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Soil microorganisms are relatively poorly studied in urban ecosystems, particularly 
within unmanaged woodlands that form island-like patches of vegetation. We surveyed 
soil bacteria on Salix spp. dominated riparian-like forest patches in Kraków, the 
second largest city in Poland, to find out which environmental factors influence 
their activities and functional diversity, measured using Biolog® ECO plates. Our 
results showed that soil bacterial alpha functional diversity, including substrate 
richness (number of substrates decomposed) and Shannon diversity, were positively 
correlated with patch area and number of vascular plant species in the forest 
floor vegetation layer. However, soil bacterial beta functional diversity (substrate 
use pattern, CLPP – community level physiological profiles) was primarily driven 
by patch area and soil physicochemical properties. Our results suggest that the 
positive effect of patch area (biogeographic effect) on soil bacterial functional 
diversity may be primarily through stabilisation of environmental conditions, as 
the amplitude of environmental fluctuations is reduced on larger plots compared 
to smaller ones. Taken together, our study provides important insights into the 
relationship between patch area, soil properties, vegetation characteristics, soil 
bacteria activity, and functional diversity in urban riparian forests, highlighting 
the importance of considering soil microbes when managing urban ecosystems.
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Introduction

Forest ecosystems are essential for human well-being, providing multiple ecosystem 
services such as carbon sequestration and biodiversity conservation (Baldrian, 2017; Klimek 
and Niklińska, 2024). However, their extent and ecological value steadily decrease worldwide 
due to environmental changes and anthropogenic pressures, including urbanization 
(Augustynczik et al., 2020; Sabatini et al., 2020). Urban woodlands vary in size, stand age, and 
management intensity (Pregitzer et al., 2019), resulting in a gradual transition from dense 
forests to more open, park-like environments (Woźniak et al., 2025). While larger remnants 
of old-growth forests are preserved in only a few cities (Wang and Yang, 2022), most urban 
forests consist of small and micro-forests, that are highly fragmented and patchy in their spatial 
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distribution (Picard and Tran, 2021; Ayala-Azcarraga et al., 2023). The 
spatiotemporal continuity of these urban forest patches is shaped by 
the expansion dynamic of urban areas (Doroski et al., 2022) and a 
range of environmental and anthropogenic factors.

Unmanaged urban green spaces are often perceived as having low 
biological value (Bonthoux et  al., 2019), but they have also been 
shown to represent urban biodiversity hotspots (Hwang and Roscoe, 
2017). This is particularly true for floodplains and riverbanks (Hu 
et al., 2019), which are linked to areas outside of towns through the 
riverbed as an ecological corridor (Alvey, 2006). Urban riparian forest 
areas are critical for maintaining ecological connectivity through the 
river network, acting as a corridor for species movements (Graziano 
et al., 2022). However, in many cities, extensive sections of rivers are 
heavily modified or even completely covered by artificial surfaces such 
as concrete. These alterations may disrupt natural habitats and 
ecological processes, leading to site fragmentation and loss of 
biodiversity (Machado and Kim, 2024).

Microbiomes are fundamental components of all ecosystems, 
playing essential roles in nutrient cycling, organic matter 
decomposition, and overall ecosystem productivity and health 
(Gałązka et al., 2022). In the forest ecosystem, soil microbes contribute 
significantly to energy flow and organic matter cycling, ecosystem 
biodiversity, and stability (van der Heijden et al., 2008; Baldrian, 2017; 
Eisenhauer et al., 2017; He et al., 2022). Due to their sensitivity to 
environmental changes and perturbations, soil microbial parameters 
(e.g., functional and structural diversity) serve as valuable indicators 
of ecosystem health (Azarbad et al., 2013, 2016; Fierer et al., 2021; 
Garg et al., 2024). However, as pointed out by Fierer et al. (2021), 
interpreting microbial parameters can be  challenging due to the 
complexity and spatiotemporal variability of soil microbiomes. This 
highlights the importance of context-specific analysis and the 
integration of microbial indices with soil parameters, such as 
physicochemical properties, to provide a more comprehensive 
assessment of ecosystem functions. Urban soils are a specific 
environment as they suffer from amplified environmental challenges 
such as increased site fragmentation, soil compaction, temperature, 
and pollution (Godefroid and Koedam, 2003; McKinney, 2006; Zhang 
et al., 2020; Nugent and Allison, 2022; Wang M. et al., 2022; Teerlinck 
et al., 2024). These stressors may alter microbial community structure 
and function, with recent studies suggesting that urbanization may 
reduce the complexity and stability of soil microbial networks 
constructed using amplicon sequencing of bacterial 16S rRNA and 
fungal ITS genes (Liu et al., 2023) and affect soil microbial enzyme 
drivers, leading to soil organic carbon loss (Zhang et  al., 2024). 
However, despite their environmental importance, soil microbes 
associated with urban riparian forests have received less attention 
(Mgelwa et al., 2019).

Urban green spaces can be highly isolated from each other, which 
limits the dispersal of organisms (Von Thaden et al., 2021). This may 
allow urban green spaces to be treated as islands, with their important 
environmental characteristics such as island size and isolation, which 
are considered the primary abiotic factors for predicting biodiversity 
on islands (MacArthur and Wilson, 1967). For macro-organisms, the 
“island biogeography theory” showed that biodiversity has positive 
species-area relationships (island-area effect) and negative species-
isolation relationships (island-isolation effect) (MacArthur and 
Wilson, 1967). Some recent reports have shown that these rules can 
also be applied to micro-organisms (Li et al., 2020; Yang et al., 2021; 

Raimbaultx et al., 2024). However, the ecological differences between 
macro-and micro-organisms, particularly different body sizes, 
indicate that the soil microbial response to site size, site isolation, and 
site edge length are likely driven by indirect effects (Ewers and 
Didham, 2007; Xu et  al., 2024). These effects may include the 
vegetation diversity, which is expected to be lower on smaller than 
larger plots (Olejniczak et al., 2018; Ma et al., 2023); soil properties, 
which are expected to be more disturbed on smaller than larger plots, 
i.e., soil texture (Guilland et al., 2018); and the amplitude and severity 
of changes in environmental fluctuations, such as temperature and 
moisture, as smaller plots are more susceptible to their effects than 
larger plots (Yang et al., 2021). Understanding how riparian forest 
patch area, isolation, and environmental factors shape microbial 
functional diversity in urban settings will help to inform strategies for 
preserving biodiversity and microbially-mediated ecosystem services 
in cities.

The functional diversity of soil microbial communities can 
be defined as the ability to metabolise different organic compounds 
(Garcia-Pausas and Paterson, 2011) and can be derived from genetic 
diversity (Maron et al., 2018). For this study, we chose to use the 
Biolog® ECO plate method, a phenotypic community-functional 
approach widely used to assess soil microbial functional diversity 
(Escalas et al., 2019). This method evaluates the metabolic potential of 
microbial communities by quantifying their ability to utilize a 
standardized array of 31 carbon sources. The advantages of the 
Biolog® approach include its ability to provide direct, community-
level functional insights and its suitability for studying fast-growing 
culturable bacteria. This makes it particularly relevant for 
understanding functional processes in environments like riparian 
forest soils.

The present study addressed how the functional diversity of soil 
bacteria is influenced by site characteristics within willow (Salix spp.) 
dominated forest-like sites in urban area, with limited site connectivity 
provided by the river network. Our goal was to determine whether soil 
bacterial community catabolic characteristics are related to riparian 
forest patch area and/or other environmental characteristics, including 
vegetation and soil properties. Both vegetation characteristics and soil 
physical and chemical properties are among the most important 
factors shaping forest soil microbial communities (He et al., 2022; 
Khafida et al., 2024). Specifically, we aimed to examine whether the 
island area influences soil bacteria alpha and beta functional diversity 
(defined as a number of decomposed substrates and the pattern of 
substrate use) through affected vegetation characteristics or through 
soil characteristics or whether these relationships are driven by 
other mechanisms.

Materials and methods

Study sites, vegetation surveys, and soil 
sampling

Study sites were located in the city of Kraków, the second city in 
Poland in terms of area (327 km2) and number of inhabiting people 
(0.80 million in the city and 1.5 million in metropolitan area). Kraków 
is located in the south of Poland: latitude from 19°47′35″E to 20°13′02″ 
E and longitude from 49°58′04”N to 50°07′32”N. The geological 
structure varies in different parts of the city, as Kraków lies at the 
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junction of three major geological units: the silesian-cracow 
Monocline (the Kraków-Częstochowa Upland), the Carpathian 
foothills (the Carpathian Foothills) and the Outer Carpathians (the 
Beskids). In the river valleys, the top geological layer consists mainly 
of Holocene sand and gravel. The climate in the region is temperate 
with four seasons; the mean annual average temperature (MAAT) is 
10.0°C, and the mean annual average precipitation (MAAP) is 
700 mm. July is the hottest (19.5°C) and wettest (120 mm) month of 
the year, while January is the coldest (−2.3°C) and driest (50 mm). 
The growing season with an average daily temperature above 5°C lasts 
for 220 days on average. Total forest cover in Kraków is estimated at 
4% (Bank Danych Regionalnych, Główny Urząd Statystyczny, 2024), 
which is one of the lowest value compared to major cities in Poland.

Ten Salix spp. dominated, riparian-like forest patches were found 
in different parts of the city. Geographical coordinates 
(Supplementary Table S1) and a map of study sites 
(Supplementary Figure S1) are reported in Supplementary information. 
Only Salix spp. dominated stands were studied to reduce the number 
of confounding factors, as dominant tree species strongly influence soil 
microbial characteristics (Chodak et al., 2016). Willow is an important 
component of temperate riparian areas and provide multiple ecosystem 
services (Bita-Nicolae, 2023). The ecological continuity of the riparian 
forest-like vegetation on the study sites lasts up to a few decades, as the 
riverbanks in the Kraków area have been heavily modified, e.g., by the 
construction of flood protection systems. The patch area was 
calculated, with the tree line considered as the boundary of the patch. 
Despite varying sizes, all patches were ecologically linked because the 
city’s waterways converge into the Wisła River, which flows through 
the city center approximately from west to east.

On each patch, a representative 100 m2 study plot was delineated in 
the central part of each site. Vegetation, that is, vascular plants (N plant), 
including trees (N tree), shrubs (N shrub), and forest floor species (N 
floor), was characterized on each study plot using the Braun-Blanquet 
method (Braun-Blanquet, 1964). The data on plant cover in the relevés 
were transformed from the Brown-Blanquet scale into a 0–9 ordinal 
scale (Van der Maarel, 1979), and the H’plant was calculated on the basis 
of the Shannon-Wiener general diversity index according to the equation:

 
( )10

1
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s
plant i i
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H p p
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′ = −∑

where pi denotes the frequency for the i-th species of plant, and s 
is the number of plant species at a particular plot. Within the plant 
species found, invasive species were separated (N invasive), according 
to Tokarska-Guzik et al. (2012). In each of the 10 study plots, three 
replicate soil samples were collected diagonally across the plot (two 
corners and central point), resulting in a total of 30 soil samples (3 
samples per plot × 10 plots). The upper 10 cm depth of the soil was 
collected with a spade. After the transport of soil to the laboratory, the 
soils were sieved with a 1 cm wide sieve to remove plant residuals, 
stones, and soil animals and stored at 4°C field moist until 
further analyses.

Soil physical and chemical analysis

Soil physical and chemical analyses were carried out on each 
collected soil sample. The dry weight (DW) of the soil samples was 

determined by measuring the mass loss (water) after the soil samples 
had been at 105°C for 24 h. The water holding capacity (WHC), which 
was the amount of water that a given soil can hold without leaking, 
was measured using a standard gravimetric method after soil was 
soaked for 24 h in net-ended plastic pipes immersed in water. The soil 
pH was measured in air-dried subsamples (2 g) shaken in deionised 
water (1:10 w:v) for 1 h at 200 rpm. Organic carbon (C) and total 
nitrogen (N) were analyzed by dry combustion of approximately 5 mg 
milled soil samples with an elemental analyzer (Vario El III, Elementar 
Analysen Systeme GmbH). The flow-injection analyzer (FIA compact, 
MLE) was used to analyze the total P concentration, after wet 
mineralization of 0.5 g DW of soil subsamples in suprapure 65% 
HNO3 (Merck). To assess the accuracy of the mineralization process, 
three blank samples and three replicates of standard certified material 
(CRM025-050, Sandy Loam 8, RT Corp.) were analyzed with the soil 
samples. The C:N ratio was subsequently calculated to capture the 
balance between carbon and nitrogen availability. Similarly, the C:P 
ratio was calculated to provide insight into the interactions between 
carbon and phosphorus. Particle-size distribution of mineral soil 
fraction was determined by laser diffraction after a 3 min ultrasound 
dispersion of the sample in distilled water (Mastersizer 3,000, Malvern 
Panalytical, United  Kingdom) (Gus-Stolarczyk et  al., 2022). This 
analysis provided data on particle size distribution, including 
percentages of sand, silt, and clay. Each analysis was performed in 
three subsamples taken from each study plots, and the results are 
presented as mean values with standard deviations.

Biolog® ECO plates analysis of soil bacteria

Soil bacteria activity and functional diversity was analyzed using 
Biolog® Eco plates (Preston-Mafham et al., 2002). The Biolog® Eco 
plates are 96 well microplates, that contain 3 sets of 31 common 
carbon sources and employ a tetrazolium redox dye as an indicator of 
microbial community metabolism of each individual substrate.1 The 
decay of the different substrates in the wells resulted in a change from 
colourless to purple formazan. The substrates were six compound 
groups: amines, amino acids, carbohydrates, carboxylic acids, 
polymers, and others (miscellaneous) (Campbell et al., 1997).

The soil samples (equivalent of 3 g of soil dry mass) were 
acclimated at 22°C at 60% of their maximal WHC for 4 days and 
then shaken in 30 mL of 0.9% NaCl at laboratory shaker for 30 min 
at 200 rpm. The supernatants containing microbes (100 μL) were 
diluted in 9.9 mL of 0.9% NaCl. Solutions of 100 μL per well were 
inoculated into the Biolog® Eco plates and the plates were incubated 
at 20°C in darkness. To prevent contamination, all tools used were 
sterile. The absorbance in particular wells was measured as light 
absorbance at 590 nm using a spectrophotometer Tecan with 
i-control software (Tecan Group Ltd., Männedorf, Switzerland). The 
first measurement was carried out just after inoculation and then 
was measured daily for 5 days. The absorbance value for each 
substrate was corrected by subtracting the value for the control well, 
which contained no substrate but only the soil suspension. 

1 http://www.biolog.com

https://doi.org/10.3389/fmicb.2025.1517545
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://www.biolog.com


Koster et al. 10.3389/fmicb.2025.1517545

Frontiers in Microbiology 04 frontiersin.org

Absorbance changes below 0.06 (spectrometer detection limit) were 
considered as 0.

Soil bacteria alpha functional diversity was expressed as the 
number of substrates decayed (R) and by the Shannon diversity index 
(H’bact), which was calculated as:
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where pi is the ratio of the activity on each substrate to the sum of 
activities on all substrates.

Beta functional diversity of soil bacteria was expressed as patterns 
of substrate use, commonly called community level physiological 
profiles (CLPP). The absorbance values for individual substrates were 
standardized to 1 for each sample to compare relative changes in 
substrate use pattern.

Soil bacteria activity, that is the overall rate of substrate utilization 
by microorganisms was expressed by the AUC (Area Under the 
Curve), which was calculated as follows:
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where An and An + 1 are the absorbance of each well (substrate, n) 
at two consecutive measurements at two different measurement times 
for tn and tn + 1. The final results for each patch were obtained by 
averaging data from three soil samples from each study plot.

Statistical analysis

Pearson correlation tests were conducted to examine the 
relationships between site size, vegetation and bacterial indices and 
soil properties and to identify independent variables for further 
analysis. Then, multiple regression analyses were conducted to 
separately assess the effects of independent factors on the R, H’bact, and 
AUC. The independent factors included in this analysis were patch 
area, vegetation coverage, number of forest floor plant species, soil pH, 
soil N and P content, and clay content. These variables were selected 
based on Pearson correlation coefficients (r < 0.6) to represent the 
wide range of environmental properties and to minimize collinearity. 
Both backward and forward stepwise selection procedures were 
performed for each analysis to validate the robustness of the final 
models. To compare relationships between vegetation diversity and 
structure and soil bacterial community CLPPs, dissimilarity matrices 
based on Euclidean distance were calculated, using either the botanical 
data and Biolog® data. The matrices were then compared using the 
Mantel test (9,999 permutations) to assess the link between the beta 
diversity of vegetation and soil bacteria.

Beta diversity refers to the variation in species composition 
within the community, represented either as a matrix of plant species 
occurrences or as CLPP data, which reflect substrate utilization 
patterns by soil bacteria on individual study plots. Next, a partial least 
squares path modelling (PLS-PM; Sanchez, 2013) was carried out to 
evaluate the direct and indirect effects of site size, vegetation 
properties, and soil physicochemical properties. Model was 
constructed based on weights on standardized manifest variables, 
and centroid was used for internal estimation. Correlations at 

significance level 0.001 and goodness of fit indices were calculated 
for obtained model. Multiple-variable analysis and multiple 
regression analysis were performed using Statgraphics Centhurion 
XIX software (StatPoint Technologies Inc., Warrenton VA, 
United States). Mantel test analysis was performed using PAST 4.10 
software (Natural History Museum, University of Oslo, Norway). A 
partial least squares path modelling (PLS-PM) was carried out with 
XLSTAT (Lumivero, 2020).

Results

Site size and vegetation characteristics

Data on patch area and site characteristics are presented in 
Table 1. Site size ranged from 0.05 to 1.44 ha. The study plot (100 m2) 
vegetation coverage ranged from 110 to 220%. The number of vascular 
plant species per plot ranged from 13 to 24, and most of them were 
forest floor species (61% per plot on average). Dewberry Rubus 
caesius, nettle Urtica dioica and avens Geum urbanum were the most 
common forest floor species with the highest plot coverage. Shrubs 
layer was represented by 2 to 4 species per plot, and the most common 
were bird cherry Padus avium and black elder Sambucus nigra. Tree 
species number per plot varied from 2 to 4, with the predominance of 
Salix alba and Salix fragilis (10 and 9 plots, respectively). The vascular 
plant composition indicated riparian forests of the class Salicetea 
purpureae Moor 1958, but not all plots had the appropriate 

TABLE 1 Means, standard deviations, and minimal and maximal values 
(n = 10) for patch area, vegetation data: total coverage (%), total number 
of plant species (N plant), number of tree species (N trees), number of 
shrub species (N shrubs) and number of forest floor species (N floor), 
number of invasive species (N invasive), plant diversity index (H’plant), and 
soil physicochemical properties.

Variable Unit Data set values

Mean SD Min Max

Patch area ha 0.51 0.50 0.05 1.44

Coverage % 163.5 37.4 110 220

N plant – 17.5 4.0 13 24

N tree – 2.8 0.6 2 4

N shrub – 4.2 1.5 2 7

N floor – 10.5 3.5 6 16

N invasive – 2.6 1.4 0 5

H’plant – 1.2 0.1 1.0 1.3

WHC % DW 138.8 69.9 40 267

pH – 7.17 0.63 5.97 8.15

C % DW 16.39 10.33 1.10 33.60

N % DW 0.56 0.30 0.06 1.11

P % DW 0.08 0.03 0.04 0.13

C:N – 12.6 2.0 10.5 17.2

C:P – 59.2 26.2 31.8 119.8

Sand % 13.8 8.92 5 34

Silt % 74.6 8.44 57 85

Clay % 11.6 3.86 6 17
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composition of diagnostic species or were characterized by a low cover 
of these species (Dzwonko and Loster, 1988; Dzwonko, 2015). A few 
so-called ancient woodland species were however recorded in some 
plots: Aegopodium podagraria, Athyrium filix-femina, Circaea 
lutetiana, Dryopteris dilatata, Dryopteris filix-mas, Festuca gigantea 
and Geum urbanum (Dzwonko, 2015), but most of which had low 
cover. Number of invasive plant species identified on all plots 
altogether was 13, with species number per plot ranging from 0 to 5 
(15% of plant species per plot on average). Impatiens parviflora and 
Impatiens glandulifera were the most common invasive species (found 
on 4 and 6 from 10 plots, respectively). Vegetation properties on study 
plots were highly positively correlated (Figure 1). Plant diversity index 
(H’plant), which ranged from 1.04 to 1.33, was positively influenced by 
N floor (r = 0.84; p < 0.001) but also by the number of N invasive 
species (r = 0.71; p < 0.05; Figure 1).

Soil physical and chemical properties

WHC in studied soils ranged from 60 to 127% (Table 1). The pH 
of the studied soils was neutral to alkaline, with a mean value of 7.17 
(± 0.63). The studied soils were characterized by a low content of C, 

N, and P (4.29, 0.34, and 0.08% on average, respectively). The C:N 
ratio ranged from 10.5 to 17.2, with a mean value of 12.6 (± 2.0), while 
the C:P ratio was more variable, ranging from 31.8 to 119.8, with a 
mean of 59.2 (± 26.2). The soils were mainly composed of silt (mean: 
74.6%, ± 8.44), followed by sand (13.8%, ± 8.92) and clay (11.6%, ± 
3.86). Patch area was positively correlated only with soil C content 
(r = 0.66; p < 0.05) and clay percentage (r = 0.76, p < 0.001), as shown 
in Figure 1. Soil C content was, in turn, positively correlated with soil 
N content (r = 0.87; p < 0.01). Plot coverage was positively correlated 
only with soil WHC (r = 0.68; p < 0.001). C:N ratio was positively 
correlated with soil pH (r = 0.66; p < 0.001; Figure 1).

Soil bacteria activity and functional 
diversity

AUC ranged from 45.8 to 67.0 (Table 2; Supplementary Figure S2). 
R ranged from 18 to 28, meaning that 76% of substrates on Biolog® 
ECO plates was decomposed on average, indicating relatively high 
functional diversity in studied soils. H’bact ranged from 1.20 to 1.30. 
Carboxylic acids, carbohydrates and amino acids were among the 
most used substrate groups, for each soil representing above 70% of 

FIGURE 1

Pearson correlations for riparian-like forest patches data on its area, vegetation properties, and soil properties (n = 10). Within each cell, the numeric 
value indicates correlation strength (scaled from −1 to +1), and asterisks denote significance levels: *, **, and *** for p < 0.05, 0.01, and 0.001, 
respectively. Correlations are displayed in red (positive) and blue (negative); colour saturation denotes the strength of the relationship. Detailed 
information about soil physicochemical properties, vegetation data, and soil bacterial indices are presented in Tables 1, 2, respectively.
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the response (Table  2; Supplementary Figure S2). The multiple 
regression analysis was performed to study the effect of patch area and 
plot properties on soil bacteria activity and alpha functional diversity 
indices (Figure 2). The output of these analyses indicated that models 
were significant for R, H’bact, and AUC. For R, the model explained 
68.2% of the variance (p = 0.007), which was positively dependent on 
the patch area (p = 0.045) (Figure 2A) and the number of forest floor 
plant species (p = 0.006) (Figure  2B). For H’bact, the model was 
significant (p = 0.005) and explained 70.5% of the variance. H’bact 
showed a significant positive correlation with the site size (p = 0.044) 
(Figure 2C) and the number of forest floor plant species (p = 0.004) 
(Figure 2D). For AUC, the model explained 32.6% of the variance 
(p = 0.049), where AUC values were positively dependent only on soil 
P content (p = 0.049) (Figure 2E). Mantel test results revealed that 
plant community beta diversity was not correlated with bacteria 
functional beta diversity (CLPP) (p = 0.458, R = 0.017). The PLS-PM 
confirmed these results (Figure 3; Supplementary Figure S3), where 
soil bacterial alpha functional diversity indices (R, H’bact) were mainly 
determined by vegetation characteristics. In turn, soil bacteria beta 
functional diversity (CLPP) was primarily driven by site area and soil 
physicochemical properties.

Discussion

Soil microorganisms in urban areas provide essential ecosystem 
services such as those involved in nutrient cycling, erosion control, 
and regulation of climate change stressors (Metzler et  al., 2024). 
Therefore, it is highly important to better understand how human-
based activities influence microbial diversity and functions in urban 
ecosystems. Indeed, the conservation of soil biological diversity is an 
extremely important task in a rapidly changing world under human 
activity, and site fragmentation is one of the most challenging 
problems. Our study provides important insights into the relationship 
between patch area, soil properties, vegetation characteristics, soil 
bacterial activity, and functional diversity in urban riparian forest 
patches. Using Biolog® ECO plates, we showed that larger riparian 
forest patches exhibited higher values of the R measure, reflecting the 
percentage of substrates decomposed, as well as increased bacterial 

alpha functional diversity (H’bact). These findings suggest that larger 
riparian forest patches in urban environments may provide improved 
habitat conditions, which in turn support higher functional diversity 
of soil bacteria.

It is important to note that temperate riparian forests are regarded 
as a threatened or endangered habitat in Europe (Czortek et al., 2020; 
Przepióra and Ciach, 2022). This is particularly true for the vegetation, 
an important component that contributes to the biotic part of this 
unique ecosystem. On average, about 30 species of vascular plants per 
plot (100 m2 of phytosociological relevance) are reported in riparian 
forests in Poland, and in well preserved regions even 50 species per 
plot (Macicka and Wilczyńska, 1988; Matuszkiewicz, 2008). In our 
study, the mean number of plant species per 100 m2 plot was much 
lower and amounted to 17.1 (± 3.8). Similar results were obtained by 
Stefańska-Krzaczek (2013), who identified 13.7 (± 4.9) species in a 
single phytosociological relevé in riparian forest remnants in Wrocław, 
the third largest city (in terms of population) in Poland. Plant species 
richness and diversity are considered to be one of the most important 
factors shaping soil microbial communities (Toju and Sato, 2018). On 
the other hand, certain soil microbial groups may increase ecosystem 
stability, especially under stressful conditions, by facilitating nutrient 
acquisition for plant communities.

We used Biolog® tests to study the functional (catabolic) diversity 
of soil bacteria. However, the limitations of such an approach need to 
be taken into account while interpreting our results. For instance, this 
method allows the study of only those fractions of bacteria that can 
be extracted and cultured. In addition, direct comparisons of results 
obtained in different laboratories must be carefully preceded by a 
review of the details of the laboratory analysis, such as the degree of 
dilution of the inoculum (bacterial suspension) applied to the wells of 
the plate, which can strongly influence the final results. In general, 
data on the functional diversity of soil bacteria under Salix spp. stands 
are scarce and mostly related to post-mining sites (Kaneda et  al., 
2019). Soil bacterial activity and functional diversity in Salix spp. 
dominated riverbanks in urban areas were comparable with data 
obtained for other types of forests in Poland, using the same laboratory 
protocol. In particular, Klimek et al. (2016) found that in different 
nearly undisturbed temperate forest types, the mean values for AUC, 
R and H’bact in soil A horizon were 39.0, 24.4, and 1.10, respectively. 
Wasak et al. (2019), in their study conducted in a forest mountainous 
area near Kraków, found that averaged values for AUC, R, and H’bact 
were 31.1, 19.5, and 1.21, respectively. The values of soil bacterial 
indices measured in a current study were slightly higher than those 
obtained in near-natural temperate forests in Poland. This could 
be due to various environmental factors, such as soil pH. In natural 
temperate forests, which are mostly characterized by acidic pH, soil 
bacteria may be outcompeted by soil fungi. Soil pH was neutral to 
alkaline in the riparian soils, and higher soil pH may favour bacteria 
over fungi (Wang and Kuzyakov, 2024). Moreover, urban forest soil is 
becoming alkaline under rapid urbanization (Zhang et al., 2023). Soil 
bacteria AUC was, however, not related to soil pH, but only to soil P 
content. Phosphorus is an essential nutrient not only for plants, but 
also for microorganisms (Wang Z. et al., 2022). Although it contributes 
to diffuse pollution and eutrophication, riparian soils are highly 
effective at sorbing readily soluble forms of phosphorus (Frątczak 
et al., 2019). Phosphorus supports rapid plant biomass production, 
which in turn promotes soil microbial performance (Chen and Xiao, 
2023). Willow is known for its fast growth rate (Koczorski et al., 2022). 

TABLE 2 Means, standard deviations and minimal and maximal values 
(n = 10) for soil bacteria alpha functional diversity, that is R (number of 
substrates used) and H’bact (Shannon diversity), and soil bacteria activity 
(AUC) and structure of substrate groups use (relative % of use).

Variable Unit Data set values

Mean SD Min Max

R – 23.5 3.4 18.8 28.3

H’bact – 1.26 0.06 1.20 1.30

AUC – 56.3 8.0 45.8 67.0

Amines % 7.7 1.6 5.2 10.6

Amino acids % 19.5 1.9 15.8 21.2

Carbohydrates % 24.7 2.6 20.5 27.4

Carboxylic acids % 27.8 2.6 23.8 31.3

Miscellaneous % 8.0 1.6 5.7 11.4

Polymers % 12.3 1.8 9.3 15.1
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Phosphorus fertilisation has been shown to increase crop yield in 
willow short rotation coppice for biomass production (Kuzovkina 
et al., 2018), and similar effects can be expected in riparian areas.

Soil bacteria alpha functional diversity indices, both R and H’bact, 
increased with the number of forest floor plant species, which 

represents the majority of plant diversity in temperate forests (Gilliam, 
2007). Vegetation influences a wide range of soil microbial parameters 
(Tilman et al., 1997). For example, plant species-rich communities 
produce more biomass and more chemically diverse litter and root 
exudates (rhizodeposition), which essentially contribute to higher soil 

FIGURE 2

Component effects from multiple regression analysis on the relationships between environmental factors and bacterial parameters. Effect of patch 
area (A) and the number of forest floor plant species (B) on R (number of substrates decomposed by bacteria). Influence of patch area (C) and the 
number of forest floor plant species (D) on H’bact (Shannon diversity index of bacterial functional diversity). Effect of soil phosphorus (P) content on 
AUC (overall bacterial activity) (E). Dots are individual patches (n = 10). Model parameters, including adjusted R2 and overall model p-values, are 
indicated in blue text within each panel. Individual p-values for the factors are also provided.

https://doi.org/10.3389/fmicb.2025.1517545
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Koster et al. 10.3389/fmicb.2025.1517545

Frontiers in Microbiology 08 frontiersin.org

C content, as we showed in this study. Higher plant species richness 
also promotes plant-microbes interactions, which can, in turn, lead to 
the establishment of more diverse microbial communities (Prober 
et  al., 2015). Indeed, soil bacteria are effective in utilizing simple 
organic compounds, delivered by plant roots, which are generally 
more available in nutrient-rich habitats such as a rhizosphere (Wang 
and Kuzyakov, 2024). The chemical groups of carbon substrates most 
used by bacteria on Biolog® plates were carboxylic acids, carbohydrates 
and amino acids. These substrate chemical groups are particularly 
essential components of root exudates, which are known to support 
the growth and development of soil bacterial communities (Wang and 
Kuzyakov, 2024), and therefore differentiation between the 
experimental treatments with these substrate groups was often 
reported (Furtak et  al., 2020). Although we  did not observe a 
significant relationship between soil bacterial functional beta diversity 
(CLPP pattern) and vegetation diversity and composition as showed 
by Mantel test, our findings align with previous studies indicating that 

vegetation diversity has a greater impact on fungal communities than 
on bacterial communities. For instance, using amplicon sequencing 
of bacterial 16S and fungal internal transcribed spacer (ITS), Štursová 
et  al. (2016) investigated bacterial and fungal communities and 
diversity in a regenerating temperate mountain forest in the Bohemian 
Forest, Central Europe. Their results revealed that fungal communities 
exhibited significantly higher beta diversity (variation among 
communities) than bacterial communities, with fungi being more 
strongly influenced by vegetation. In our study, another potential 
factor contributing to the lack of a clear relationship between soil 
bacterial beta functional diversification and vegetation beta diversity 
could be due to a relatively high proportion of invasive plant species. 
Previous studies have shown that cities are hotspots for alien species, 
with over 35˗40% of them have been recorded in cities (Pyšek, 1998; 
Clemants and Moore, 2003). Native plant species are generally more 
abundant than non-native species (Knapp et al., 2008), but in some 
places non-native plant species may dominate native ones. River 

FIGURE 3

Partial least squares path models (PLS-PM) displaying the direct and indirect effects of the interaction of site size and vegetation effect on soil bacteria 
functional diversity (alpha diversity and beta diversity). Arrows width presents correlation strength, values by the individual arrows denote correlation 
(R) value and significance of the effect (p value).
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valleys are particularly vulnerable to invasion by alien species (Pielech, 
2021). In disturbed anthropogenic habitats, the number of alien plant 
species tends to correlate with the total number of plant species (Siwek 
et al., 2024). Invasive plant species can affect plant communities and 
soil physicochemical and microbiological properties, all of which can 
affect soil carbon dynamics (Raheem et al., 2024).

Multiple regression analysis confirmed that soil bacterial alpha 
functional diversity indices, both R and H’bact, increased with patch 
area, but to a greater extent from vegetation diversity, that is, forest 
floor species number. However, PLS-PM indicated a negligible direct 
effect of patch area on alpha functional diversity indices. In contrast, 
patch area had a significant effect on the beta diversity of soil bacteria 
(CLPP), which seems to confirm that the island effect on soil bacteria 
is driven by habitat heterogeneity. This habitat heterogeneity likely 
operates at the microscale within soil samples, as indicated by the 
significant correlation between patch area with soil clay and C 
contents. The role of soil texture in shaping microbial diversity is well-
supported by previous studies. For instance, Biesgen et  al. (2020) 
showed that clay content modulates bacterial community composition 
by increasing aggregate stability, which fosters the development of 
distinct microbial communities in microaggregates. In our study, the 
positive correlation between patch area and clay content may explain 
the observed influence of patch area on bacterial beta diversity, as 
larger patches tend to accumulate finer particles, creating 
heterogeneous microhabitats that enhance bacterial community 
differentiation. Moreover, clay content was observed to correlate with 
soil moisture due to the occurrence of micropores and menisci that 
generate capillary forces (Richert et al., 2009; Bicharanloo et al., 2022).

A larger patch area may support ecosystem functions better than 
a smaller one through multiple mechanisms. One such mechanism is 
the mitigation of direct anthropogenic disturbances such as soil 
compaction and soil pollution. This was demonstrated by 
Kostrakiewicz-Gierałt et al. (2022) in their study of urban forests and 
parks in Kraków, where larger patches tended to have greater resilience 
and functionality in the face of human-induced stressors. However, 
urban riparian forest, including small ones, are difficult to access due 
to dense vegetation cover, and direct human activity is limited. 
Another possible mechanism is the greater resistance of larger areas 
to water shortages, a factor that may be  particularly relevant in 
riparian areas. In general, urban hydrology is drastically altered 
compared to agricultural and natural areas (Pickett et al., 2001). The 
high proportion of impervious surfaces in urban areas, combined with 
the vegetation structure characterized by reduced larger tree cover in 
urban green spaces, leads to increased rainwater runoff. Coupled with 
changes in the structure of precipitation under global climate change, 
i.e., a higher proportion of torrential rainfall, the increased runoff in 
urban areas changes the morphology of urban streams, which become 
deeply incised in their floodplains (Soboyejo et  al., 2025). This 
hydrological modification can isolate remnant riparian vegetation 
from the water table, compounding the challenges posed by reduced 
groundwater availability during droughts. During periods of drought 
(reduced rainfall), water deficiency may limit soil microbial activity, 
both directly through reduced soil water content but also by limiting 
the morphological and physiological traits of plants, including a 
reduction in fine root biomass and their carbon contribution to the 
soil below ground (Hinko-Najera et al., 2015). This hypothesis can also 
be  supported by the positive correlation observed in this study 
between soil water holding capacity and vegetation coverage. 

Furthermore, the positive correlation between plot area and soil clay 
content suggests that larger plots may experience less soil erosion, as 
clay particles, being the smallest and most easily transported by water, 
are more likely to be retained in these areas compared to smaller plots.

It has been shown that soil bacteria are more sensitive to drought 
than fungi (Azarbad et al., 2018, 2020; de Vries et al., 2018). Li et al. 
(2020) investigated the island biogeography of soil bacteria and fungi 
(via amplicon sequencing) and revealed that the diversity of soil 
bacteria alpha diversity is strongly influenced by soil moisture. Their 
study demonstrated that smaller islands, characterized by lower soil 
moisture and greater edge effects, exhibited reduced bacterial diversity 
compared to larger islands. However, it is important to note that soil 
moisture is a highly viable soil property that could be influenced by 
temporal weather conditions during sampling rather than a consistent 
indicator of soil property. Moving forward, future studies should focus 
on the potential role of larger patch areas in urban riparian forests in 
supporting soil health and ecosystem functions, particularly in 
relation to water availability and resistance to drought. Such studies 
should include a more detailed investigation of soil microbiomes, 
including bacteria and fungi, based on amplicon and metagenomic 
sequencing assays. Integrating microbial sequencing approaches with 
CLPP data helps to link phenotypic functional diversity with the 
underlying genetic and taxonomic drivers. Additionally, the “island 
effect” on soil microbial diversity and functionality may vary 
depending on the type of island, whether of natural or anthropogenic 
origin. This highlights the importance of comparative studies across 
different island types.

Conclusion

In conclusion, our study confirms that bigger riparian forest 
patches in urban areas support for higher functional diversity of soil 
bacteria. We showed that alpha functional diversity of soil bacteria 
was mainly driven by vegetation characteristics, whereas beta 
functional diversity was primarily by site size and soil 
physicochemical characteristics. Conservation of green urban areas 
is receiving increasing attention, as they can support important parts 
of the biodiversity of the geographical region, up to the national 
scale (Basak et al., 2021). It is particularly important to mitigate the 
urban heat island effect in the face of global climate change 
(Teerlinck et al., 2024), as it can severely impact residents in densely 
populated urban areas. There is a need to prevent the loss of 
biodiversity in disturbed landscapes, in particular in urban areas 
(Hansen et  al., 2005). Our study may serve as an argument for 
preserving at least a part of urban green spaces in their natural state. 
It will be  important to validate our findings by investigating the 
impact of the island effect and climate change on soil microbial 
community structure and functioning in urban riparian areas, with 
a focus on the conservation of urban green spaces to support 
biodiversity and mitigate the effects of urbanization.
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