
TYPE Review

PUBLISHED 05 February 2025

DOI 10.3389/fmicb.2025.1515241

OPEN ACCESS

EDITED BY

Hye-Ra Lee,

Korea University, Republic of Korea

REVIEWED BY

A. Alwin Prem Anand,

University of Tübingen, Germany

Madavaraju Krishnaraju,

Northwestern University, United States

Ji-Seung Yoo,

Kyungpook National University,

Republic of Korea

*CORRESPONDENCE

Mingshu Wang

mshwang@163.com

RECEIVED 23 October 2024

ACCEPTED 10 January 2025

PUBLISHED 05 February 2025

CITATION

Cao H, Wang M, Cheng A, Tian B, Yang Q,

Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y,

Zhang S, Huang J, Yu Y, Zhang L, Chen S,

Liu M, Zhu D and Jia R (2025) The functions of

herpesvirus shuttling proteins in the virus

lifecycle. Front. Microbiol. 16:1515241.

doi: 10.3389/fmicb.2025.1515241

COPYRIGHT

© 2025 Cao, Wang, Cheng, Tian, Yang, Ou,

Sun, He, Wu, Zhao, Wu, Zhang, Huang, Yu,

Zhang, Chen, Liu, Zhu and Jia. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

The functions of herpesvirus
shuttling proteins in the virus
lifecycle

Huijun Cao1,2,3,4,5, Mingshu Wang1,2,3,4,5*, Anchun Cheng1,2,3,4,5,

Bin Tian1,2,3,4,5, Qiao Yang1,2,3,4,5, Xumin Ou1,2,3,4,5, Di Sun1,2,3,4,5,

Yu He1,2,3,4,5, Zhen Wu1,2,3,4,5, Xinxin Zhao1,2,3,4,5, Ying Wu1,2,3,4,5,

Shaqiu Zhang1,2,3,4,5, Juan Huang1,2,3,4,5, YanLing Yu5, Ling Zhang5,

Shun Chen1,2,3,4,5, Mafeng Liu1,2,3,4,5, Dekang Zhu1,2,3,5 and

Renyong Jia1,2,3,4,5

1Engineering Research Center of Southwest Animal Disease Prevention and Control Technology,

Ministry of Education of the People’s Republic of China, Chengdu, China, 2Key Laboratory of Animal

Disease and Human Health of Sichuan Province, Chengdu, China, 3International Joint Research

Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China, 4Institute of

Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China, 5Research

Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu,

China

During viral infection, the transport of various proteins between the nucleus and

cytoplasm plays an important role in the viral lifecycle. Shuttling proteins are key

factors in the transmission of nucleocytoplasmic information within cells and

usually contain nuclear localization signals and nuclear export signals to mediate

correct positioning for themselves and other proteins. The nucleocytoplasmic

transport process is carried out through the nuclear pore complex on the nuclear

envelope and is mediated by specific protein carriers. The viral proteins that

function through nucleocytoplasmic shuttling in herpesviruses have gradually

been identified as research advances. This article provides an overview of

how shuttling proteins utilize nucleocytoplasmic shuttling signals and nuclear

transport receptors for nucleocytoplasmic transport, as well as discusses how

herpesvirus shuttling proteins enhance the e�ective infection of viruses by

a�ecting their lifecycle and participating in innate immunity, this review provides

a reference for understanding the pathogenesis of herpesvirus infection and

determining new antiviral strategies.

KEYWORDS

herpesvirus, shuttling proteins, nuclear localization signal, nuclear export signal, life
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1 Introduction

Herpesviruses belong to the Herpesviridae family and are enveloped viruses. They

have a large double-stranded nuclear genome. Herpesviruses can infect humans and other

vertebrates, and employ a biphasic replication cycle consisting of latent and lytic phases,

allowing the virus to infect the host and persist within it (Zhong et al., 1996; Davis et al.,

2001; Fakhari and Dittmer, 2002; Klass et al., 2005; Fu and Pan, 2024). The herpesvirus

family can be classified based on different physicochemical characteristics, such as cell

tropism, pathogenicity, and latent sites, and can be divided into the α, β, and γ herpesvirus

subfamilies (McGeoch et al., 1995; Boyne and Whitehouse, 2006a; Ilouze et al., 2006;

Santos, 2016; Rathbun and Szpara, 2021). The α herpesvirus subfamily include herpes

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1515241
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1515241&domain=pdf&date_stamp=2025-02-05
mailto:mshwang@163.com
https://doi.org/10.3389/fmicb.2025.1515241
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1515241/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Cao et al. 10.3389/fmicb.2025.1515241

simplex virus type 1 and type 2 (HSV-1 and HSV-2), varicella zoster

virus (VZV), which infect humans, as well as pseudorabies virus

(PRV), Marek’s disease virus (MDV), and bovine herpesvirus-1

(BHV-1), which infect animals. These viruses typically establish

latency in sensory neurons (Biswas et al., 2013; Couteaudier and

Denesvre, 2014; Depledge et al., 2018b; Suzich and Cliffe, 2018;

Tognarelli et al., 2019; Zheng et al., 2022). The β herpesvirus

subfamily, which include mainly human cytomegalovirus

(HCMV), human herpesvirus 6 (HHV-6), and human herpesvirus

7 (HHV-7), which typically establish latency in mononuclear

(Hahn et al., 1998; Agut et al., 2016; Elder and Sinclair, 2019;

Hamada et al., 2023; Ijezie et al., 2023). The γ herpesvirus

subfamily establishes a latent period in lymphocytes, including

Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr

virus (EBV), which infect humans; and alcelaphine herpesvirus

1 (AlHV-1) and herpesvirus saimiri (HVS), which infect animals

(Russo et al., 1996; Dupin et al., 1999; Boshoff and Weiss, 2001;

Bechtel et al., 2003; Thorley-Lawson et al., 2013; Myster et al., 2020;

Damania et al., 2022). The herpesvirus particles are composed of

a double-stranded DNA genome, capsid, tegument, and envelope

from inside to outside, the herpesvirus genome contains multiple

open reading frames (ORFs) that encode various viral proteins.

The herpesvirus genome is covalently linked by a unique long

region (UL) and a unique short region (US), with repetitive

sequences at both ends of each unique region, including terminal

repeat (TR) sequences, internal repeat (IR) sequences, and direct

repeat (DR) sequences. Due to the variations in the location and

quantity of repetitive sequences among different herpesviruses, the

genome structures of the herpesviruses discussed in this review

are briefly distinguished (see Figure 1; McGeoch et al., 1988, 1991;

Russo et al., 1996; Rigoutsos et al., 2003). These viral proteins

work separately and coordinate with each other to promote the

proliferation and transmission of herpesvirus. The production of

mature viral particles and the normal function of viral proteins are

closely related to their correct subcellular location, viruses need

to overcome multiple barriers, such as the plasma membrane and

nuclear membrane, in host cells to enter the site of viral replication

or assembly. Some viral proteins regulate the transcription and

translation of host cells, innate immunity, and other biological

functions by shuttling back and forth in the cytoplasm and nucleus

and mediate viral mRNA transport, viral particle assembly, and

interactions among various viral proteins to participate in the life

cycle of the virus, thereby promoting the proliferation of the virus

itself (Sandri-Goldin, 2001; Cullen, 2003; Lake and Hutt-Fletcher,

2004; Batisse et al., 2005; da Silva et al., 2012).

Throughout the lifecycle of herpesviruses, multiple viral

proteins must function directly or indirectly at various locations.

For example, the α herpesvirus HSV-1 UL47 protein and BHV-

1 UL47 protein not only participate in the replication process as

nuclear proteins but also play a role in primary envelopment during

the maturation of viral particles (Donnelly et al., 2007; Liu et al.,

2014b; Zhang et al., 2015, 2016). These viral proteins, which use

specific sequences to dynamically change their localization and

perform different functions, are called nucleocytoplasmic shuttling

proteins, and their different localizations at different stages strongly

impact their functions throughout the viral lifecycle. The specific

shift sequences of shuttling proteins typically contain nuclear

localization signals (NLSs) and nuclear export signals (NESs;

Michael, 2000). In addition, a variety of receptors and adapter

proteins are involved in the process of nucleocytoplasmic transport.

Numerous herpesvirus shuttling proteins have been documented,

classified according to α, β, and γ herpesviruses (Table 1). Among

them, the ICP27 protein family is conserved in α, β, and γ

herpesviruses, this family functions as a shuttling protein that

regulates mRNA transport and influences the viral lifecycle (Patel

et al., 2015; Tunnicliffe et al., 2015). A common feature of all

herpesviruses is that most of the viral genes expressed in the

lytic stage lack introns (Zheng, 2003). Since the herpesvirus gene

is transcribed into mRNA in the nucleus of the host cell, it is

necessary to export the intron-free viral mRNA to the cytoplasm

for translation (Reed and Hurt, 2002; Le Hir et al., 2003). The

ICP27 protein family translates viral mRNAs in the cytoplasm by

hijacking the components of the host mRNA processing and export

mechanism to ensure the expression and stability of herpesvirus

intronless genes (Malik et al., 2004; Sandri-Goldin, 2008; Toth and

Stamminger, 2008; Majerciak et al., 2014). In addition, the HSV-

1 VP19C protein (Person and Desai, 1998; Adamson et al., 2006),

HCMV UL94 protein, and KSHV ORF45 protein also affect the

assembly of viral particles (Li and Zhu, 2009; Liu et al., 2009,

2012; Wang et al., 2015). Herpesviruses cause lifelong infection by

evading the host immune system and establishing latent infection.

Multiple viral proteins, including the PRV UL46 protein (Xu et al.,

2020), HSV-1 γ134.5 protein (Cheng et al., 2002; Verpooten et al.,

2009; Pan et al., 2018), HCMV UL94 protein, and KSHV LANA2

protein, regulate the localization of specific signal molecules to

inhibit or block signal transduction pathways (Seo et al., 2004; Zou

et al., 2020). This strategy is crucial for viruses to evade immune

responses. Based on this, shuttling proteins are important factors

in dynamically coordinating nucleocytoplasmic life activities, and

herpesvirus shuttling proteins balance NLSs and NESs in space and

time to optimize the time and amplitude of viral gene expression.

The NLS and NES of herpesvirus shuttling proteins and their

transport mechanisms must be determined to analyze the process

of viral proliferation of herpesvirus. This review summarizes the

transport mechanism of shuttling proteins and discusses the roles

of various shuttling proteins in the various stages of the virus

lifecycle in herpesvirus.

2 The nucleocytoplasmic shuttling
mechanism of shuttling proteins

Herpesvirus shuttling proteins have nucleocytoplasmic

shuttling mechanisms similar to that of most other shuttling

proteins. Each step is accompanied by many interactions between

proteins and is subject to strict and complex regulation, as will be

detailed below (Mattaj and Englmeier, 1998).

2.1 Channels for nucleocytoplasmic
shuttling

The cytoplasm and nucleus are separated by nuclear envelope

(NE), providing a physical barrier for the diffusion of large

molecules between the cytoplasm and nucleus (Dey and Baum,

2021). NE is penetrated by multiple supramolecular structures,

which are called nuclear pore complex (NPC), NPCs are complex
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FIGURE 1

Overview of the structure of herpesvirus genome. In order to better understand the various types of herpesviruses and their associated viral proteins,

the figure provides a brief overview of the genome structures of common α herpesviruses, β herpesviruses, and γ herpesviruses. The α herpesviruses

include HSV-1, HSV-2, VZV, PRV, and BHV-1 (Davison and Scott, 1986; McGeoch et al., 1988, 1991; Klupp et al., 2005; Xu et al., 2015; Liu et al., 2022;

Shitrit et al., 2023); the β herpesviruses include HCMV, HHV-6, and HHV-7 (Gompels et al., 1995; Dominguez et al., 1999; Dunn et al., 2003; Sijmons

et al., 2014; Verbeek et al., 2024); the γ herpesviruses include EBV and KSHV (Russo et al., 1996; Kwok and Chiang, 2016; Majerciak et al., 2019). The

repetitive sequences in the US are referred to as IRS sequences and TRS sequences. The repetitive sequences in the UL are referred to as IRL

sequences and TRL sequences. The unique regions of the HHV-6 and HHV-7 genomes are collectively known as U.

structures composed of nucleoporins (Nups) that penetrate and

bridge the inner and outer nuclear membranes, where they mediate

nucleocytoplasmic transport (Strambio-De-Castillia et al., 2010;

Knockenhauer and Schwartz, 2016; Fontana et al., 2022).

2.2 Transport receptors of
nucleocytoplasmic shuttling

The nucleocytoplasmic shuttling of proteins around NPCs

is mediated by specific protein carriers, collectively known

as nuclear transport receptors (NTRs), such as karyopherins,

which are responsible for transporting nucleocytoplasmic cargo

(Bednenko et al., 2003; Mosammaparast and Pemberton, 2004;

Conti et al., 2006). The functions of karyopherins can be divided

into two different categories: importins and exportins, importins

are heterodimers, which are divided into importin-αs and importin

βs (Goldfarb et al., 2004; Xu et al., 2010). The importin-αs protein

recognizes the NLS in the cargo protein for transport (Goldfarb

et al., 2004). It has three key domains: its N-terminal domain

is an IBB domain that binds importin β1, its middle domain is

an Armadillo (ARM) repeat sequence that binds NLS-cargo, and

its C-terminal region interacts with nuclear export factor CAS

and nucleoporin 50 (Nup50) to mediate the nucleocytoplasmic

transport of the protein (Görlich et al., 1996;Weis et al., 1996; Kutay

et al., 1997; Herold et al., 1998).

Importin βs, another family of proteins involved in the

nucleocytoplasmic transport of proteins and RNA. Almost all

importin βs contain two conserved domains: the central HEAT

domain and the importin β N-terminal domain (IBN), HEAT is

named by the initials of the four proteins that initially found this

repetitive motif (Figure 2; Xu et al., 2010). Importin βs include

nuclear import receptors (importins), export receptors (exportins),

and bidirectional receptors. For example, the human genome

encodes 20 importin βs, of which 10 (importin β1, transportin

1, transportin 2, importin 4, importin 5, importin 7, importin

8, importin 9, importin 11, and importin 12) are importins,

7 (exportin 1/CRM1, exportin 2/CAS, exportin 5, exportin 6,

exportin 7, exportin t, and RanBP17) are exportins, 2 (importin

13 and exportin 4) are bidirectional receptors, and 1 (RanBP6) has

not been characterized (Nehrbass and Blobel, 1996; Kimura and

Imamoto, 2014).

2.3 The energy sources for
nucleocytoplasmic transport

The transport process of shuttling proteins to nuclear transport

receptors depends on the participation of an active energy

transport mechanism, which is generally driven by the RanGTP-

RanGDP gradient during nuclear envelopment. Ran is the most

abundant member of the Ras-GTPase superfamily and is a key

regulator of the import protein importin β, which is crucial for
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TABLE 1 Shuttling proteins in herpesviruses.

Subfamily Protein Herpesvirus NLS amino acid sequence Transport
receptors

NES amino acid sequence Transport
receptors

References

α Herpesvirus ICP27 HSV-1 ARRPCSPECRHGGKVARLQPPPTKAQPA Importin-α, importin β1 DMLIDLGLDLDL TAP/NXF1 (Mears et al., 1995;

Sandri-Goldin, 1998)

UL47 HSV-1 EPPRRRREGPRARRRA Importin βs (Donnelly and Elliott,

2001)

UL3 HSV-1 RKPRK Importin-α, importin β1 IRKDLRLSL CRM1 (Zheng et al., 2011)

γ134.5 HSV-1 RADRARFRRRVAEAEAVIGPCLGPEARAR Importin-α, importin β1 LPPRLALRLR CRM1 (Cheng et al., 2002)

VP19C HSV-1 PRGSGPRRAAST LERLFGRLRI CRM1 (Li et al., 2012b; Zhao

and Zheng, 2012)

US3 HSV-2 CRM1 (Finnen et al., 2010,

2011)

UL47 BHV-1 RRPR, PRVRRPRP Importin βs LSAYLTLFVAL,

RGPNHGAGDAMDTDAPPERAPEGGAPQD

CRM1 (Zheng et al., 2004;

Verhagen et al., 2006)

VP22 BHV-1 PRPR Importin βs LDRMLKSAAIRIL CRM1 (Zheng et al., 2005)

ICP27 BHV-1 RRAR Importin βs LEELCAARRLSL CRM1 (Guo et al., 2009; Ding

et al., 2010)

IE4 VZV RKHRDRSLSNRRRRP Importin-α, importin β1 TAP/NXF1 (Huang et al., 2014)

ORF10 VZV RRR, KRK Importin β1 LARLLYLHLYL CRM1 (Cai et al., 2012)

UL54 PRV RQRRR Importin-α, importin β1 TAP/NXF1 (Li et al., 2011a,b)

UL46 PRV RRARGTRRASWKDASR Importin βs CRM1 (Xu et al., 2020)

ORF12 MDV RSRSRSRSRERRRRRPRVRPGRR Importin βs (Schippers et al., 2015)

UL54 DEV KKKPSDHDTGKYVKRARA,

PPNRDRRRMSDKSDFKQSRRSQR,

RRVSWHTLCLIGKELRR

Importin-α, importin β1 LKLKLRPIFL (Liu et al., 2016)

β Herpesvirus UL94 HCMV KLVGKSRKHR, RRRRR CILCQLLLLY CRM1 (Liu et al., 2012)

UL84 HCMV PEKKKEKQEKK Importin-α, importin β1 LSLNLFALRI, LTLSSLTL CRM1 (Xu et al., 2002;

Lischka et al., 2006a)

UL69 HCMV ERRARRARRFCLDYEPVPRKFRRER Importin-α, importin β1 APPAQPPSQPQQHYSEGELEEDEDSDDA (Lischka et al., 2001;

Toth et al., 2006)

γ Herpesvirus BLLF2 EBV KRQALETVPHPQNRGR, RRPRPPVAKRRRFPR Importin β1 TAP/NXF1 (Li et al., 2021)

EB2 EBV KRRR, KRR Importin βs TAP/NXF1 (Hiriart et al., 2003b;

Juillard et al., 2009)

BFLF2 EBV RRLMHPHHRNYTASKASAH TAP/NXF1 (Li et al., 2018)

LANA2 KSHV MVPLVIKLRL CRM1 (Muñoz-Fontela et al.,

2003, 2005)

(Continued)
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protein and RNA transport between the nucleus and cytoplasm

(Izaurralde et al., 1997; Görlich and Kutay, 1999). To sum

up, NPC performs complex biological functions through the

spatial and temporal interactions of cargo proteins, Ran GTPases,

and NTR.

2.4 Nucleocytoplasmic shuttling of proteins
into the nucleus

The NLS is a short peptide containing a special amino

acid sequence that acts as a signal fragment that mediates the

transport of shuttling proteins from the cytoplasm to the nucleus

through the NPC, with “localization” and “orientation.” The NLS

is divided into classical nuclear localization signals (cNLSs) and

non-classical nuclear localization signals (ncNLSs; Table 2; Bradley

et al., 2007). Unlike cNLSs (Robbins et al., 1991; Arregi et al.,

2011). Many proteins contain NLSs with irregular characteristic

structures, known as ncNLSs. There are many types of ncNLSs.

These can generally be divided into NLSs rich in arginine (IK-

NLSs), NLSs containing proline and tyrosine (PY-NLSs), and

spatial epitope NLSs (Fagerlund et al., 2002;Meyer andVinkemeier,

2004). The IK-NLS is recognized by importin5 (Kobayashi and

Matsuura, 2013), while the PY-NLS is more complex than the

cNLS and is recognized by transportin 1 (Lee et al., 2006;

Wang et al., 2012; Mallet and Bachand, 2013; Soniat and Chook,

2016).

In the classical nuclear import process, cNLS-cargo in the

cytoplasm first binds to importin-α and then binds to importin

β1 through the IBB domain form the cNLS-Cargo-importin-α-

importin β1 trimer. Importin β1 then facilitates the transport of

the trimer into the nucleus. The energy consumption of the trimer

passing through the NPC is provided by the hydrolysis of GTP

by Ran GTPase, and the combination of Ran GTP and importin

β1 results in conformational changes in importin-α and cNLS-

cargo, respectively, which are released from the trimer. cNLS-

cargo is transported along the internal skeleton solid phase and

remains in the nucleus (Lange et al., 2007; Stewart, 2007; Fontana

et al., 2022). Non-classical nuclear entry is generally mediated

by importin βs binding to the ncNLS, of which transportin 1

may be second only to importin-α1. The protein containing the

PY-NLS appears to be imported specifically by transportin 1

(Siomi et al., 1997; Twyffels et al., 2014; Hwang et al., 2022).

In summary, the process of NLS-mediated protein entry into

the nucleus is a necessary factor for the proper functioning of

the protein.

2.5 Nucleocytoplasmic shuttling of proteins
out of the nucleus

After the shuttling protein has completed its function in

the nucleus, the process of gradual transport from the nucleus

to the cytoplasm requires the NES to interact with exportins.

The NES is a short, leucine-rich, or hydrophobic amino acid

motif (Fischer et al., 1995; Wen et al., 1995). Among the seven

types of exportins, CRM1, also known as export 1 or Xpo1, is
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FIGURE 2

Importins are divided into (A) importin-αs and (B) importin βs. The N-terminus of importin-αs binds to the IBB domain of importin β1, the middle part

is the Arm repeat sequence that bind to NLS-containing cargo, and the C-terminal region interacts with CAS and Nup50 to mediate

nucleocytoplasmic transport of the protein. Importin βs contain two conserved domains, including the central HEAT domain and the importin β

N-terminal domain (IBN).

TABLE 2 Examples of di�erent types of nuclear localization signal.

NLS types Consensus sequence Typical sequence
representative

References

Classical nuclear localization

signals (cNLS)

Monopartite type

NLS (MP NLS)

K(K/R)X(K/R) SV40T antigen NLS(PKKKRKV) (Kalderon et al., 1984)

Bipartite type NLS

(BP NLS)

R/K(X)10-12KRXK Xenopus laevis nucleoplasmin

NLS(KRPAATKKAGQAKKKK)

(Dingwall et al., 1988)

Non-classical nuclear

localization signals (ncNLS)

IK-NLS K(V/I)X-K-X 1-2(K/H/R) Pho4 NLS (ANKVTKNKSN) (Kaffman et al., 1998)

PY-NLS R/H/K-(X)2-5-PY M9NLS

(FGYNNQSSNFGPMKGGNFGGRSS

GPY)

(Siomi and Dreyfuss, 1995)

Other types of nuclear

localization

Spatial epitope NLS / STAT1 (Meyer and Vinkemeier,

2004)

the best characterized. The nuclear export process of shuttling

proteins largely relies on CRM1 (Fornerod et al., 1997; Fukuda

et al., 1997). First, the NES on the shuttling protein binds to

CRM1 to form the CRM1-NES cargo RanGTP ternary export

complex. The ternary complex then binds to various nuclear

pore proteins and crosses the NPC to the cytoplasm. Finally,

CRM1 returns to the nucleus through the NPC for the next

export cycle (Kehlenbach et al., 1999; Seewald et al., 2002; Bernad

et al., 2004; Hutten and Kehlenbach, 2006). In summary, the

NES also plays an important role in shuttling protein transport,

and the dynamic processes mediated by the NLS and NES are

the basis for shuttling proteins to perform different functions

(Figure 3).

3 The lifecycle of herpesviruses

3.1 Herpesvirus latency

When the virus is in the latency, the viral DNA is stably

maintained in the nucleus of the cell as multiple copies of circular

episomes, with the exception being the HHV-6, which has the

ability to integrate into telomeric regions of host chromosomes

(Arbuckle et al., 2010). In α herpesvirus, the latency-associated

transcript (LAT) is the only viral gene expressed by HSV-1 (Whitley

et al., 1998; Roizman et al., 2011; Wang et al., 2023). Infected cell

protein 0 (ICP0) is an immediate-early regulatory protein of HSV-1

that promotes the lytic infection and reactivation of viral genomes
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FIGURE 3

Schematic diagram of the nucleocytoplasmic transport of the shuttling protein NLS-cargo-NES protein complex and its associated protein molecular

circulation. Di�erent types of NLSs on shuttling proteins are recognized by di�erent importins, and transport complexes are formed under the action

of multiple factors. Importins directs the complex to the NPC and transfers it to the nucleus. Shuttling proteins undergo solid-phase transport within

the nucleus, and di�erent types of NESs on shuttling proteins are recognized by di�erent exportins. The transport complex is formed under the

coordination of various proteins, this complex is transported through the NPC to the cytoplasm, and the whole shuttling process is thus completed.

(Leib et al., 1989; Halford and Schaffer, 2001; Thompson and

Sawtell, 2006; Roizman et al., 2011). The expression of latent viral

gene in VZV is also limited to VZV latency-associated transcript

(VLT) and VLT-ORF63 RNA (VLT63) fusion transcripts (Depledge

et al., 2018a; Ouwendijk et al., 2020; Braspenning et al., 2021).

The tegument protein VZV IE62, encoded by the VZV gene, is

delivered to the newly infected cell nucleus, where it initiates VZV

lytic replication by transactivating viral immediate early, early, and

late genes (Kinchington et al., 1992, 2001).

In β and γ herpesviruses, In HCMV, one of the mechanisms

controlling the balance between latency and reactivation or

lytic replication is the IE1 and IE2 proteins encoded by the

HCMV UL123 and UL122, respectively. IE1 is essential for the

establishment of lytic infection and the reactivation of viral latency

(Tarrant-Elorza et al., 2014; Arend et al., 2016), IE2 initiates

the subsequent cascade of viral gene expression (Malone et al.,

1990; Dooley and O’Connor, 2020). Epstein-Barr nuclear antigen

1 (EBNA1) was the first reported EBV latency protein. The

EBNA1 protein tethers the latent viral episomes to the host

chromosome. According to the expression of viral genes, the latent

infection of EBV is more complex and variable than those of

other herpesviruses. The latent form of EBV infection is further

categorized into five patterns: Latency 0, I, IIa, IIb, and III

(McKenzie and El-Guindy, 2015; Thorley-Lawson, 2015). The lytic

cycle activation of EBV is controlled by two viral transcription

factors Zta and Rta, which are immediate early proteins encoded

by EBV genes BRLF1 and BZLF1, respectively (Murata et al.,

2021; Ali et al., 2022). The latency of KSHV also expresses only a

limited number of viral genes, latency-associated nuclear antigen

1 (LANA1), encoded by the KSHV gene, is the main regulator of

latency (Katano, 2018). The key viral protein that regulates the

transition from latency to lysis replication is the transcriptional

activator regulator (RTA), which is encoded by the KSHV UL50

gene (Miller et al., 2007; Srivastava et al., 2023).

To sum up, there are differences in the latency of herpesviruses.

The α herpesviruses (such as HSV-1 and VZV) lurk in non-dividing

neuronal cells. It is not necessary to express viral proteins to tether

the viral genome to chromosomes. The β and γ herpesviruses

(such as HCMV, EBV, and KSHV) that maintain latency in

dividing cells express viral proteins, tethering the viral genome to

chromosomes so that episomes are partitioned to daughter cells.

Therefore, the viral proteins required for maintaining latency and

facilitating reactivation are also distinct. Despite these differences,

herpesviruses of the three subfamilies also have similar lifecycles.

The differences and similarities among various herpesviruses

during lytic replication are outlined below to provide a clear

understanding of the effects of herpesvirus shuttling proteins on the

viral lifecycle.

3.2 Lysis replication of herpesviruses

3.2.1 Entry of herpesviruses
The entry of α, β, and γ herpesviruses into cells requires the

coordinated interaction of multiple glycoproteins on the surface
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of viral particles, these glycoproteins were named with letters

and prefix g (glycosylation). First, herpesviruses attach to host

cells through a variety of viral glycoproteins and multiple binding

receptors but do not trigger entry. Then, herpesviruses directly

fuse with the host cell membrane through the viral envelope (or

enter specific cells through endocytosis; Eisenberg et al., 2012;

Sathiyamoorthy et al., 2017; Weed and Nicola, 2017). Although

herpesviruses of different types (such as HSV-1, HCMV, and

EBV) infect a variety of host cells, they share a common entry

mechanism: glycoprotein gB and the heterodimer gH-gL. But

different herpesvirus subfamilies use distinct viral glycoprotein

combinations (gD, gp42, and gH-gL) to bind to various cellular

receptors (Compton et al., 1992; Miller and Hutt-Fletcher, 1992;

Gerna et al., 2004; Ryckman et al., 2006; Hutt-Fletcher, 2007).

3.2.2 Dissociation of tegument proteins and
transport of capsids

After the herpesviruses enter the host cell, the viral capsid, and

some tegument proteins enter the cytoplasm, and some tegument

proteins are quickly dissociated from the capsid. Some tegument

proteins are still attached to the capsid after entering the cell

and interact with microtubules to transport the capsid to the

nucleus. An opening is formed at a single vertex of the capsid.

Some virus-encoded capsid proteins bind to the nuclear pore

proteins Nup214 and Nup358 on the surface of cytoplasmic NPC

to ensure that the capsid opening is docked with the nuclear pore

and stimulates DNA release. Because the tightly packed negatively

charged genome inside the capsid causes internal pressure, the

high internal pressure, dozens of times the atmospheric pressures,

promotes ejection of the genome from the capsid, overcoming the

NPC permeability barrier and releasing the viral DNA into the

nucleus (Jovasevic et al., 2008; Copeland et al., 2009; Pasdeloup

et al., 2009; Huffman et al., 2017; Brandariz-Nuñez et al., 2019;

Dünn-Kittenplon et al., 2021). The α herpesviruses (such as HSV-

1), some tegument proteins need to be dissociated from the

viral particles to function. The outer tegument proteins are first

dissociated, and then the inner tegument proteins are dissociated.

The first dissociated outer tegument protein is VP16 (Wysocka

and Herr, 2003; Bohannon et al., 2013). The second dissociated

tegument protein is VP13/14, an outer tegument protein encoded

by the UL47 gene, which is also a shuttling protein that will be

highlighted below. Followed by VP22 protein (encoded by UL49

gene; Morrison et al., 1998), the tegument proteins dissociated in

sequence are involved in viral replication, among which UL47 and

UL49 genes are unique to α herpesvirus. However, the dissociation

patterns of tegument proteins in VZV, the β herpesviruses, and γ

herpesviruses have not been extensively studied.

3.2.3 Transcription, replication, and capsid
assembly of viral genomes

After the viral DNA is released into the nucleus, the linear

viral DNA begins to cyclize and replicate through the rolling circle

process to form concatemer (McVoy and Adler, 1994; Colletti et al.,

2004; Gualtiero et al., 2013; Packard and Dembowski, 2021). When

the viral genome completes transcription, translation, and DNA

replication, the capsid proteins enter the nucleus to form the basic

assembly unit of the capsid and assemble into the nucleocapsid in

the nucleus (Heming et al., 2017). The viral genome is transcribed

in a cascade manner in the nucleus. The viral genes are divided into

the immediate early (IE), early (E), and late (L) genes according

to the order of transcriptional regulation. The IE gene is first

transcribed and expressed under the action of a transcription

activator, and its transcription occurs before viral DNA replication.

First, the post-transcriptional IE viral mRNA is exported from the

nucleus and synthesizes the IE protein in the cytoplasm. Then, the

IE protein re-enters the nucleus to activate the transcription of the

E gene. Finally, the E protein initiates and guides the transcription

and expression of the L gene (Honess and Roizman, 1974; Rixon

et al., 1996; Gruffat et al., 2016; Dembowski and DeLuca, 2018). In

general, the IE protein initiates and guides the transcription and

expression of E gene and L gene through nuclear export and nuclear

import pathways (Hiriart et al., 2003b; Donnelly et al., 2007; Liu

et al., 2009, 2014b). The ICP27 protein family plays a crucial role in

the transport of viral mRNA during the viral lifecycle, which will be

discussed in detail below.

The capsid assembly mechanism is considered highly similar

in herpesviruses (Lye et al., 2017). The structure and function

of the main capsid proteins in the Herpesviridae are also highly

conserved (see Table 3), the following is an example of HSV-1.

The major capsid proteins encoded by HSV-1 include the VP5,

VP23, VP19C, VP26, UL26, UL26.5, and UL6 proteins (Brown and

Newcomb, 2011; Döhner et al., 2021; Villanueva-Valencia et al.,

2021). After the capsid protein is encoded in the cytoplasm, it

forms a subcomplex of VP5-UL26.5 and VP23-VP19C. The NLS

dependent on the VP19C and VP5 proteins is coenters the nucleus,

and the capsid is assembled in the nucleus (Newcomb et al., 1993;

Booy et al., 1994; Newcomb et al., 2001; Beard et al., 2002). The

terminase complex (UL15, UL28, and UL33 proteins) recognizes

the cis-regulatory “pac” motif in viral DNA. The viral DNA is

cut twice and cut into a unit-length genome (Beard et al., 2002).

The viral DNA is released into the capsid by interacting with UL6

protein (Varmuza and Smiley, 1985; Beard et al., 2002). Among

these, the HSV-1 VP19C protein is the shuttling protein that will

be highlighted next.

3.2.4 Nuclear egress, secondary envelopment and
release

The assembled nucleocapsid interacts with the nuclear

envelope, budding at the inner nuclear membrane (INM) to

complete primary envelopment (Mettenleiter et al., 2013), and

then forms a nucleocapsid virion structure wrapped by the

primary envelope in the perinuclear space, called perinuclear

virions (PEVSs), followed by the de-envelopment of virions at the

outer nuclear membrane (ONM; Bigalke and Heldwein, 2016).

Eventually, naked capsids are released into the cytosol (Sonntag

et al., 2017; Lv et al., 2019). The nucleocapsids released into the

cytoplasm by all herpesvirus subfamilies will bind to tegument

proteins in an orderly manner, obtain the secondary envelope

by budding into the trans-Golgi network, and form mature

virus particles (Hogue, 2021; Roller and Johnson, 2021). The

secondary envelopment of different herpesviruses generally occurs

in the Golgi apparatus, early endosomes, or autophagosomes.

Frontiers inMicrobiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1515241
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Cao et al. 10.3389/fmicb.2025.1515241

TABLE 3 Conserved capsid-associated proteins encoded by di�erent herpesviruses.

α Herpesviruses β Herpesviruses γ Herpesviruses Function References

Viruses HSV-1 VZV HCMV HHV-6 KSHV EBV

Capsid

proteins

UL19/VP5 ORF40 UL86 U57 ORF25 BCLF1 Major capsid protein:

forms hexons and

pentons

(Nealon et al., 2001; Liu and

Zhou, 2007; Nguyen et al.,

2008; Henson et al., 2009;

Lebrun et al., 2014; Ruhge

et al., 2018; Zhang et al., 2019)UL18/VP23 ORF41 UL85 U56 ORF26 BDLF1 The two together

constitute triplexes

UL38/VP19C ORF20 UL46 U29 ORF62 BORF1

UL35/VP26 ORF23 UL48a U32 ORF65 BFRF3 Located at the tip of

hexons

UL26 ORF33 UL80 U53 ORF17 BVRF2 Generates mature forms

of scaffolding proteins

UL26.5 ORF33.5 UL80.5 U53.5 ORF17.5 BdRF1 Scaffolding protein

removed from capsid

during DNA packaging

UL6 ORF54 UL104 U76 ORF43 BBRF1 Portal protein:

complexed with

terminase subunit

DNA-

packaging

proteins

UL28 ORF30 UL56 U40 ORF7 BALF3 Terminase complex (Visalli et al., 2015; Neuber

et al., 2017; Visalli et al., 2019;

Huet et al., 2020; Iwaisako

et al., 2023; Iwaisako and

Fujimuro, 2024)

UL15 ORF42/45 UL89 U66 ORF29 BGRF1/BDRF1

UL33 ORF25 UL51 U35 ORF67.5 BFRF1A

UL32 ORF26 UL52 U36 ORF68 BFLF1

UL25 ORF34 UL77 U50 ORF19 BVRF1

UL17 ORF43 UL93 U64 ORF32 BGLF1

TABLE 4 NEC core protein encoded by di�erent herpesviruses.

α Herpesviruses β Herpesviruses γ Herpesviruses References

Viruses HSV-1 VZV HCMV MCMV EBV KSHV

Core NEC protein UL34 ORF24 UL50 M50 BFRF1 ORF67 (Granato et al., 2008; Desai et al., 2012; Milbradt et al., 2012;

Leigh et al., 2015; Takeshima et al., 2019; Häge et al., 2020;

Schweininger et al., 2022)UL31 ORF27 UL53 M53 BFLF2 ORF69

The Golgi apparatus is widely considered to be the site of

secondary envelope formation (Gershon et al., 1994; Zhu et al.,

1995; Granzow et al., 1997; Hambleton et al., 2004; Wisner

and Johnson, 2004; Sugimoto et al., 2008; Hogue et al., 2014).

Subsequently, the mature virus particles are transported to the

cell membrane by cytoplasmic vesicles, and the virus particles are

released to the outside of the cell through exocytosis, and finally the

transmission of the virus particles between the cells is completed.

Herpesviruses express two conserved and essential nuclear egress

regulatory proteins (see Table 4), The homologous BFLF2 protein

of the UL31 protein in EBV is a shuttling protein that will be

discussed later.

4 The role of herpesvirus shuttling
proteins in the viral lifecycle

The mechanisms by which herpesviruses of different

subfamilies infect host cells are slightly different. Herpesviruses

have evolved different strategies to regulate the nucleocytoplasmic

transport of NPC and proteins, creating an environment conducive

to virus proliferation. Virus proteins target transport receptors

through the NLS, NES, and other key functional domains, hijacking

nucleocytoplasmic pathways to promote virus proliferation. Virus

lifecycles depend on the transcription and replication in the

nucleus of the host cell (Knipe, 1989; Boehmer and Lehman,

1997), and newly formed virus particles assemble into capsids

in the nucleus (Nii et al., 1998). Herpesviruses must target

transcription factors, scaffold proteins, and capsid proteins

to the nucleus to participate in viral transcription, genome

replication, capsid assembly (Malik et al., 1996; Rixon et al.,

1996). The newly assembled viral particles from the capsid

must subsequently leave the nucleus and continue to mature

in the cytoplasm using tegument proteins and glycoproteins,

the NES plays an important role in guiding the export of viral

proteins into the cytoplasm. In summary, the nucleocytoplasmic

shuttling proteins of herpesvirus ensure the correct cellular

compartmentalization of herpesvirus proteins through interactions

between the NLS and NES and transport receptors, which play

important roles in the herpesvirus lifecycle. Mutations in NLS

and NES affect the efficiency of nucleocytoplasmic transport

to varying degrees. A detailed discussion of how herpesvirus
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shuttling proteins participate in processes throughout the

lifecycle and what functions they play will be presented later

(Figure 4).

4.1 Herpesvirus shuttling proteins a�ect
viral replication

4.1.1 Herpesvirus shuttling proteins regulate
mRNA transport

mRNA transport is closely related to transcription, splicing,

post-transcriptional modification, and translation, these processes

are not isolated from each other but are highly continuous,

dynamic, and complex. Most herpesvirus genes have no introns,

and their replication depends on the selective nuclear export

of intronless viral mRNAs. Since intronless virus mRNA cannot

recruit mRNA export factors through a splicing-dependent

mechanism, regulating nuclear mRNA export is crucial for the

replication and pathogenesis of the herpesvirus (Gales et al., 2020).

Research has shown that herpesvirus uses Aly/REF, TAP/NXF1,

CRM1, and other export pathways to alter cellular and viral mRNA

export and utilizes some regulatory proteins to promote viral

mRNA nuclear export (Fornerod et al., 1997; Stade et al., 1997;

Grüter et al., 1998), such as the ICP27 protein family encoded by

herpesvirus, which includes the HSV-1 ICP27 protein (Johnson

et al., 2009; Johnson and Sandri-Goldin, 2009; Koffa et al., 2023),

VZV IE4 protein (Ote et al., 2009), BHV-1 ICP27 (Guo et al., 2009;

Ding et al., 2010), HCMV UL69 protein (Zielke et al., 2011), EBV

EB2 protein (Hiriart et al., 2003a), HVS ORF57 protein (Williams

et al., 2005), and KSHV ORF57 protein (Boyne et al., 2008). They

act as viral mRNA export factors, mediating the nucleocytoplasmic

transport of viral transcripts (Figure 5).

In α herpesvirus, the HSV-1 ICP27 protein shuttle is

coupled with viral mRNA export to the cytoplasm, and the

nucleocytoplasmic shuttle activity depends on the NLS and NES

as well as the other regions. Many studies have shown that the

ICP27 protein recruits export factors such as Aly/REF, UAP56,

and TAP to viral mRNA and promotes mRNA export through

the TAP/NXF1 pathway. The ICP27 protein has been shown to

affect the nucleocytoplasmic transport of UL15, UL17, and UL48

mRNAs, as well as the cytoplasmic levels of UL30, UL29, UL42,

and UL5 mRNAs (Phelan et al., 1996; Uprichard and Knipe, 1996;

Soliman et al., 1997). Initially, to screen the functional regions of the

ICP27 protein, some scholars constructed 16HSV-1 ICP27mutants

and finally reported that the mutations M11, M15, and M16 in

these three regions completely inactivated the basic functions of the

ICP27 protein (M11, M15, and M16 mutations led to amino acid

substitutions at positions 340/341, 465/466, and 488, respectively).

The shuttle ability of five HSV-1 ICP27 mutant proteins was

subsequently studied, it was found that the M15 mutation affects

the interaction between ICP27 and the core nucleoporin Nup62,

causing M15 to be unable to re-export and shuttle continuously.

After the M15 mutation completely blocks the shuttling activity of

ICP27, it is not able to induce some viral late mRNAs, and seems

owing to the loss of this key function, M15 mutant viruses are

replication defective. In addition, the ICP27 NES mutation (Dleu)

was found to weaken the shuttle, and Dleu mutant viruses were also

replication defective (Rice and Lam, 1994; Mears and Rice, 1998;

Lengyel et al., 2002; Malik et al., 2012). Subsequently, it was further

found that the M15 mutant significantly reduced the interaction

between ICP27 and mRNA, which explained the close relationship

between the nucleocytoplasmic shuttling of ICP27 protein and

mRNA (Sokolowski et al., 2003; Srinivas et al., 2021). Notably, the

nucleocytoplasmic shuttling activity of the HSV-1 ICP27 protein

is related to the activation of the late gene of the virus. How the

shuttle of ICP27 facilitates the transcriptional activation of the

late gene of the virus and whether ICP27 stimulates the nuclear

export of the viral gene transcript by binding to the viral gene

transcript in the nucleus and escorting it to the cytoplasm still

need to be explored (Mears and Rice, 1998). The VZV IE4 protein

possesses transactivating properties, and the IE4 protein can recruit

the TAP/NXF1 receptor into viral mRNA to mediate mRNA export

by interacting with the cellular export adapter protein SR protein.

Some scholars have demonstrated that three domains of the IE4

protein, Ra, Rb, and Rc, mediate the interaction between the

IE4 protein and its mRNA, Rb, and Rc not only participate in

the transactivating properties of the IE4 protein but also mediate

interactions with transcription factors such as p50 and TFIIB. Since

the IE4 NLS is located in the Rb domain, the IE4 protein loses the

ability to migrate to the nucleus when binding to mRNA and is

exported to the cytoplasm, it is reasonable to speculate that only

the IE4 NLS can localize to the nucleus to promote interaction

with transcription factors (Baudoux et al., 2000; Ote et al., 2009,

2010; Huang et al., 2014). In addition, in the α herpesvirus UL47

protein family, the nucleocytoplasmic shuttling behaviors of the

HSV-1 UL47 protein and BHV-1 UL47 protein are similar and are

mediated by importin β for nuclear import (McLean et al., 1990;

Donnelly and Elliott, 2001; Zheng et al., 2004), HSV-1 UL47 serves

as an effective RNA-binding protein and its NLS and RNA binding

sequence are NLS determined by the same motif. After binding to

mRNA in vivo, the HSV-1 UL47 protein targets the main nuclear

domain where viral mRNA transcription occurs (Donnelly et al.,

2007).

In β herpesvirus, HCMV UL69 protein, as a post-

transcriptional transactivator, promotes the nuclear export of

mRNA through nucleocytoplasmic shuttling and the ability to

recruit components of the cell mRNA export mechanism. UAP56

and URH49 are closely related RNA helicases that function in

selective mRNA processing and export pathways, subsequent

testing of the mRNA export activity of the HCMV UL69 protein

revealed that the NLS and RNA binding motifs partially overlap

with the UAP56/URH49 interaction motif, which is crucial for

mRNA export activity, and that UAP56 binding-deficient viruses

exhibit strong replication defects. In addition, the UL69 NES

mutant, whose nucleocytoplasmic shuttling ability was lost, also

lost the ability to activate gene expression and export mRNA

(Lischka et al., 2001, 2006b; Stamminger, 2008; Zielke et al., 2011).

Other UL69 homologous proteins (chimpanzee cytomegalovirus

C69 protein, rhesus cytomegalovirus Rh69 protein, human

herpesvirus 6 U42 protein, and elephant endotheliotropic

herpesvirus U42 protein) in β herpesviruses were subsequently

studied. Nucleocytoplasmic shuttling and homodimerization are

conserved features of the HCMVUL69 homologous protein family

of herpesviruses, whereas heterodimerization and recruitment of

the cell mRNA export factors UAP56 and URH49 are limited to
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FIGURE 4

Herpesvirus shuttling proteins involved in the lifecycle of herpesviruses. 1. Entry; 2. The nucleocapsid enters the nucleus through microtubules; 3.

Linear DNA is released into the nucleus; 4, 5. Transcription and translation of viral IE genes; 6, 7. Transcription and translation of viral E genes; 8. The

viral genome replicates within the nucleus; 9, 10. Transcription and translation of viral IE genes; 11. Nucleocapsid formation and viral DNA packaging;

12. Primary envelopment and de-envelopment; 13. Secondary envelopment; 14. Release. Adapted from the literature (Sucharita et al., 2023; Li et al.,

2024).

members of the UL69 protein (C69 protein and Rh69 protein) of

the cytomegalovirus genus. All of these proteins function as viral

mRNA export factors. In addition, HCMV UL84 protein is also

a shuttling protein in HCMV that affects mRNA export, HCMV

UL84 protein enhances the accumulation of viral transcripts

encoding replication proteins in the cytoplasm. The UL84 protein

enters the nucleus through interactions between unconventional

nuclear-targeting domains and importin-α and participates in

virus replication compartments by interacting with HCMV UL44

protein (polymerase accessory protein), which plays a direct role in

DNA replication (Xu et al., 2002; Lischka et al., 2006a; Gao et al.,

2010; Strang et al., 2012). UL84 is also an RNA binding protein,

the construction of a non-shuttle mutant of UL84 NES revealed

that the accumulation of HCMV IRS1 mRNA in the cytoplasm was

reduced. The IRS1 protein is an immediate early protein encoded

by the IRS1 ORF in the HCMV inverted repeat sequence. The IRS1

protein is involved in blocking the α group phosphorylation of

eukaryotic initiation factor 2 (eIF2α) and the shutdown of cellular

protein synthesis, and eIF2 is a key translation regulator. These

results indicate that UL84 protein nucleocytoplasmic shuttling

mediates IRS1 mRNA export and plays an important role in viral

replication (Hakki et al., 2006; Gao et al., 2010). Members of the

DExD box protein family are involved in various aspects of RNA

metabolism, with many DExD/H proteins shuttling RNA from

the nucleus to the cytoplasm. UL84 is a putative member of the

DExD/H box protein family, further enhancing our understanding

of UL84-mediated mRNA processes (Colletti et al., 2005).

In γ herpesvirus, the EBV EB2 protein has a similar ability

to export mRNA, and the EB2 DN region binds to the export

factor REF, which is critical for mRNA export (Hiriart et al.,

2003b; Juillard et al., 2009). The nucleolus is the center of

ribosome biogenesis and is involved in viral replication, and

nucleolar localization sequence (NoLS) can target viral proteins

to the nucleolus. The HVS ORF57 protein binds to viral mRNA

for nucleocytoplasmic shuttling, and the nucleolar localization of

ORF57 is crucial for nuclear mRNA export and gene activation.

It has been reported that the ORF57 NLS mutants cannot be

transport to the nucleolus reportedly, resulting in the loss of viral

mRNA nuclear export, explaining the direct functional role of the

nucleolar transport of viral proteins in viral mRNA nuclear export

(Boyne and Whitehouse, 2006b). Notably, BHV-1 ICP27 NLS or

NoLS single deletion mutants did not eliminate the transactivation

activity of the glycoprotein gC promoter, whereas NLS and NoLS

double deletion mutants lost this function. These results suggest

that the nuclear and nucleolar localization of BHV-1 ICP27 may

be involved in the regulation of viral RNA transport (Guo et al.,

2009; Ding et al., 2010). The KSHV ORF57 protein interacts with

the REF to recruit the transcription-export (TREX) complex to

intron-free viral mRNA, enabling efficient mRNA export. During

mRNA export, the ORF57 protein shuttles through the nucleolus,

and the TREX complex is located in the nucleolus via the ORF57

protein. However, the exact cause of nucleolar localization during

shuttling remains to be elucidated (Boyne et al., 2008; Boyne and

Whitehouse, 2009; Jackson et al., 2011; Li et al., 2012a). Given
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FIGURE 5

Herpesvirus shuttling proteins export mRNA by hijacking host mRNA export mechanisms (NXF1-mediated and CRM1-mediated). Double-headed

arrow represents interaction.

the above, the ICP27 family, as posttranscriptional transactivators,

promotes the nuclear export of mRNAs through nucleocytoplasmic

shuttling and the ability to recruit components of the cellular

mRNA export mechanism, strongly demonstrating the importance

of nucleocytoplasmic shuttling in mediating the function of the

ICP27 protein family.

4.1.2 Herpesvirus shuttling proteins regulate
mRNA stability

mRNA is easily destroyed by physical, chemical, and enzymatic

factors, and its stability in cells is called mRNA stability, which

is one of the basic mechanisms regulating gene expression

and determines the final mRNA concentration at the post-

transcriptional level (Liu et al., 2014a; Radhakrishnan and Green,

2016; Li et al., 2022; Watson and Thoreen, 2022). VHS is an

endoribonuclease that is important for viral replication. VHS

degrades cells and viral mRNA, the degradation of cellular mRNA

to increase the availability of cellular translation mechanisms to

promote the synthesis of viral proteins, viral mRNA degradation

helps regulate the sequence expression of different viral genes

(Taddeo and Roizman, 2006; Taddeo et al., 2006). In α herpesvirus,

the HSV-1 UL47 protein interacts with VHS, assisting in the

translocation of some VHS to the nucleus. In transfected cells,

the VHS NES mutant can degrade stable mRNA, but it does not

degrade in infected cells, suggesting that UL47 protein greatly

weakens the degradation of viral mRNA (Shu et al., 2013a,b). In

addition, KSHV ORF59 is a viral DNA polymerase processivity

factor, and the KSHV ORF57 protein has been reported that

interacts with the RNA export cofactors RBM15 andOTT3 through

the NLS2 and NLS3 region to offset the nuclear accumulation

of KSHV ORF59 mRNA, thereby promoting the expression of

intronless ORF59 genes. RNA decay analyses after actinomycin

D-mediated suppression of polymerase II transcription revealed

that the ORF57 protein enhances the stability of ORF59 mRNA by

increasing its half-life in cells (Nekorchuk et al., 2007; Majerciak

et al., 2011). Overall, the ICP27 protein family plays a role in post-

transcription, promoting mRNA nuclear export into the cytoplasm

and acting as a posttranscriptional transactivator. However, the

main function of the KSHV ORF57 protein is to stabilize

mRNA. The HSV-1 UL47 protein regulates the cascade activation

mechanism of viral genes andmaintains the stability of viral mRNA

by mediating the localization of intracellular VHS.

4.2 Herpesvirus shuttling protein a�ects
virus particle assembly

The maturation of virions requires capsid assembly, primary

envelopment, secondary envelopment, and other processes. Owing

to the large nucleocapsid of herpesvirus, it passes through

the INM and ONM through the nuclear pore. Therefore,

herpesviruses have evolved a unique nuclear export mechanism.

After successful assembly of the nucleocapsid, the offspring
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virions enter the perinuclear space between the INM and ONM

for primary envelopment through budding, after which the

nucleocapsid of the envelope fuses with the ONM, releasing the de-

enveloped nucleocapsid into the cytosol. The unique nuclear export

mechanism of viral particles allows tegument proteins to attach

directly or indirectly to the nucleocapsid and exert their functions,

facilitating the expulsion and maturation of viral particles from the

nucleus (Mettenleiter et al., 2013; Owen et al., 2015).

In α herpesvirus, the HSV-1 UL47 protein and BHV-1 UL47

protein are the main components of the viral particle tegument

and not only affect replication but also participate in virus

assembly. Phosphorylated BHV-1 UL47 protein affects its cellular

localization plays a role in viral DNA encapsidation and secondary

virion incorporation (Zhang et al., 2015, 2016). The HSV-1 UL47

ineffective virus affects the nuclear export of virus particles,

resulting in a decrease in the proportion of primary enveloped

virus particles in the perinuclear space. According to reports,

the accumulation of nuclear capsids and the lack of primary

enveloped virions in the perinuclear space in the absence of the

UL47 protein likely reflect an imbalance between the rate of

virion delivery into the perinuclear space and the rate of egress

from this region. The UL47 protein appears to be required for

efficient primary envelopment of nucleocapsids in HSV-1 nuclear

export, the cytoplasmic shuttle characteristic of the UL47 protein

may be the cause of this phenomenon (Liu et al., 2014b). In

addition, the HSV-1 UL47 protein interacts with the UL31/UL34

complex and US3, regulating their functions to promote the

primary envelope of viral particles (Liu et al., 2014b). The HSV-

1 γ134.5 protein facilitates nuclear egress, and the absence of the

γ134.5 protein leads to the accumulation of nucleocapsids, further

research revealed that deleting the amino-terminal nuclear egress

domain (including nucleolar localization signals) of this protein

increases the accumulation of capsid in the nucleus, indicating the

importance of this domain for the function of the γ134.5 protein,

it is possible that this cis-element is required to direct virus egress

from the nucleus to the cytoplasm (Brown et al., 1994; Cheng

et al., 2002; Mao and Rosenthal, 2002; Jing et al., 2004). The HSV-1

VP19C protein is a structural protein of HSV-1 viral particles and

is crucial for the assembly of the capsid. The VP19C protein utilizes

NLS to bind to importin βs to cause nuclear import, and NES binds

to CRM1 to cause export, becoming the first herpesvirus capsid

protein with nucleocytoplasmic shuttling properties. The VP19C

protein mediates its involvement in the assembly of the capsid

structure, which can non-specifically bind to viral DNA and may

play a role in anchoring DNA to the capsid in the nucleus (Braun

et al., 1984; Tatman et al., 1994; Person and Desai, 1998). Another

important function of the VP19C protein is to correctly transport

component proteins to the capsid assembly site, where they serve as

carriers to transport cytoplasmic capsid proteins (such as the VP23

and VP5 proteins) to the nucleus and promote capsid assembly.

The nucleocytoplasmic shuttling ability of the VP19C protein is the

direct condition for its function, and its NLS and NES mutations in

recombinant viruses have demonstrated that the nuclear import of

the VP19C protein is necessary for efficient production of HSV-1

(Rixon et al., 1996; Adamson et al., 2006; Okoye et al., 2006).

In β herpesvirus, the pp28 protein is a tegument protein

encoded by HCMV UL99, HCMV pp28 mediates the capsid

envelopment of HCMV and is an essential tegument protein

required for HCMV assembly (Jones and Lee, 2004; Seo and Britt,

2006). The HCMV UL94 protein has been shown to interact with

pp28 in the virus assembly compartment (AC), and a mutation

at 343 aa has been found to alter the cytoplasmic distribution

of the UL94 protein and disrupt its nucleocytoplasmic shuttling.

The 343 aa site of the UL94 protein is the nuclear import site

and a key site for interaction with pp28, which can serve as a

bridge connecting the capsid and envelope. The UL94 protein

partially guides pp28 to the assembly complex and participates

in the secondary envelope of viral particles, demonstrating the

importance of UL94’s nucleocytoplasmic shuttling properties in

mediating pp28’s participation in the assembly process of the virus

(Liu et al., 2009, 2012).

The shuttling proteins affecting viral assembly in γ

herpesviruses include the KSHV ORF45 protein, the EBV

EB2 protein, and the EBV BFLF2 protein. The KSHV ORF45

protein is both a tegument protein and an immediate early

protein that is necessary for the entry and release of the targeted

viral capsid. The viral particle protein content was significantly

reduced in the BAC-45rc mutant in which the ORF45 NLS was

disrupted (Li and Zhu, 2009). The lysine in the NLS often serves

as a ubiquitin acceptor site (Chan et al., 2006), Lys297 in the

ORF45 NLS is critical for ORF45 targeting of lipid rafts (LRs) and

subsequently guides viral particles to the Golgi and endosome

membrane for budding (Wang et al., 2015). In BCBL-1 cells, a

portion of the ORF45 protein was found to be colocalized with the

viral replication compartment, suggesting that the binding of the

ORF45 protein to the capsid may participate in the maturation

processes of the virus. However, further studies are needed to

clarify the role of the ORF45 protein in the late stages of viral

replication (Kuang et al., 2008; Li and Zhu, 2009). EB2 is a nuclear

protein that mediates mRNA nuclear export. Studies have shown

that in the absence of EB2, the newly replicated viral DNA is not

properly encapsidated and is eventually completely digested by

DNase I, suggesting that the correct balance of protein expression

involved in intranuclear capsid assembly and maturation can be

obtained only in the presence of EB2. In addition, as EB2 is crucial

for the nuclear export of most late mRNAs and these genes are

converted into proteins involved in nuclear capsid assembly and

maturation, EB2 is essential for the correct assembly of nuclear

capsids (Batisse et al., 2005). The EBV BFLF2 protein belongs

to the herpesvirus UL31 protein family, and the EBV BFRF1

protein belongs to the herpesvirus UL34 protein family. The UL31

protein and the UL34 protein family are conserved among all

herpesviruses and are the main viral components involved in the

primary envelope of the virus, the UL31 protein and the UL34

protein family form a nuclear export complex to mediate the

nuclear export of herpesvirus. BFLF2 is associated with the nuclear

export of TAP and interacts with importin-α7, importin β1, and

transportin 1, promoting the entry of the EBV nucleocapsid from

the nucleus into the cytoplasm for the subsequent maturation of

viral particles. Transfection of BFLF2 and BFRF1 interacting region

deletion mutants, as well as NLS mutants, resulted in a significant

decrease in the level of secreted viral particles. Both the nuclear

targeting of BFLF2 and the BFRF1-interacting domains of BFLF2

are necessary for EBV maturation and secretion (Gonnella et al.,
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2005; Li et al., 2018; Dai et al., 2020). To sum up, nucleocytoplasmic

shuttling proteins in herpesviruses affect the assembly of viral

particles by participating in nucleocapsid assembly and influencing

the primary envelopment of the virus.

4.3 Interactions of herpesvirus shuttling
proteins with other proteins a�ect viral
replication

Herpesvirus shuttling proteins interact with other proteins and

regulate orderly in different compartments. In α herpesvirus, the

UL47 protein forms a stable complex with the US3 protein in

HSV-1 infected cells, and the UL47 protein is required for effective

nuclear localization of the US3 protein. HSV-1 US3 plays an

important role in the viral lifecycle by phosphorylating a variety

of viral and host proteins, such as regulating cell morphology or

microtubule networks and promoting the nuclear egress of progeny

nucleocapsids. A study showed that phosphorylation of UL47

Ser77 (adjacent to the UL47 NLS) by US3 regulates the nuclear

localization of the UL47 protein, and mutations in this site affect

the effective viral replication of HSV-1 in mice (Kato et al., 2011).

Further study demonstrated that the UL47 protein, UL34/UL31

complex and US3 protein colocalize to the nuclear envelope and

promote viral nuclear egress (Liu et al., 2014b). The HSV-1 proteins

ICP27 and UL47 are both nucleocytoplasmic shuttling proteins

and RNA binding proteins, and their binding with the poly(A)-

binding protein PABP1 ultimately leads to Paip2 translocation and

the nuclear accumulation of PABPC1. PAPBC1 plays an important

role in effective translation initiation. Under normal circumstances,

it binds to the poly(A) tail of mRNA in the cytoplasm and enhances

the stability and translation efficiency of mRNA. Abnormal nuclear

localization of PAPBC may affect the processing or export steps of

viral or host mRNAs (Dobrikova et al., 2010). The lytic replication

of herpesvirus is activated by the viral transcriptional activator

VP16, which activates the immediate-early genes of the virus and

initiates a complex cascade of gene expression (Johnson et al.,

1999). Studies have shown that the PRVUL46 protein interacts with

VP16 through the NLS to regulate the function of VP16 (Xu et al.,

2020).

In β herpesvirus, the HCMV UL94 protein interacts with

the HCMV pp28 protein through nuclear import sites to affect

viral particle assembly (Liu et al., 2009). In addition, the HCMV

IE2 protein is the main transactivator and is encoded by the

HCMV gene. The HCMV UL84 protein interacts with the IE2

protein to interfere with IE2-mediated transactivation of early gene

promoters. In HCMV UL84 NES non-shuttle mutant transfected

cells, the IE2 protein presented an abnormal localization pattern in

the nucleus and failed to be correctly assigned to the replication

chamber. The nucleocytoplasmic shuttling of the UL84 protein

may indirectly regulate IE2 translation and localization (Colletti

et al., 2004). In γ herpesvirus, the expression of the EBV BFLF2

protein alone is limited to the nucleus, while the expression of

the EBV BFRF1 protein alone is located in the cytoplasm and

perinucleus, the two proteins are co-localized at the nuclear rim,

and their interaction plays a key role in the viral envelopment

(Lake and Hutt-Fletcher, 2004). In general, the interaction network

among viral proteins is complex and extensive. The interactions

between these proteins can influence their localization, expression,

and function. Some shuttling proteins play a regulatory role by

affecting both their own localization and that of other proteins.

5 Other functions

5.1 Herpesvirus shuttling proteins regulate
apoptosis

Apoptosis is a type of programmed cell death associated with

characteristic morphological and biochemical changes in cells. It

plays a role in preventing virus transmission and spread in the

early stages of viral infection while promoting virus replication

and export in the later stages of viral infection (Zhou et al.,

2017). In α herpesvirus, BHV-1 UL47 protein does not inhibit

the phosphorylation of SMC1 in the cytoplasm, but it inhibits

SMC1 phosphorylation in the nucleus, leading to disruption of

the ATM/NBS1/SMC1 pathway and inhibition of DNA repair.

SMC1 is a component of the DNA damage network. Studies have

shown that blocking SMC1 phosphorylation reduces cell survival

after DNA damage. In BHV-1 UL47 protein-transfected cells, DNA

damage-induced apoptosis increased, so the BHV-1 UL47 protein

inhibits SMC1 phosphorylation and DNA repair, demonstrating

a potential role in regulating apoptosis (Kitagawa et al., 2004;

Vasilenko et al., 2012; Afroz et al., 2018). BHV-1 VP22 is a

tegument protein encoded by the UL49 gene. The mitochondria-

targeting sequence at the C terminus of the VP22 protein is found

within the VP22 NES (Zheng et al., 2005; Zhu et al., 2005). VP22

has been reported to induce apoptosis (Qiu et al., 2005), and

mitochondria playing a central role in this process (Jeong and

Seol, 2008). Therefore, it is reasonable to speculate that the VP22

protein is exported to the cytoplasm via the NES and subsequently

enters the mitochondria to influence apoptosis. Furthermore, in γ

herpesvirus, a portion of the KSHV genome specifically mediates

the maintenance of the virus in the B-cell environment, LANA2 is a

nuclear latent protein detected only in B cells infected with KSHV,

which inhibits p53 tumor suppressor gene protein-dependent

transcriptional transactivation and apoptosis, as well as PKR-

dependent apoptosis (Chao et al., 2000; Rivas et al., 2001; Chipuk

and Green, 2003). LANA2 NLS mutants resulting in increased

cytoplasmic localization are unable to inhibit the apoptosis induced

by p53 activation. Subsequently, it was found that LANA2

phosphorylation inhibits the function of NES and affects the ability

to inhibit p53-dependent apoptosis. Indicating that the nuclear

localization of the LANA2 protein is crucial for the inhibition of

p53-induced apoptosis and LANA2’s nucleocytoplasmic shuttling

mediates its ectopic location to the nucleus to inhibit apoptosis and

promote the proliferation of virions (Muñoz-Fontela et al., 2003,

2005). In general, some herpesvirus shuttling proteins affect node

proteins in apoptosis-related pathways through nucleocytoplasmic

shuttling to mediate apoptosis.

5.2 Herpesvirus shuttling proteins
participate in immune escape

Herpesvirus infection is lifelong and highly host-specific, to

resist virus invasion, hosts use pattern recognition receptors
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(PRRs), such as retinoic acid-inducible gene I (RIG-I) and

melanoma differentiation-associated gene 5 (MDA5), to recruit

a series of signal transduction molecules, such as stimulator of

interferon genes (STING) and mitochondrial antiviral signaling

protein (MAVS). These proteins transfer signals to downstream

molecules in different signaling pathways, ultimately leading

to the activation and translocation of multiple transcription

factors, including NF-κB, IFN regulatory factor 3 (IRF3), and

IFN regulatory factor 7 (IRF7), into the nucleus, inducing the

expression of type I interferons (IFN-I) and proinflammatory

cytokines to activate downstream JAK-STAT signaling pathways,

which results in the expression of multiple interferon-stimulated

genes (ISGs), ultimately resulting in antiviral immune response

(Pestka et al., 2004; Stark and Darnell, 2012). Therefore, during

latent infection, the herpesvirus gradually evolves various host

immune evasion strategies to ensure its survival to evade the host

immune response. Some herpesvirus shuttling proteins participate

in the virus immune evasion process by inhibiting the production

of IFN-I, blocking downstream IFN signaling, regulating specific

ISGs, antagonizing the host antiviral innate immune response and

achieving effective virus transmission and pathogenicity.

In α herpesvirus, the nuclear localization of the BHV-1

ICP27 protein is necessary to inhibit IFN-β promoter activity in

transfected cells, and the BHV-1 ICP27 1 N (1 NLS+NoLS)

mutation interferes with the ability to inhibit IFN-β1 and IFN-

β3 promoter activity (da Silva et al., 2012). On the other hand,

the BHV-1 ICP27 protein regulates 3′ mRNA processing, whether

ICP27 affects immunity due to its potential interference with the

3′ processing of cellular factors necessary for IFN-β-dependent

transcription remains to be investigated (Singh et al., 1996).

Daxx is an important component of intrinsic cellular immunity,

herpesviruses achieve replication and immune escape in host

cells by regulating Daxx, and the HSV-1 ICP27 protein has been

reported to ectopic Daxx from the nucleus to the cytoplasm,

increasing the interaction between p65 NF-κB and Daxx, thereby

inhibiting NF-κB activity and regulating innate immune processes

(Schreiner and Wodrich, 2013; Kim et al., 2017). Transcription

activator 1 (STAT1) is a potential cytoplasmic transcription factor

that directly participates in the IFN-I-mediated signaling pathway.

Studies have shown that NLS deficiency in the BHV-1 UL47

protein inhibits the nuclear accumulation of STAT1 after IFN-β

stimulation and ultimately downregulates IFN-I signaling (Afroz

et al., 2016). In addition, the HSV-1 ICP27 protein can also inhibit

IFN-I signaling by inhibiting STAT1 phosphorylation and nuclear

accumulation (Johnson et al., 2008). Further investigated how

the cellular localization of ICP27 affects the inhibition of IFN

expression by using ICP27 1NES or ICP27 1NLS mutant viruses

and reported that full inhibition of the IFN response depends on

the cytosolic position of ICP27 after shuttling (Christensen et al.,

2016). PRVUL46 protein helps viruses evade host innate immunity

by regulating STING function in the cytoplasm (Xu et al., 2020).

The HSV-1 γ134.5 protein interrupts the translocation of RIG-I

from the cytoplasm to mitochondria and disrupts the translocation

of STING from the endoplasmic reticulum to the Golgi apparatus,

the γ134.5 protein also inhibits IRF3 phosphorylation and nuclear

translocation, resulting in downregulation of the IFN response

(Verpooten et al., 2009; Pan et al., 2018; Liu et al., 2021).

In β herpesvirus, the HCMVUL94 protein inhibits the antiviral

innate immune response by targeting STING. STING recruits

TBK1 and IRF3, in which IRF3 is phosphorylated and activated by

TBK1, resulting in the subsequent induction of IFN-I. The UL94

protein selectively impairs the recruitment of TBK1 to STING

signalosomes, resulting in the inhibition of downstream signal

transduction (Zou et al., 2020). In γ herpesvirus, the KSHV LANA2

protein mediates the nuclear translocation of NF-κB, affecting NF-

κB activity (Seo et al., 2004). The KSHV ORF45 protein inhibits

virus-induced IFN-I production by blocking its phosphorylation

and nuclear translocation through interaction with IRF7 (Zhu et al.,

2002). In summary, proteins shuttled by herpesvirus participate in

immune escape by regulating the localization of signal transduction

molecules and transcription factors in the cytoplasm or nucleus

and ultimately affect IFN activity, demonstrating the clever use of

the cellular regulatory mechanisms of viral proteins to antagonize

innate immune responses.

5.3 Cytoskeleton rearrangement induced
by herpesvirus shuttling proteins

The cytoskeleton is involved in maintaining cell integrity

and structure and remodeling surface structure and movement,

including actin filaments, microtubules, and intermediate

filaments. Herpesvirus remodels actin during the process of host

cell entry, assembly and release, and transmits between host cells

by destroying the cytoskeleton (Miranda-Saksena et al., 2018).

The US3 protein is a multifunctional protein that participates

in the modification of the cytoskeleton and nuclear egress of

the herpesvirus capsid during the viral replication cycle, directly

interacting with actin regulatory mechanisms. In α herpesvirus,

HSV-2 US3 is the determining factor involved in the reorganization

of the actin cytoskeleton into filamentous processes (FPs), and the

formation of FPs is related to an increase in the cell-to-cell spread

of the virus infection. HSV-2 US3 inhibits the formation of FPs if it

cannot be exported to the cytoplasm. Furthermore, NES mutations

in HSV-2 US3 contribute to its kinase activity, which is required for

HSV-2 US3-induced FP formation and disassembly of actin stress

fibers, thus coupling the nucleocytoplasmic shuttling properties

of US3 with functional play. In addition, the loss of the HSV-2

US3 protein disrupts nuclear egress (Finnen et al., 2010, 2011).

In summary, the HSV-2 US3 protein triggers remodeling of the

host cytoskeleton during the life cycle through nucleocytoplasmic

shuttling to promote the effective entry and transmission of the

virus into the host cell.

6 Conclusion and prospects

The replication process of herpesviruses includes adsorption,

entry, uncoating, biosynthesis, virion assembly, maturation, and

release. Herpesvirus shuttling proteins play important roles in

regulating viral mRNA transport, new capsid assembly and

primary envelopment. These viral proteins are transported to

different compartments through nucleocytoplasmic shuttling and

play a role in different stages of viral maturation, which is
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conducive to maximizing self-regulatory functions. Although

there are few relevant reports, it is reasonable to speculate that

nucleocytoplasmic shuttling is essential for some viral proteins to

perform multiple functions. Some herpesvirus nucleocytoplasmic

shuttling proteins hijack the host pathway to export viral

mRNA, inhibit host mRNA export, promote protein expression

necessary for further replication and assembly of new viral

particles, and block the expression of host-encoded cellular defense

protein mRNAs.

At present, many available information about the function

of shuttling proteins in the lifecycle of herpesviruses is based

on α herpesviruses, especially HSV-1. Although some of this

information is about HCMV and KSHV, if more shuttling proteins

from β and γ herpesviruses can be identified in future research,

a greater understanding of how shuttling proteins coordinate the

viral lifecycle and whether they have similar functions can be

achieved. Most of the characterized herpesvirus shuttling proteins

interact with host transport receptors through the NLS and NES,

utilizing intracellular transport mechanisms to shuttle between the

nucleus and cytoplasm, promote virus proliferation, and evade

host antiviral responses. First, NLS mediate transport to the

nucleus, where they participate in virus replication, gene expression

regulation, and assembly; in the later stage, NLS rely mainly

on the export of NES to the cytoplasm for further maturation.

Dysfunction of theNLS orNES can block or damage the production

of infectious viral particles, demonstrating the roles of the NLS and

NES in the viral lifecycle. Nucleocytoplasmic transport involving

NLS and NES (including the transport of viral capsids, viral

genes, viral polymerases, and some transcriptional regulators) is

an important factor in viral transmission and regulates host-virus

interactions. In summary, as the shuttling proteins of herpesvirus

play multiple functions throughout the virus lifecycle, further

elucidation of their mechanisms provide important references

for identifying therapeutic targets. Targeting the binding region

between the shuttling proteins and their nuclear transport receptors

to inhibit the expression of nucleocytoplasmic function has broad

importance for the development of antiviral drugs.
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