alloush et al., 2010

CAI-1 E. coli Quorum sensing and synthetic circuit Fluorescence(GFP) Cholera Holowko et al., 2016

Heme E. coli Nissle 1917 Synthetic circuit luxCDABE (luciferase) Gastrointestinal diseases and Iron-related
disorders

Bhatt, 2018

Multiple inflammation mediators E. coli Nissle 1917 Synthetic circuit luxCDABE (luciferase) wireless
transmission

Gastrointestinal diseases Inda-Webb et al., 2023

Bile acids E. coli Nissle 1917 Modularized receptor lacZ (β-galactosidase) Liver disease, post-transplant monitoring Chang et al., 2018; Chang
et al., 2021

Skin inflammation Staphylococcus epidermidis Innate immunomodulation and
bioelectronic sensing

Wireless skin impedance/temperature
data

Psoriasis, inflammatory skin diseases Shi et al., 2024

Lactate Shewanella oneidensis MR-1 Extracellular electron transport (EET) Electrochemical signal Cancer Wang et al., 2022
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FIGURE 1

Principles and mechanisms of bacterial biosensors. The input module receives environmental signals (e.g., temperature gradients, acidic
environments) and biological signals (e.g., pathogens, metabolites), triggering signal transduction through mechanisms such as conformational
changes, conditional stabilization, or enzymatic reactions. The signal transduction module, which comprises two-component systems, quorum
sensing, and chemotaxis, processes these signals, while the output module converts them into optical (e.g., fluorescence) or electrochemical
responses. Synthetic biology techniques (e.g., logic gates, memory switches, feedback regulation, and CRISPR-Cas9 gene editing) further optimize
the sensor’s detection sensitivity and dynamic response range. By Figdraw.

and hydrogen sulfide (H2S), are critical but elusive inflammation
markers due to their short half-life and high reactivity (Riglar
et al., 2017). At the start, To address NO detection challenges,
McKay et al. (2018) engineered a dual-plasmid system in E. coli
Nissle 1917. The first plasmid contains a NO-sensitive promoter
(PnorV) driving T7 RNA polymerase (T7Pol) expression, while the
second plasmid utilizes a T7/lac hybrid promoter to control green
fluorescent protein (GFP) expression. This cascade amplification
enables visualization of gut NO levels with a detection limit of
10 nM within 1 h, validated in murine models (McKay et al.,
2018). Subsequently, Chen et al.’s (2021) team enhanced sensitivity
by designing a positive feedback circuit, with the NO-responsive
transcription factor NorR activates its own expression alongside
superfolder GFP (sfGFP) under the PnorV promoter. Elevated

NO concentrations trigger NorR self-amplification, reducing the
detection threshold to 2 nM and accelerating response time by 3-
fold (Chen et al., 2021). These ingestible biosensors exemplify the
potential of synthetic biology in real-time gut monitoring.

3.2 Applications of bacterial biosensors
in cancer

Cancer is a leading cause of global mortality, with liver
metastases occurring in > 50% of patients with gastrointestinal
malignancies and associated with a 5 years survival rate < 15%
due to delayed detection (Groen, 1999; Liang et al., 2022).
Current interventions (surgical resection, radiotherapy, etc.) target
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FIGURE 2

Bacterial biosensor based on a quorum sensing system for inflammatory bowel disease detection. Utilizing the quorum sensing system of Vibrio
harveyi BB170, this biosensor detects the inflammatory bowel disease (IBD)-associated autoinducer AI-2, triggering the expression of
bioluminescent genes to generate quantitatively detectable fluorescent signals. By Figdraw.

macroscopic lesions (> 1 cm) but fail to eliminate micrometastases
(< 1 mm), which evade detection by conventional imaging
(CT/MRI) and seed recurrent tumors (Chien et al., 2021; Schroeder
et al., 2011). To address this, bacterial biosensors engineered as
“living diagnostics” have emerged. In engineered E. coli Nissle 1917,
synthetic genetic circuits employ lactate-responsive promoters
to drive tumor-specific expression of β-galactosidase (lacZ) and
bioluminescent reporters (luxCDABE) (Meighen, 1991). The oral
delivery strategy leverages the gut-liver axis, through which EcN
crosses the intestinal barrier via bile acid transporters and colonizes
hepatic metastases within 24 h, thereby avoiding systemic toxicity
(Chien et al., 2021). In preclinical models, the engineered EcN
produced bioluminescence, enabling longitudinal imaging of liver
metastases and improving visualization of metastatic lesions.
Additionally, in mice fed with these probiotics, the bacteria
colonized liver tumors specifically within 24 h while being cleared
from healthy organs. Upon confirming colonization, LuGal (D-
luciferin-O-β-galactoside) was administered. The β-galactosidase
produced by EcN hydrolyzes LuGal into luciferin, which is
subsequently excreted in urine. A complementary urinary detection
system achieved rapid diagnosis using only 1 µL of urine, with
detectable signals within 24 h post-administration. Remarkably,
no adverse effects on mouse health were observed during
12 months of monitoring (Danino et al., 2015; Schultz et al.,
2005; Figure 3). Despite promising sensitivity, clinical translation
requires optimization of bacterial containment strategies to prevent
horizontal gene transfer and validation in human trials. Genetically
engineered Salmonella enterica serovar Typhimurium 1ppGpp
exhibits tumor-specific colonization by exploiting the nutrient-rich
tumor microenvironment (TME), making it a promising platform
for theranostic applications (Nguyen and Min, 2017). Nguyen et al.
(2010) engineered this strain to co-express cytolysin A (ClyA)

and bacterial luciferase (LuxCDABE) under the control of an
L-arabinose-inducible PBAD promoter. In murine colon and liver
cancer models, intravenous administration led to selective tumor
colonization, with oral L-arabinose triggering ClyA-mediated
tumor lysis (62% volume reduction, p < 0.01) and intraperitoneal
D-luciferin enabling real-time tracking imaging (R2 = 0.85 vs.
tumor burden) (Nguyen et al., 2010). To enhance spatiotemporal
control, Jiang’s et al. (2013) team integrated a Tet-On system, where
tetracycline dose-dependently activates RLuc8 (reporter) and ClyA
(therapeutic gene) through Ptet promoters. This dual-function
design allowed simultaneous imaging-guided therapy: RLuc8
bioluminescence correlated with ClyA efficacy (30% apoptosis
increase per 1 µg/mL tetracycline), enabling personalized dosing
(Jiang et al., 2013).

Pancreatic ductal adenocarcinoma (PDAC), characterized by
its aggressive nature and poor prognosis (5 years survival
< 10%), remains a major clinical challenge despite advancements
in multimodal therapies (Principe et al., 2017). To address
this, Zhou et al. (2016) engineered an attenuated Salmonella
strain (VNP20009) through deletion of endotoxin-producing genes
(msbB), enhancing its safety profile while preserving tumor-
targeting capability (Low et al., 2004). This modified strain
was designed as a theranostic agent, combining therapeutic
potential with real-time diagnostic imaging. In their study, human
PDAC cells (CFPAC-1) stably expressing the far-red fluorescent
protein mKate2 (λem ≈ 635 nm) were implanted in mice to
establish tumors (Piatkevich et al., 2010). Following intratumoral
injection, the engineered Salmonella expressing bacterial luciferase
(luxCDABE) colonized the tumor microenvironment, enabling
dual-channel tracking via the IVIS Spectral Imaging System (Cheng
et al., 2014; Toso et al., 2002). The distinct emission spectra
of mKate2 (minimizing tissue autofluorescence) and luciferase
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FIGURE 3

Bacterial biosensors for non-invasive detection of liver cancer. Genetically engineered bacteria are designed to colonize the liver cancer
microenvironment and induce the expression of fluorescent proteins upon sensing specific biomarkers (e.g., LuGal). The fluorescent molecules are
excreted via the bloodstream into urine, thereby enabling non-invasive detection of liver cancer biomarkers. By Figdraw.

(λem ≈ 490 nm) allowed simultaneous quantification of tumor
burden and bacterial localization. Through longitudinal imaging,
researchers mapped tumor growth kinetics and evaluated the
spatiotemporal distribution of co-administered chemotherapeutics,
demonstrating a correlation between bacterial density and drug
efficacy (Hiddemann and Büchner, 2001; Zhou et al., 2016).
This integrated approach highlights the potential of bacterial-
based theranostics to refine PDAC management, though clinical
translation requires further validation of safety and targeting
specificity. Horizontal gene transfer (HGT) is the process by which
organisms transfer genetic material to other cells rather than their
offspring, in contrast to vertical transmission. HGT happens often
in microorganisms and between prokaryotes and eukaryotes (Mell
and Redfield, 2014; Soucy et al., 2015). However, the broad field
of bacteria utilizing HGT mechanisms to detect mammals and
respond to their DNA remains largely unexplored. Cooper’s et al.
(2023) research team proposed the Cellular Assay for Targeted
CRISPR-discriminated Horizontal Gene Transfer (CATCH), which
is based on this principle. This technique integrates target DNA into
the genome of engineered Acinetobacter baylyi, which functions
as a biosensor to identify certain extracellular DNA. The KRAS
gene is a typical oncogene. It controls cell growth normally, but
when it is mutated, it causes uncontrolled cell proliferation and
dysregulation (Priestley et al., 2019; Vogelstein et al., 1988). To
eliminate false positive results produced by natural KRAS binding,
the CRISPR technique efficiently addresses this issue. The CRISPR-
Cas system was designed as a bacterial defensive mechanism
for cutting foreign DNA, but it can be purposefully altered to
modify its cutting positions and targets. The CATCH technique
uses a specially designed sgRNA as a guide to accurately target
the DNA sequence through complementary pairing. The CRISPR-
Cas system is specifically designed to cut just the mutant KRAS

gene that lacks a specific PAM sequence, with no effect on the
normal KRAS gene (Cooper and Hasty, 2020). By integrating
the CRISPR-Cas system and reporter genes (GFP or kanamycin
resistance genes) into bacteria, the novel bacterial biosensor may
co-culture with tumor cells in a variety of complex situations. The
detection of the target DNA is demonstrated by the monitoring of
GFP expression and bacterial growth in the kanamycin-selective
media (Cooper et al., 2023). In the future, such engineered bacteria
will have limitless potential for detecting cancer and precancerous
lesions, and they are expected to help in the prevention of stomach
and colorectal cancer. It is also possible to further modify these
bacterial biosensors to create novel detectors with a variety of
detecting goals in mind.

3.3 Applications of bacterial biosensors
in myocardial infarction

Myocardial infarction (MI), characterized by coronary artery
occlusion leading to ischemic necrosis of cardiac tissue, remains
a leading cause of global mortality (Tsao et al., 2023). The
auxotrophic Salmonella Typhimurium 1ppGpp strain exhibits
selective tropism to infarcted myocardium, driven by hypoxia-
responsive chemotaxis and necrotic cell-derived ATP gradients
(Yi et al., 2020). To enable real-time imaging, this strain was
engineered with a RLuc8 construct, where the E. coli L-arabinose-
inducible promoter strictly controls expression of Renilla luciferase
variant RLuc8. Upon systemic L-arabinose administration, RLuc8
is activated exclusively in bacteria colonizing ischemic regions,
generating localized bioluminescence signals detectable within 2 h
post-injection (Loening et al., 2006). In murine MI models, this
approach achieved a spatial resolution of 0.5 mm, identifying
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subendocardial infarcts comprising as little as 3% of left ventricular
mass—a significant improvement over SPECT’s 10% threshold
(Le et al., 2011). Importantly, intravenous delivery of 1ppGpp
Salmonella induced minimal systemic inflammation and no
histopathological evidence of myocardial damage, underscoring its
biosafety (Chang et al., 2021).

3.4 Applications of bacterial biosensors
in diabetes mellitus

Diabetes mellitus, characterized by chronic hyperglycemia,
requires rigorous glucose monitoring to prevent complications
(Aloraynan et al., 2022). While fingerstick tests and continuous
glucose monitors (CGMs) remain clinical standards, their
invasiveness and cost drive demand for alternative methods (Liu
et al., 2020). Urinary glucose (glycosuria) serves as a non-invasive
proxy for hyperglycemia, though its utility is limited by a 1–2 h lag
behind blood glucose levels and inter-individual renal threshold
variations (de Sousa Vieira et al., 2022). To address this, Courbet
et al. (2015) engineered E. coli to detect urinary glucose via a
synthetic cpxP promoter—a stress-responsive element repurposed
to activate GFP/RFP expression upon glucose uptake. The bacteria
were encapsulated in alginate-PVA hydrogel beads, maintaining
90% fluorescence stability over 72 h in urine while preventing
bacterial leakage (Harpaz et al., 2023). A genetic AND gate circuit
further enhanced specificity: simultaneous glucose detection and
hypoxia (mimicking bladder conditions) triggered GFP expression,
achieving a detection limit of 0.1 mM glucose (equivalent to
blood glucose ∼180 mg/dL) with 88.9% sensitivity and 96.3%
specificity in diabetic urine samples (n = 150) (Courbet et al.,
2015). Despite these advances, urinary glucose monitoring cannot
replace real-time blood measurements due to physiological lag.

3.5 Applications of bacterial biosensors
in monitoring cytarabine in leukemia

Bacterial biosensors have emerged as transformative tools
for rapid drug sensitivity testing, particularly in predicting
leukemia patients’ responses to cytarabine (Ara-C) (Hiddemann
and Büchner, 2001). A key innovation is the engineering of
an E. coli MG1655 cytidine deaminase-deficient mutant (1cdd),
which cannot metabolize Ara-C to its inactive form (Ara-U). This
strain was integrated with the luxCDABE operon to generate a
bioluminescent reporter system responsive to intracellular Ara-
CTP levels—the active metabolite of Ara-C that inhibits DNA
polymerase α and induces leukemic cell death (Wang et al., 1998;
Yamauchi et al., 2009). In co-culture assays with patient-derived
leukemic cells, the biosensor quantifies bioluminescence intensity,
which correlates with Ara-CTP accumulation and drug efficacy.
Compared to traditional MTT assays requiring 3–5 days, this
system delivers results within 8 h, achieving 85% sensitivity and
92% specificity in identifying Ara-C-resistant patients (n = 50)
(Yamauchi et al., 2009). The 1cdd mutation ensures bacterial
viability by preventing Ara-C detoxification, enabling continuous
signal generation without interference from host cell metabolites
(Alloush et al., 2010). By enabling rapid, low-cost drug sensitivity

testing, this biosensor platform exemplifies the potential of
synthetic biology to bridge precision medicine and global health
accessibility, particularly in resource-limited settings.

3.6 Applications of bacterial biosensors
in cholera

Cholera, caused by toxigenic Vibrio cholerae, demands rapid
diagnostics to curb its high transmission risk. Conventional
methods like culture enrichment require > 24 h and lack sensitivity
(Rafique et al., 2016). Synthetic biology offers innovative solutions:
Holowko et al. (2016) engineered non-pathogenic E. coli to detect
V. cholerae-specific CAI-1 (10 nM detection limit) by integrating
its QS system (CqsS sensor kinase and response regulators) with
a CRISPRi-based genetic inverter. In this system, dCas9 represses
GFP expression in the absence of CAI-1, while CAI-1 binding
relieves repression, enabling fluorescence readout within 2 h—
100-fold faster than ELISA (Duan and March, 2010; Holowko
et al., 2016; Ng et al., 2011; Yamasaki et al., 2017). Parallelly, Mao
et al. (2018) developed a probiotic Lactococcus lactis biosensor
using a TetR-regulated mCherry reporter. CAI-1 inactivates TetR
via allosteric displacement, inducing a 60-fold mCherry increase.
For field applications, they replaced fluorescence with β-lactamase
secretion: hydrolysis of nitrocefin triggers a yellow-to-red color
shift in 15 min, achieving 95% concordance with PCR in clinical
stool samples (Mao et al., 2018). Beyond detection, Jayaraman
et al. (2017) engineered a “sense-and-kill” E. coli that secretes Art-
085 lysin via the YebF pathway upon CAI-1 detection. In murine
models, this system reduced intestinal V. cholerae loads by 3 logs
within 6 h, outperforming oral rehydration alone (Jayaraman et al.,
2017).

4 Applications of bacterial
biosensors in personalized medicine

Personalized medicine aims to revolutionize healthcare by
tailoring diagnostic and therapeutic strategies to individual
patients through real-time, dynamic monitoring of biomarkers. For
instance, IBD patients require frequent monitoring of intestinal
inflammation to optimize anti-inflammatory therapies, yet current
techniques cannot provide continuous, non-invasive insights
into biomarker dynamics. Bacterial biosensors, engineered to
detect specific molecules in situ, offer a transformative solution
(Neurath, 2017). Bhatt (2018) developed ingestible microbial
electronic devices (IMBED) for personalized gut monitoring.
They engineered E. coli Nissle 1917 to express heme-responsive
genetic circuits (Phas promoter) and the luxCDABE operon,
enabling bioluminescence upon heme detection. The IMBED
encapsulates bacteria in a chamber with a nanoporous membrane
(pore size < 50 nm), allowing metabolite influx while preventing
bacterial escape (Liu et al., 2021). A silicon photodetector
converts bioluminescence into wireless signals transmitted to
smartphones, enabling real-time tracking of gut biomarkers
(Mimee et al., 2018). In murine models, IMBED achieved a
heme detection limit of 1 µM within 30 min, demonstrating
potential for personalized management of iron-related disorders
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(Bhatt, 2018). However, IMBED requires enteric coating to
neutralize gastric acid, and its long-term reliability may be
compromised by intestinal peristalsis or biofilm formation.
Future iterations could integrate pH-resistant circuits and anti-
fouling membranes to enhance clinical viability. Recent advances
in bacterial biosensors have enabled real-time tracking of
transient gastrointestinal molecules for personalized medicine.
Inda-Webb et al. (2023) engineered an ingestible electronic capsule
(< 1.4 cm3) integrating E. coli Nissle 1917 biosensors with
silicon photodiode arrays. The bacteria were modified to express
engineered sensing proteins and recombinase-based memory
circuits, allowing continuous recording of oxidative stress markers.
A low-power module wirelessly transmits bioluminescent signals
(triggered by luxCDABE promoter) to smartphones, achieving real-
time monitoring of multiple inflammation mediators, including
thiosulfate, tetrathionate, hydrogen peroxide (H2O2), and nitric
oxide (NO). For instance, the system detects H2O2 with a limit
of 10 nM and responds within < 5 min, enabling dynamic
tracking of redox imbalance during disease progression. The
capsule, validated in porcine colitis models, demonstrated a direct
correlation between H2O2 concentration spikes and disease flare
severity, enabling data-driven adjustments to antioxidant therapies
(Inda-Webb et al., 2023; Liu et al., 2023). This platform represents a
closed-loop theranostic system that integrates biomarker detection,
therapeutic decision-making, and treatment response monitoring,
thereby advancing non-invasive and individualized approaches
to gastrointestinal care. MeRALD (Engineered Modularized
Receptors Activated by Ligand-induced Dimerization) platform to
address critical gaps in liver disease management (Chang et al.,
2018). By engineering E. coli Nissle 1917 with programmable
receptors sensitive to bile acids, their system detects pathological
concentrations of these hepatic biomarkers through ligand-induced
dimerization mechanisms (Chang et al., 2021). When bile acids
bind to the modularized TcpP18 receptor, conformational changes
trigger β-galactosidase expression via a LacZ reporter, generating
quantifiable colorimetric signals in fecal samples (Abdelbasset
et al., 2023). This innovation demonstrated clinical utility in liver
transplant monitoring, while enabling smartphone-based color
analysis for home testing. Notably, the platform’s modular design
allows rapid adaptation to other biomarkers through receptor
reprogramming, as evidenced by its parallel success in detecting
gut inflammation markers like thiosulfate in IBD patients (Sicard
et al., 2014). By overcoming traditional limitations of centralized
laboratory diagnostics, this work exemplifies how synthetic biology
can bridge precision medicine with global health accessibility,
though challenges persist in ensuring sensor stability across diverse
microbiota environments.

Shi et al. (2024) developed a bacterial biosensor leveraging
the skin commensal bacterium Staphylococcus epidermidis to
diagnose and treat inflammatory diseases such as psoriasis (Cau
et al., 2021; Severn and Horswill, 2022). The biosensor integrates
S. epidermidis within a dual-network hydrogel matrix composed
of gelatin and tapioca starch, mimicking natural biofilm structures
to sustain bacterial viability for over 4 days (Xu et al., 2021).
Bioinspired double network hydrogels: from covalent double
network hydrogels via hybrid double network hydrogels to
physical double network hydrogels. This living hydrogel not only
adheres conformally to skin but also modulates the immune
microenvironment by downregulating pro-inflammatory cytokines

(e.g., IL-17, TNF-α) and reducing T-cell infiltration, addressing the
root cause of psoriasis. The bacteria’s innate ability to regulate skin
homeostasis was enhanced through electrostatic interactions with
the conductive polymer, which lowered charge transfer resistance,
optimizing electron transfer for real-time monitoring of skin
impedance, temperature, and humidity (Zhang P. et al., 2023).
A wireless bioelectronic interface enabled on-demand electrical
stimulation to control bacterial activity, ensuring biosafety by
disinfecting pathogens (e.g., S. aureus) via reactive oxygen species
generation. The biosensor demonstrated therapeutic efficacy in a
psoriasis mouse model, reducing epidermal hyperplasia by 60% and
restoring skin microbiota diversity without genetic modification.
By synergizing bacterial immunomodulation with bioelectronic
sensing, this platform exemplifies the potential of living bacterial
systems in precision medicine, offering a drug-free approach
to inflammation management while minimizing biohazard risks
(Shi et al., 2024). Wang et al. (2022) developed a biosensor
based on the electroactive bacterium Shewanella oneidensis MR-
1, which demonstrates significant potential in medical diagnostics.
This system utilizes the bacterium’s intrinsic lactate oxidation
capability, where electrons generated from metabolic activity
are transferred via outer-membrane cytochrome complexes (e.g.,
MtrCAB) and riboflavin-mediated extracellular electron transport
(EET), enabling label-free lactate detection without genetic
engineering (Gurdeep et al., 2021). Electrostatic integration of the
conductive polymer poly PMNT enhanced biofilm formation and
reduced charge transfer resistance from 226 to 12 �, achieving
a lactate detection limit of 78 µM in physiological fluids (sweat,
urine, plasma). By exploiting the Warburg effect—a hallmark of
cancer metabolism characterized by excessive lactate secretion—
the biosensor indirectly quantified HeLa, MCF-7, and A549 cancer
cells with a sensitivity of 2.9 × 104 cells and an error rate < 10%
(Wang et al., 2022). Integration with a flexible wearable platform
and wireless signal transmission highlights its clinical applicability
for real-time monitoring. Future engineering of S. oneidensis to
recognize diverse biomarkers (e.g., inflammatory cytokines or
pathogens) could expand the utility of living bacterial sensors in
precision medicine (Li et al., 2021).

5 Challenges and future prospects

Bacterial biosensors exhibit distinct performance advantages
over conventional diagnostic technologies, enabled by synthetic
biology-driven detection of ultralow-concentration biomarkers in
complex biological matrices (Hicks et al., 2020). These systems
achieve real-time/near-real-time monitoring of dynamic analyte
fluctuations and support multiplexed detection through engineered
genetic circuits (Hicks et al., 2020; Table 2). Notably, advanced
prototypes integrate diagnostic and therapeutic capabilities,
forming closed-loop theranostic systems with feedback-controlled
intervention (Jin et al., 2025). However, their medical application
faces three primary challenges: functional stability, biosafety, and
clinical translation (Riglar and Silver, 2018). Engineered bacteria
withstand extreme host environments that involve immune
attacks, resource competition with commensal microbiota, and
fluctuating physiological conditions, all of which collectively
destabilize sensor functionality (Dana et al., 2012). While synthetic
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TABLE 2 Performance comparison between bacterial biosensors and
conventional diagnostic technologies.

Comparison
criteria

Bacterial
biosensors

Conventional
diagnostic
technologies
(ELISA/PCR/
imaging)

Detection dynamics Real-time, continuous
monitoring

Static detection (relies on
single sampling or
periodic retesting)

Multi-target
capability

Simultaneous
multi-target detection via
genetic engineering

Primarily single-target
detection

Therapeutic
integration

Closed-loop
detection-treatment
systems

Detection function only

Sensitivity Ultra-low detection
limits

Limited sensitivity

Response speed Rapid response Time-consuming (e.g.,
culture-based methods
require >24 h; imaging
needs complex
workflows)

Cost High R&D cost but low
long-term operational
costs

High equipment/reagent
expenses

Key risks Biosafety concerns Reagent stability issues
and cross-reactivity

Application
scenarios

On-site monitoring,
point-of-care
diagnostics, personalized
medicine

Laboratory-based
analysis, standardized
protocols

genetic circuits provide novel sensing capabilities, they disrupt
native metabolic balance, triggering compensatory mutations such
as fluorescence reporter inactivation in engineered E. coli after
serial passages and increasing susceptibility to endogenous signal
interference (Sleight and Sauro, 2013; Sleight et al., 2010). Biosafety
concerns remain unresolved as conventional suicide switches
show limited effectiveness in complex human microenvironments,
particularly in intestinal hypoxia zones where occasional bacterial
escape may occur (Piraner et al., 2017). Physical encapsulation
strategies, though effective in restricting microbial spread, reduce
detection sensitivity due to molecular permeability barriers caused
by suboptimal material interfaces (Hirota et al., 2017). Clinical
translation is further challenged by the lack of standardized
validation protocols, rigorous requirements for classifying
these systems as “live medical devices” necessitating extensive
virulence testing, and difficulties in assessing unpredictable
long-term ecological risks. Emerging nanotechnology integration
addresses existing limitations through bacterial-nanomaterial
co-immobilization strategies. Nanostructure fixation enhances
sensitivity by extending cellular electron transfer distances while
biomimetic nanocapsules with dynamically tunable pores enable
immune evasion and selective molecular permeation (Liu et al.,
2024). Concurrently, artificial intelligence-driven platforms
revolutionize biosensor development as deep learning models
deciphering gene sequence-function correlations enable precise
prediction of genetic editing outcomes (Angenent-Mari et al., 2020;

Kim et al., 2020). These advancements are combined with
microfluidic high-throughput screening to establish Design-
Build-Test-Learn (DBTL) closed-loop optimization systems
(Berlanda et al., 2021; Orsi et al., 2021). Dynamic evolution
systems that simulate in vivo pressures accelerate directed
bacterial adaptation in microfluidic chips, significantly reducing
development timelines. Enhanced biosafety protocols incorporate
dual-lock containment mechanisms to reduce escape probability
alongside chassis genome minimization strategies for metabolic
stability. Regulatory frameworks are evolving through multicenter
standardized testing platforms and refined classifications of “live
medical device” based on colonization capacity. Researchers are
integrating bacterial biosensors with mobile health platforms like
smartphones and cloud systems, enabling continuous physiological
tracking and remote care delivery via real-time wireless networks
(Chang et al., 2017; Raut et al., 2012). While most systems remain
experimental, retrospective studies confirm their diagnostic
potential in chronic disease management and cancer biomarker
detection. Transitioning to clinical practice requires multicenter
trials validating sensor stability and specificity in diverse patient
populations. Successful validation could translate prototypes into
standardized diagnostic modules for healthcare integration. This
technological shift promises to enhance detection of complex
biomarkers while supporting adaptive treatment protocols through
persistent health data streams, ultimately advancing intelligent
closed-loop diagnostic-therapeutic systems.
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