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Jidangga-7 ameliorates 
non-small cell lung cancer by 
regulating gut microbiota 
function
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Objective: This study aims to assess the effects of Jidangga-7 on enhancing gut 
microbiota function in non-small cell lung cancer.

Materials and methods: Eighteen mice were screened and randomly divided 
into three groups: a control group, a model group with induced non-small cell 
lung cancer, and a treatment group receiving Jidangga-7. A549 tumor cells were 
implanted in the mice, and tumor formation was monitored. Upon successful 
tumor induction, the treatment group received Jidangga-7 via oral gavage, 
while the other groups received an equivalent volume of saline. After the final 
dose, intestinal tissues were collected from each group, and microbial amplicon 
16S analysis and non-extensive targeted metabolomics were employed to 
characterize intestinal fiber and associated metabolites.

Results: By quantifying the contribution of individual species to the variations 
between the groups, the Sipmer results highlighted the top  10 species and 
their abundance that contribute to the differences between the two groups. 
Specifically, Jidangga-7 demonstrated a regulatory effect on various taxa such 
as Gammaproteobacteria, Bacilli, and Desulfovovoviridae. At the family level, 
administration of Jidangga-7 exhibited a regulatory effect on families including 
Desulfovibrionaceae, Lachnospiraceae, and Eggerthellaceae, compared to 
the model group. In untargeted metabolomics analyses, principal component 
analysis effectively differentiated the groups from one another. Subsequently, 
metabolites with a variable importance in projection score > 1 were screened. 
The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed 20 
metabolite pathways, encompassing metabolism of cofactors and vitamins, 
bacterial metabolism, antimicrobial pathways, and xenobiotics biodegradation 
and metabolism.

Conclusion: Jidangga-7 exerted a positive influence on the intestinal microbial 
environment in mice with non-small cell carcinoma, ameliorating the dysbiosis 
induced by non- small cell lung cancer. This intervention inhibited the growth of 
pathogenic bacteria while fostering the growth of beneficial strains.
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1 Introduction

According to global cancer statistics for 2021, lung cancer stands as 
the foremost cause of cancer-related mortality worldwide, with its 
incidence steadily increasing over recent decades (Sung et al., 2021). It 
has become one of the most prevalent malignancies globally and 
remains a leading cause of death from malignant tumors annually (The 
Lancet, 2019; Gao et al., 2020; Thai et al., 2021). Survey data from 2020 
indicate approximately 2.2 million new cases of lung cancer and 1.8 
million deaths worldwide, with the disease’s mortality rate ranking the 
highest in the world (Sung et al., 2021). Lung cancer is broadly classified 
into non-small cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC) based on histological types, with NSCLC comprising 
approximately 85% of primary lung cancer cases. Further, NSCLC 
exhibits notable gender and pathological type differences, with lung 
adenocarcinoma being the predominant subtype, accounting for over 
40% of all lung cancers and demonstrating an upward trend in 
incidence, especially among women (Zappa and Mousa, 2016; Barta 
et al., 2019; Szalontai et al., 2021; Nicholson et al., 2022). This trend is 
more pronounced in postmenopausal women, peaking around the age 
of 80 (Elbasheer et al., 2024). Recent data (Szalontai et al., 2021) show 
an overall 5-year survival rate of only about 15% for NSCLC. Treatment 
strategies vary based on histological types, with platinum-containing 
two-agent chemotherapy regimens remaining among the main options 
for advanced NSCLC. However, resistance to epidermal growth factor 
receptor-tyrosine kinase inhibitors (EGFR-TKIs) has emerged as a 
poignant factor contributing to treatment failure in NSCLC. Despite 
their efficacy, platinum-based drugs face limitations in clinical 
application due to chronic toxic side effects and drug resistance issues. 
The development of drugs targeting this aspect in clinical settings 
remains limited, presenting a substantial challenge in extending patient 
survival. Hence, there is a critical need to make rational choices to 
maintain drug efficacy while reducing toxic side effects in lung cancer 
treatment (Elbasheer et al., 2024).

Chinese medicine represents a revered asset of Chinese civilization, 
embodying over 5,000 years of cultural heritage and playing a significant 

impact on public health worldwide. Jidangga-7, clinically applied for the 
treatment of parasitic infections, demonstrates precise clinical efficacy. 
Comprised of ingredients such as garlic (Allium sativum L.), Physalis 
peruviana [Embelia laeta (L.) Mez], purple rivulet (Butea monosperma), 
Chrysanthemum coronarium (Semen Abutili), schizonepeta (Nepeta 
cataria L.), tarragon (Artemisia gmelinii Web. ex Stechm.), Chinese Iris 
Seed [Iris lactea Pall.var.chinensis (Flsch.) Koidz.], and other Mongolian 
medicinal herbs, Jidangga-7 primarily targets the eradication of parasites 
and management of gastrointestinal worm diseases (Yu 
tuo·yundangongbu, 1991; Isibaljuur, 2015; Song and Muren, 2015; San, 
2024). A large number of studies have shown that Purple Rivet can inhibit 
the proliferation mechanism of lung cancer cells (Di et al., 2019; Zhang 
et al., 2019), induce the apoptosis mechanism of lung cancer cells (Jung 
et al., 2015) and antagonize the drug-resistance mechanism of lung cancer 
cells (Jung et al., 2015) thorns belongs to the plants with dual use of 
medicine and food, and it is confirmed by experiments that the volatile 
oil extract of thorns has killing and anti-tumor effects on human lung 
cancer A549 (Zang et  al., 2006); malus seeds can improve the 
complications such as pleural heat stress pain in lung cancer patients, and 
it can lead to an increase in the survival rate (Jia and Yang, 2000; Liang 
et al., 2001).

The human gut harbors a vast and diverse microbial community 
known as gut flora, comprising approximately 1013–1014 microorganisms 
and over 1,000 species of bacteria (Hong et al., 2021). This intestinal 
microbiota undergoes development from birth, with notable changes 
occurring predominantly before the age of three, gradually increasing in 
complexity and diversity until reaching a stable equilibrium in adulthood 
(Bhatt et  al., 2017). In most healthy individuals, the composition of 
microbiota is extremely similar, with over 90% of the bacteria belonging 
to the phyla thick-walled and mycobacterium, followed by Micrococcus, 
Aspergillus, and Actinobacteria, collectively constituting 99% of the 
microbiota. The “core” microbiota consists of approximately 60 species, 
mainly including Bifidobacteria, Eubacteria, Clostridia, Faecalibacterium, 
and Ruminococcus (Bingula et al., 2017). Typically, the intestinal flora 
maintains a delicate balance, with bacteria regulating each other and 
relying on mutual interactions to sustain a microecological equilibrium 
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in terms of both quality and quantity. Under normal conditions, the 
intestinal flora and the host are closely linked through metabolic- 
immune- neuroendocrine networks, establishing a mutually beneficial 
symbiotic relationship (Kho and Lal, 2018).

Gut microbiota dysbiosis has been implicated in the development 
and progression of various lung diseases. Research indicates that certain 
dietary components, such as antioxidants and phytoestrogens, can 
inhibit the onset of lung cancer by modulating the gut microbiota 
(Caesar et al., 2015; Qadir and Cheema, 2017). Consequently, the gut 
microbiota represents a potential target for pharmacological 
interventions. Moreover, understanding the interplay between 
traditional Chinese medicine (TCM), combination therapies, and the 
gut microbiota could offer valuable insights into treatment mechanisms 
(Lv et al., 2019; Zhu et al., 2020). In recent studies, the combination of 
gut microbiota analysis and broadly targeted metabolomics, including 
16S rRNA sequencing, has provided reliable technological support for 
unraveling the mechanisms underlying the treatment of cancer (Song 
et al., 2018). In this study, we investigated the impact of Jidangga-7, an 
aqueous extract obtained by boiling, on the intestinal flora in a rat 
model of NSCLC using 16S rRNA sequencing and broadly targeted 
metabolomics as the entry point. Our aim was to uncover potential 
evidence of dysbiosis and altered metabolites within the characteristic 
gut microflora associated with NSCLC, with the ultimate goal of 
identifying novel research directions for disease treatment.

2 Materials and methods

2.1 Drugs and reagents

Jidangga-7 (M20201000000) was sourced from the Affiliated 
Hospital of Inner Mongolia Minzu University. High glucose Dulbecco’s 
modified Eagle medium (DMEM) (Thermo Fisher SCIENTIFIC), 
fetal bovine serum (FBS) (Thermo Fisher SCIENTIFIC), phosphate- 
buffered saline (PBS) (Thermo Fisher SCIENTIFIC), and 0.25% 
trypsin and other reagents and chemicals were purchased from 
commercial suppliers (Thermo Fisher SCIENTIFIC).

2.2 Instruments and equipment

Carbon dioxide incubator (NU-5700, Nuarire), inverted 
biomicroscope (DM IL LED, Leica), biomicroscope (DM3000, Leica), 
low-speed centrifuge (LC-4012, Anhui Zhongke Zhongjia Scientific 
Instrument Co., Ltd.), electronic analytical balance (XJ620M, Shanghai 
Tianmei Balance Instrument Co., Ltd.), fully automated Tissue 
dehydrator (Thermo Excelsior ES), embedding machine (Thermo 
HistoStar), rotary paraffin slicer (Thermo HM 340E), slicer (Thermo 
SLIMLINE HOTPLATE 230 V), small high-speed refrigerated centrifuge 
(KH20R Anhui Zhongke Zhongjia Scientific Instrument Co., Ltd.).

2.3 Animal culture

Animal experiments were conducted in accordance with the 
guidelines set by the Experimental Animal Ethics Committee of 
the Affiliated Hospital of Inner Mongolia Minzu University, No. 
NM-LL-2024-03-15-01. The study protocol adhered to the National 

Institute of Health Guidelines for the Ethical Use of Animals. Five- 
week-old male Balb/c nude mice were purchased from the 
Changsheng Experimental Animal Centre of Liaoning Province, 
China. They were subsequently housed in the specific pathogen 
free (SPF)-grade experimental animal facility at Inner Mongolia 
Minzu University. The mice were maintained under controlled 
conditions, with a temperature of 23 ± 1°C, humidity of 55 ± 5%, 
and a 12-h light-dark cycle. They were provided ad libitum access 
to food, water, and physical activities throughout the study period.

2.4 Cell culture

A549 cells were obtained from the Cell Bank of the Chinese 
Academy of Sciences (Shanghai, China) (ZQ0003). They were cultured 
in DMEM supplemented with 1%(v/v) antibiotic-antimycotic solution 
(100 U/mL penicillin and 100 U/mL streptomycin) and 10%(v/v) FBS at 
37°C in a humidified atmosphere containing 5% carbon dioxide (CO₂).

2.5 Cell culture, animal modeling, and 
grouping

The mice were allowed to acclimatize to the feeding environment 
for 1 week. A549 cells in logarithmic growth phase, reaching 
approximately 80% confluence, were collected and counted manually 
using a cell counter plate. The cells were then resuspended in PBS to 
achieve a density of 1 × 107/100 μL, and maintained on ice until further 
use. For inoculation, the skin in the middle and posterior part of the 
right axilla of the mice was prepared and disinfected using 75% ethanol. 
Subsequently, 100 μL of the cell suspension was injected subcutaneously 
into the specified area using a 1 mL syringe. Following injection, the 
needle was slowly withdrawn, and gentle pressure was applied to the 
injection site with a cotton swab for 30 s to prevent extravasation of the 
cell suspension (San, 2024). Tumor volume was calculated, and 
modeling was successful when the average tumor volume of the model 
group reached 130 mm3. The formula was applied: V (mm3) = Dd2/2 
(D is the long diameter of the tumor, d is the short diameter of the 
tumor). Tumor size was measured every other day using digital vernier 
calipers (Hou, 2022). Subsequently, the mice were randomly divided 
into two groups of 10 mice each. Following statistical analysis to assess 
differences in body weight and tumor size between groups, the mice 
were numbered and then housed in cages accordingly. Jidangga-7 was 
administered for 3 weeks according to the adult conversion dose 
(Huang et  al., 2004), after 3 weeks mice were anaesthetized using 
isoflurane, blood was taken from the abdominal aorta, centrifuged and 
serum was stored in a −80°C refrigerator to be  tested. Intestinal 
samples taken at and below the end of the mouse ileum were placed in 
sterile Eppendorf tubes, snap-frozen with liquid nitrogen, and then 
kept in a −80°C biofreezer for further analysis after the abdominal 
cavity was opened and adjusted to the position of the ileocecal valve.

2.6 Sequencing

Total genomic DNA was extracted from intestinal samples from mice 
(n = 6 per group) with lung cancer using the cetyltrimethylammonium 
bromide method. Subsequently, the concentration and purity of the 
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extracted DNA were assessed using 1% agarose gel electrophoresis. The 
DNA was diluted to a final concentration of 1 ng/μL using sterile water. 
The amplification of distinct regions of the 16S rRNA was performed 
using specific primers with attached barcodes. Each polymerase chain 
reaction (PCR) reactions were carried out with 15 μL of Phusion® High-
Fidelity PCR Master Mix, 2 μM of forward and reverse primers (see in 
Table 1), and approximately 10 ng template DNA. The thermal cycling 
protocol consisted of initial denaturation step at 98°C for 1 min, followed 
by 30 cycles of denaturation at 98°C for 10 s, annealing at 50°C for 30 s, 
and elongation at 72°C for 30 s. A final extension step was carried out at 
72°C for 5 min. An equal volume of 1X loading buffer containing SYBR 
Green was mixed with the PCR products. Subsequently, electrophoresis 
was conducted on a 2% agarose gel for detection. To ensure uniform 
representation, PCR products were mixed in equidensity ratios. The 
resultant mixture of PCR products was then purified using the Qiagen Gel 
Extraction Kit (Qiagen, Germany). Sequencing libraries were generated 
using TruSeq® DNA PCR-Free Sample Preparation Kit, following the 
manufacturer’s instructions, and index codes were added as per standard 
protocols. The library quality was assessed using the Qubit@ 2.0 
Fluorometer and the Agilent Bioanalyzer 2100 system. Finally, the 
libraries were sequenced on an Illumina NovaSeq platform, generating 
250 base pair (bp) paired- end reads.

2.7 Sample preparation and extraction

2.7.1 Liquid samples class I
The serum sample (n = 6 per group), stored at −80°C, was thawed 

on ice and vortexed for 10 s. The next step involved adding 50 μL of 
the sample and 300 μL of extraction solution (ACN: methanol = 1:4, 
V/V) containing internal standards to a 2 mL microcentrifuge tube. 
The mixture was vortexed for 3 min and then centrifuged at 
12,000 rpm for 10 min at 4°C. Following centrifugation, a 200 μL of 
the supernatant was collected and placed in a −20°C freezer for 
30 min. It was then centrifuged at 12,000 rpm for 3 min at 4°C. Finally, 
a 180 μL aliquots of the supernatant were transferred for liquid 
chromatography- mass spectrometry (LC–MS) analysis.

2.7.2 T3 ultra-performance liquid 
chromatography conditions

The sample extracts were analyzed using an LC-ESI-MS/MS system 
(ExionLC AD;1 MS, QTRAP® System).2 The analytical conditions were 
as follows: for UPLC, the column utilized was the Waters Acquity UPLC 
HSS T3 C18 (1.8 μm, 2.1 mm × 100 mm) operated at a temperature of 
40°C. The flow rate was set at 0.4 mL/ min, with an injection volume of 
2 μL. The solvent system consisted of water (0.1% formic acid) and 
acetonitrile (0.1% formic acid), with a gradient program for solvent B: 

1 https://sciex.com.cn/

2 https://sciex.com/

starting at 5% and increasing to 20% over 2 min, further increasing to 
60% over the subsequent 3 min, then to 99% in 1 min and held for 90 s, 
followed by a return to 5% within 6 s and 144 s, respectively.

2.7.3 ESI-QTRAP-MS/MS
Linear ion trap (LIT) and triple quadrupole (QQQ) scans were 

acquired using a triple quadrupole- linear ion trap mass spectrometer 
(QTRAP), specifically the QTRAP® LC–MS/MS System. This system 
was equipped with an electrospray ionization (ESI) turbo ion-spray 
interface and operated in both positive and negative ion modes. The 
instrument was controlled by Analyst 1.6.3 software (Sciex). The 
operating parameters for the ESI source were as follows: the source 
temperature was set to 500°C, the ion spray voltage (IS) was 5,500\V in 
positive mode and −4500 V in negative mode. Additionally, the ion 
source gas I(GSI), gas II(GSII), and curtain gas (CUR) were maintained 
at pressures of 55, 60, and 25.0 psi, respectively. The collision gas (CAD) 
was set to high. Instrument tuning and mass calibration were performed 
using 10 and 100 μmol/L polypropylene glycol solutions in QQQ and 
LIT modes, respectively. During data acquisition, a specific set of 
multiple reaction monitoring (MRM) transitions were monitored for 
each period based on the metabolites eluted during that period.

2.8 HE staining

Tissues were taken from mice after execution by anesthesia, 
placed in 10% neutral formaldehyde fixation for 24 h, gradient ethanol 
dehydration, xylene fixation, paraffin embedding, sectioning, staining, 
neutral gum sealing and then observing the lesions under a 
light microscope.

2.9 Statistical analysis

Unsupervised principal component analysis (PCA) was performed 
using the preomp function within R.3 Prior to PCA, the data was scaled 
to unit variance. For two-group analysis, differential metabolites were 
determined based on the variable importance in projection (VIP) scores 
(VIP > 1) and the p-value (p-value < 0.05, Student’s test). VIP values 
were extracted from the Orthogonal Partial Least Squares Discriminant 
Analysis (OPLS-DA) results,which included score plots and permutation 
plots, generated using the R package MetaboAnalystR. The data 
underwent log transformation and mean centering before OPLS-DA to 
ensure data normalization. To prevent overfitting, a permutation test 
(200 permutations) was performed. Identified metabolites were 
annotated using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Compound database,4 with significantly regulated metabolites 

3 www.r-project.org

4 http://www.kegg.jp/kegg/compound/

TABLE 1 Sequence details.

Types Amplified region Fragment length Primers Sequences (5′–3′)

Bacterial 16 s V4 300 bp 515F GTGCCAGCMGCCGCGGTAA

806R GGACTACHVGGGTWTCTAAT
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were then subjected to metabolite sets enrichment analysis (MSEA), and 
their significance was determined using hypergeometric test’s p-values.

3 Results

3.1 Evaluation of the A549 model

The growth and progression of tumors in mice were initially 
assessed. After 21 days post-A549 cell implantation, the tumor model 
exhibited robust development, with tumor weight showing an 
increasing trend, as shown in Supplementary Figures 1A,B.

3.2 Jidangga-7 regulates the composition 
of gut microbiota in non-small cell lung 
cancer model mice

3.2.1 Species relative abundance display
Based on the results of species annotation, the top 10 species with 

the highest abundance in each sample or subgroup at every taxonomic 
level (phylum, class, order, family, genus, species) were selected to 
create a bar chart illustrating the relative abundance of species. This 
visualization allows for the identification of species with higher 
relative abundance and their proportions at different taxonomic levels 

in each sample. An example of such a bar chart depicting the relative 
abundance of species at the gate level is shown in Figures 1A–F.

3.2.2 Sample complexity analysis
Alpha diversity analysis is used to evaluate the diversity of 

microbial communities within a sample, focusing on within-
community richness and diversity. This analysis involves various 
single- sample diversity metrics such as species cumulative box plots, 
species diversity curves, and a range of statistically analyzed indices to 
assess microbial community diversity within each sample. Species 
dilution curves, also known as rarefaction curves, and rank abundance 
curves are common representations used to describe the diversity of 
samples within groups. The results indicate an increase in bacterial 
abundance in the model group compared to the normal group. 
Conversely, the administration of Jidangga-7 resulted in a decrease in 
bacterial abundance compared to the model group.

A dilution curve is constructed by randomly extracting a specific 
amount of sequencing data from a sample and tallying the number of 
species they represent, known as the number of amplicon sequence 
variants (ASVs). The curve can is then plotted with the amount of 
sequencing data extracted against the corresponding number of 
species. This curve provides a direct indication of the adequacy of the 
sequencing data and indirectly reflects the species abundance in the 
sample. When the curve becomes flat, it suggests that the amount of 
sequencing data is asymptotically reasonable, meaning that additional 

FIGURE 1

(A-F) Stacked bar chart of relative abundance of species in different subgroups at the phylum level based on ASV. Horizontal coordinates are 
subgroups; vertical coordinates (Relative Abundance) represent relative abundance; others represent the sum of relative abundance of all other phyla 
in the plot except for these 10 phyla.
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data would only produce a marginal increase in the number of new 
species (ASVs), as detailed in Figure 2A.

The rank clustering curve involves arranging the ASVs in a sample 
based on their relative abundance or the number of sequences they 
contain, from highest to lowest. The corresponding rank number of 
ASVs is then used as the horizontal axis, while the relative abundance 
of ASVs or the relative percentage of sequences contained in ASVs of 
the same rank is plotted on the vertical axis. Connecting these points 
with a polyline yields the rank abundance curve, which visually 
represents the species present in the sample and provides insights into 
the richness and evenness of the species. In terms of interpretation, 
the width of the curve on the horizontal axis reflects species richness, 
with a wider span indicating higher richness. On the vertical axis, the 
smoothness of the curve reflects the uniformity of species distribution 
in the sample, with smoother curves suggesting more even distribution 
of the species, as visually represented in Figure 2B.

3.2.3 Comparative analysis of diversity
Beta diversity is a comparative analysis of microbial community 

compositions across different samples. In the Beta diversity analysis, 
Weighted UniFrac distance and Unweighted UniFrac distance were 
used to measure the coefficient of variation between two samples, with 
lower values indicating smaller differences in species between the 
samples. The Heatmap plotted by Weighted UniFrac distances is 
shown in Figure 2C. The results indicate a decrease in the abundance 
of bacteria in the model group compared to the normal group. 
Meanwhile, the administration of Jidangga-7 led to an increase in 
bacterial abundance compared to the model group, bringing it closer 
to the levels observed in the normal group.

In Figure 3A, PCoA was utilized to extract the most significant 
elements and structures from multidimensional data by sorting 
through a series of eigenvalues and eigenvectors. When samples are 
closer to each other on the plot, it indicates a greater similarity in 

FIGURE 2

(A) Dilution curve of each sample based on ASV, (B) ASV-based Rank Abundance curve of each sample, (C) ASV-based Beta Diversity Index Heatmap, 
the circles in the upper triangular box in the figure indicate the beta diversity among samples, the smaller the circle, the redder the color, the smaller 
the beta diversity value, and the smaller the diversity difference among samples. The smaller the circle, the redder the color, the smaller the beta 
diversity value, the smaller the diversity difference between the samples.
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species composition. Thus, samples with similar community structures 
tend to cluster together, while those with distinct community 
differences are situated farther apart. The results demonstrate 
noticeable scattering between groups and dispersed aggregation. In 
Figure 3B, PCA employs variance decomposition based on Euclidean 
distances to downscale multidimensional data, extracting the most 
dominant elements and structures. The PCA plot illustrates that the 
greater the differences in community composition among samples, the 
more dispersed the distances on the plot become.

3.2.4 Statistical analysis of differences between 
groups

The significance test for differences in community structure 
between groups is shown in Figures  3C,D. Anosim analysis, a 
nonparametric test, was used to assess whether differences between 
groups were significantly greater than those observed within groups. 
This analysis helps determine the meaningfulness of groupings. 
Anosim analysis uses the R vegan package’s anosim function, which 
conducts significant tests based on the rank order of Bray-Curtis 
distance values to evaluate differences between groups in 
Figures 3E–G.

For projects involving subgroups, conducting in- depth 
statistical analyses of differences in community structure can 
provide valuable insights. In this way, species with significant 
changes in abundance between subgroups can be  identified, 
allowing for the discovery of enriched species across different 
subgroups. Additionally, comparisons can be  made between 
intra-group differences and inter- group differences to determine 

the significance of variations in community structure between 
different subgroups. Simper (similarity percentage) analysis 
decomposes the Bray-Curtis difference index and quantifies the 
contribution of each species to the difference between two 
groups. The results typically highlight the top  10 species and 
their respective abundances contributing to the difference 
between the groups. In this study, simper analysis was performed 
using the simper function of the R software vegan package, and 
the results are shown in Figures  4A–F. Meanwhile, linear 
discriminant analysis effect size (LefSe) serves as an analytical 
tool for identifying and interpreting high- dimensional 
biomarkers, such as genes, pathways, and taxonomic units. It 
facilitates comparisons between two or more subgroups, focusing 
on statistical significance and biological relevance. Therefore, 
LefSe can identify biomarkers that exhibit statistically significant 
differences between groups. The evolutionary branching diagram 
resulting from multiple subgroup comparisons is shown in 
Figure 5A.

3.2.5 Functional annotation prediction analysis
Based on the database annotation results, the functional 

information of each sample or subgroup that ranked among the 
top 10 in terms of maximum abundance at each annotation level was 
selected. Subsequently, a function relative abundance bar stacking 
diagram was generated to visually depict functions with higher 
relative abundance and their proportions at different annotation 
levels for each sample. For instance, Level 1 and Level 2 relative 
abundance histograms are illustrated in Figures 5B,C. Furthermore, 

FIGURE 3

(A) Umaeighted Unifrac distance PCoA analysis based on ASV, (B) PCA analysis based on ASV, (C) box plot of between-group differences in shannon 
index based on ASV, (D) box plot of Unweighted Unifrac Beta diversity based on ASV; (E–G) between-group differences in Anosim based on ASV 
analysis, Vertical coordinate is the rank of the distance between samples, horizontal coordinate: Between is the result between the two groups, the 
other two are the result within their respective groups.
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based on the cumulative abundance of database function annotations 
across all samples, functions ranking within the top 35 in terms of 
abundance were selected, along with their abundance information 
in each sample. A heat map was then created to visualize these 
functions, clustering them based on differences in functional levels. 
For example, the Level 1 and Level 2 clustering heat maps are shown 
in Figures 5D,E.

3.3 Jidangga-7 regulates broadly targeted 
metabolomics in non-small cell lung 
cancer model mice

3.3.1 Metabolic profiles of each group of samples
The mass spectrometry data underwent processing using 

Analyst 1.6.3 software. The total ions current (TIC), which 

FIGURE 4

ASV-based simper contribution to difference is plotted with the top 10 contributing species selected by default. The vertical axis represents the species, 
the horizontal axis is the sample, the bubble size represents the relative abundance of the species, and the Contribution is the contribution of the 
species to the variability of the two groups. (A–F) Phylum, Class, Order, Family, Genus, Species, respectively.
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represents the sum of intensities of all ions in the mass spectrometry 
plots at each time point against time, and the multi- peak plots of 
MRM metabolite detection (ion flow spectrograms of multi-
substance extraction, XIC) of the samples are shown in 
Figures 6A,B. In these plots, the horizontal coordinate represents 
the retention time (RT) of the metabolite detections, while the 
vertical coordinate indicates the ion flow intensity of ion detection, 
measured in counts per second (CPS).

3.3.2 Results of principal component analysis for 
each group

To get a preliminary knowledge of the overall metabolite 
differences between groups of samples and the degree of variability 
between samples within groups, the samples were subjected to 
principal component analysis (PCA). Whether or not metabolite 
groups varied within groups as revealed by the PCA data, there is an 
observed pattern of metabolite separation across groups 
(Figures 6C,D). Samples clustered together in each group indicate 
that there is little variation between the groups; if the samples are 
farther apart, it means that there is more variability between 
the samples.

3.3.3 Dynamic analysis of metabolite content 
differences

To provide a clearer and more intuitive representation of the 
overall metabolic differences, the f old change (FC) values of 
metabolites in the comparison group were calculated. Subsequently, 
metabolite contents were ranked from smallest to largest according to 

FC values. The dynamic distribution of metabolite content differences 
was plotted, with the top 20 metabolites labeled for up-regulation and 
down- regulation, as illustrated in Figures  7A–C. Up-regulated 
metabolites include: ltaconic acid, glutaconic acid, phosphocholine, 
glu-cys. Down-regulated metabolites include: 3, 3-Dimethyglutaric 
acid, 3-Methlgutaric acid MG(20:4/0:0/0:0).

3.3.4 Differential metabolite correlation analysis
Differential metabolite scatter plots are mainly used to illustrate 

the relative content variances of different classes of substances in 
two groups of samples, showcasing the differential metabolites 
identified within each comparison group, as presented in 
Figures 7D–F. Various metabolites exhibit synergistic or mutually 
exclusive relationships, and correlation analyses aid in assessing the 
degree of metabolic closeness (metabolic proximities) between 
significant differential metabolites. This facilitates a deeper 
understanding of the inter-regulatory relationship between 
metabolites during biological state changes. Pearson’s correlation 
analysis method was employed to analyze the correlation among the 
identified differential metabolites based on the screening criteria, 
with the results shown in Figures 8A–C. Additionally, the violin 
plot, which combines features of both box- and- line plots and 
density plots, is used to visualize data distribution and its probability 
density. The central box represents the interquartile range, while the 
thin black line extending from it represents the 95% confidence 
interval. The median is denoted by the black horizontal line in the 
center, while the outer shape indicates the distribution density of 
the data, as detailed in Figures 8D–F.

FIGURE 5

(A) ASV-based evolutionary branching map; (B,C) Level 1, Level 2 relative abundance histogram; Level 1, Level 2 horizontal clustering heatmap; (D,E) 
Level 1 and Level 2 clustering heat maps.
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3.3.5 Cluster analysis of Kyoto Encyclopedia of 
Genes and Genomes pathway differential 
metabolites

Using the KEGG annotation data of the identified differential 
metabolites based on the screening criteria. Clustering analysis was then 
conducted on all differential metabolites within these pathways. If a 
pathway contained fewer than five differential metabolites, it was 
excluded from display, as illustrated in Figures 9A–C. Furthermore, the 
analysis of KEGG functional annotations and disease correlation 
highlighted impacts on cofactors and vitamins, bacterial, antimicrobial, 
and xenobiotics biodegradation and metabolism. Subsequently, after 
obtaining matching information for the differential metabolites, pathway 
search and regulatory interactions network analysis were performed 
according to the KEGG database of the corresponding species, which 
was displayed as a network plot. This analysis was specifically performed 
for human, mouse, and rat plots, as shown in Figures 9D,E.

3.4 HE staining

The results of tumor histopathological staining sections 
transplanted with A549 tumor cells in nude mice were observed. In 
the model group, the tumor structure was normal, the tumor cells 
were regular in morphology, large in number, orderly in arrangement, 
and did not show obvious degeneration, as shown by the black 
arrowheads; suggesting that the tumor was growing, as indicated by 
the red arrowheads; in some regions of the therapy group, a significant 
percentage of tumor cells were necrotic and degraded, and the green 
arrowheads showed that the cytoskeletons’ nuclei had disintegrated or 
vanished; with the nuclei of the cytoskeleton crumpled up and deeply 
stained and the cytoplasm of the cytoplasm red stained, as shown by 
the yellow arrowheads The overall structure of the tumor was loose 
and the interstitial space was enlarged, and the normal tumor cells 
were shown by black arrows, shown in Figure 10.

FIGURE 6

(A,B) Multi-peak plots of MRM metabolite detection, (A) represents positive ion mode, (B) represents negative ion mode; (C,D) plot of PCA scores for 
mass spectrometry data for each group of samples.
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4 Discussion

In Mongolian medicine, Pi disease is caused by the decay of the 
stomach fire and the gradual weakening of the heat energy distributed in 
all parts of the human body, and the destruction of the relative balance 
relationship with the seven elements (Dietary essences, bone, blood, 
marrow, muscles, sperm, adipose), resulting in dysfunction, and the blood 
and essence in the liver cannot be biochemically and become turbid, and 
then the evil blood and XiriUsu surge, staying in the weak place of a 
certain viscera, and the power of Heyi coalesces into a Pi (Cesurongzhabu, 
2011). The body is an organic whole composed of internal organs, tissues 
and organs, and each component is interconnected, mutually supportive 
and mutually influential. Mongolian medicine Jidangga-7 is warm, hot, 
light and sharp, and has cold, heavy, dull and solid temperaments 
respectively, so as to play a role in the treatment of Pi. The results showed 
that Jidangga-7 had an inhibitory tendency to inhibit the growth of 
human non-small cell lung cancer A549 cells in subcutaneous xenografts 
in nude mice (Supplementary Figure 1B). The morphological observation 
results of HE staining showed that compared with the model group, the 
number of tumor cells in the Jidangga-7 group was significantly reduced, 
the arrangement was sparse and disordered, the cells were significantly 
atrophied, the nuclei were solid and unclear, and the loose connective 
tissue was significantly increased. Taken together, the above results 

showed that Jidanga-7 had a significant inhibitory effect on the growth of 
lung adenocarcinoma.

Lung cancer is the most prevalent and fatal malignancy in both 
China and globally, with annual lung cancer-related deaths in China 
exceeding the combined total of colorectal, breast, and prostate cancers 
(Torre et al., 2016; Miller et al., 2020). Therefore, effective lung cancer 
treatment remains a top priority in clinical oncology. To increase 
therapy effectiveness and extend the lifespan of patients with non-small 
cell lung cancer, non-invasive biomarkers with high sensitivity and 
specificity must be  developed. Several studies (Zheng et  al., 2020; 
Nagasaka et al., 2020; Lim et al., 2021) have shown that NSCLC patients 
have increased levels of pathogenic bacteria, such as Actinobacteria, 
Streptococcus, and Clostridium, along with decreased levels of probiotic 
bacteria such as Bifidobacteria, Lactobacillus, Enterococcus faecalis, and 
ruminal Bacillus in their gut microbiota compared to healthy 
individuals. In conclusion, the following traits describe the gut microbes 
that are typical of lung cancer patients: (1) a decline in probiotics; (2) an 
increase in pathogenic bacteria; (3) a rise in species belonging to the 
Mycobacterium phylum and a fall in species belonging to the 
Mycobacterium thick-walled; however, a reduction in the ratio of 
Mycobacterium thick-walled to the Mycobacterium phylum may result in 
lower levels of short-chain fatty acids in the blood (Jin et al., 2019; Pinato 
et al., 2019). While short-chain fatty acids are crucial for host systemic 

FIGURE 7

(A–C) Differential multiplicity bar chart, red represents up-regulation of metabolite content, green represents doxm-regulation of metabolite content; 
(D–F) differential metabolite scatter plot.
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immunity and systemic inflammation (Pinato et al., 2019; Wypych et al., 
2019), they can also cause lung cancer cells to undergo apoptosis and 
cell cycle arrest (Dang and Marsland, 2019). This alteration promotes 
dysbiosis in intestinal homeostasis, suggesting a potential link between 
gut flora composition and NSCLC.

4.1 Relative abundance of intestinal flora 
species and abundance clustering analysis

The analysis of relative abundance of Level 1 and Level 2 
revealed that at Level 1, microbial metabolism in diverse 
environments, the two-component system, biosynthesis of 
antibiotics, and carbon metabolism were predominant. Similarly, 
Level 2 also emphasized global and overview maps, carbohydrate 
metabolism, membrane transport, and cellular 
community-prokaryotes.

4.2 Analysis of differences between groups 
and functional annotation

Analyzing the disparities in Alpha and Beta diversity indices 
between groups revealed significant distinctions. The 
examination of community structure disparities indicated notable 
differences among colonies between groups. Sipmer analysis 

quantified the contribution of each species to the differences 
between the two groups, highlighting the top 10 species and their 
abundance influencing the disparities. At the class level, the 
Jidangga-7- treated group exhibited regulatory effects on 
Gammaproteobacteria, Bacilli, Desulfovovoviridae, 
Desulfoviridaceae, and Desulfovibrionia. Gammaproteobacteria 
are a significant group of microorganisms in the human gut that 
support immunomodulation, nutrient absorption, and intestinal 
microecological balance. Gammaproteobacteria can generate 
advantageous metabolites like short-chain fatty acids, which are 
crucial for preserving intestinal microecological balance and 
advancing health (Saksham et al., 2023). It is also involved in the 
regulation of intestinal mucosal immunity and fights pathogen 
invasion by stimulating the host immune response (Saksham 
et  al., 2023). A study has shown an association between the 
Bacillus order (Bacilli class) and lung cancer (Dean et al., 2021). 
Similarly, at the family level, the Jidangga-7-treated group 
demonstrated regulatory effects on Desulfovibrionaceae, 
Lachnospiraceae, and Eggerthellaceae compared to the model 
group. Improved metabolism of Desulfovibrionaceae was 
discovered to improve the frequency of CD8 + T cells, boost 
interferon-stimulated gene (ISG) expression, and together 
enhance mice’s anti-PD-1 ability to have anti-tumor effects (Jaeho 
et  al., 2023). Lachnospiraceae family bacteria are thought to 
inhibit colorectal cancer and fight tumors by promoting immune 
surveillance functions (Xusheng et al., 2023).

FIGURE 8

(A–C) Differential metabolite correlation heatmap, horizontal is the name of the differential metabolite, vertical is the name of the differential 
metabolite, red indicates a stronger positive correlation, green indicates a stronger negative correlation, and the deeper the color represents the 
greater the absolute value of correlation coefficients between the samples; (D–F) differential metabolite violin plot, horizontal coordinate is group, 
vertical coordinate is relative content of differential metabolite (original peak area).
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4.2.1 Broadly targeted metabolomics in 
non-small cell lung cancer model mice

Extensively targeted metabolomics integrates the broad range of 
non-targeted metabolomics with the accuracy of targeted 
metabolomics, offering high-throughput, ultra-sensitive, wide- 
coverage, and quasi- qualitative and quantitative analysis capabilities. 
In the present study, PCA and S-PLOT analyses revealed a clear 
distinction between the groups, with the Jidangga-7 group closely 
resembling the normal group. The KEGG analysis of differential 

metabolite regulatory networks showed that Jidangga-7 could 
regulate the gut microbiota in NSCLC through various pathways, 
aligning with the concept of traditional Chinese medicine’s multi-
target and multi- pathway regulation approach. Furthermore, the 
heat map of differential metabolite clustering illustrated that 
Jidangga-7 exhibited regulatory effects on metabolites such as 
carnitine ph-Cl, N-acetylaminooctanoic acid, andN’-methyl-
2pyridone-5- carboxamide, compared to the model group. Research 
has indicated that metabolically active molecules associated with gut 

FIGURE 9

(A–C) Differential metabolite pathway enrichment map, the color of the dots reflects the p-value size, the redder it is, the more significant the 
enrichment is. The size of the dots represents the number of different metabolites enriched; (D–F) differential metabolite regulatory network diagram, 
red dots represent a metabolic pathway, yellow dots represent information of a substance related to regulatory enzymes, green dots represent 
background substances of a metabolic pathway, purple dots represent information of the molecular module of a class of substances, blue dots 
represent information of a substance’s chemical interactions, and green squares represent different metabolites obtained from the present 
comparisons. The green squares represent the differential metabolites obtained in this comparison.

FIGURE 10

Tumor HE staining results, (A) the model groups, (B) the treatment group (x200).
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microbiota influence host metabolism, impacting disease progression 
(Guzior and Quinn, 2021). Imbalances in intestinal metabolism lead 
to the production of a variety of toxins and promote the generation 
of free radicals and reactive oxygen species, which can exert 
carcinogenic effects through multiple pathways. For example, the 
toxin produced by Pseudomonas fragilis acts as a virulence factor that 
up- regulates the bacterial polyamine catabolic pathway and generates 
reactive oxygen species (Dalal et  al., 2021). KEGG enrichment 
analysis showed that Jidangga-7 regulated pathways such as 
glycerophospholipid metabolism, vitamin digestion and absorption, 
thermogenesis, cholineogenesis, and cholinesterase, compared to the 
model group (Wang et al., 2020; Wang et al., 2023). These pathways 
play crucial roles in regulating the intestinal flora in non- small cell 
carcinoma. However, further research is necessary to explore 
additional metabolic pathways in depth.

Although this study revealed the association between lung cancer 
and intestinal flora to a certain extent, and also showed that the 
increase of beneficial flora after the application of drug treatment 
could improve the changes of intestinal flora in mice with lung 
cancer, further study on the mechanism of action is still needed; 
secondly, the study was only applied to animal experiments and was 
not confirmed in clinical studies, and the next study should 
be focused on the clinical study to observe the clinical efficacy of 
patients with lung cancer and the changes of intestinal. The next 
study should focus on clinical research to observe the clinical efficacy 
and intestinal flora changes in lung cancer patients, so as to provide 
new valuable findings and research basis for clinical application.

5 Conclusion

Several studies have highlighted the potential of regulating gut 
flora homeostasis as a novel approach to treating NSCLC patients, 
aiming to improve treatment outcomes by manipulating gut bacteria. 
Gut flora offers a promising avenue for exploring new strategies in 
the development, progression, diagnosis, treatment, and prognosis of 
NSCLC. However, its clinical application is still challenged by factors 
related to age, gender, disease status and environmental influences, 
which can significantly impact the composition of the intestinal 
microbiota, varying among individuals. Traditional Chinese 
compound preparations, with their multi- molecular targeting 
approach, offer a means to integrate small molecule compounds to 
collectively influence the intestinal flora and improve the gut 
environment. In the future, a comprehensive understanding of the 
mechanisms underlying the interaction between bacterial flora, host 
cells, and tumor cells is needed. This understanding is expected to 
guide the development of more effective treatments for NSCLC and 
ultimately improve patient prognosis.
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