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The COVID-19 pandemic underscored bacterial resistance as a critical global 
health issue, exacerbated by the increased use of antibiotics during the crisis. 
Notwithstanding the pandemic’s prevalence, initiatives to address bacterial medication 
resistance have been inadequate. Although an overall drop in worldwide antibiotic 
consumption, total usage remains substantial, requiring rigorous regulatory measures 
and preventive activities to mitigate the emergence of resistance. Although 
National Action Plans (NAPs) have been implemented worldwide, significant 
disparities persist, particularly in low- and middle-income countries (LMICs). 
Settings such as farms, hospitals, wastewater treatment facilities, and agricultural 
environments include a significant presence of Antibiotic Resistant Bacteria (ARB) 
and antibiotic-resistance genes (ARG), promoting the propagation of resistance. 
Dietary modifications and probiotic supplementation have shown potential in 
reshaping gut microbiota and reducing antibiotic resistance gene prevalence. 
Combining antibiotics with adjuvants or bacteriophages may enhance treatment 
efficacy and mitigate resistance development. Novel therapeutic approaches, 
such as tailored antibiotics, monoclonal antibodies, vaccines, and nanoparticles, 
offer alternate ways of addressing resistance. In spite of advancements in next-
generation sequencing and analytics, gaps persist in comprehending the role of 
gut microbiota in regulating antibiotic resistance. Effectively tackling antibiotic 
resistance requires robust policy interventions and regulatory measures targeting 
root causes while minimizing public health risks. This review provides information 
for developing strategies and protocols to prevent bacterial colonization, enhance 
gut microbiome resilience, and mitigate the spread of antibiotic resistance.
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1 Introduction

In recent years, antibiotics have made a significant contribution 
to socioeconomic growth by promoting healthcare, avoiding deaths, 
and increasing animal productivity. However, the inadequate use of 
antibiotics has exacerbated the emergence of bacterial resistance, 
failed treatments, increased disease rates, and increased healthcare 
expenses (Bunduki et al., 2024; Gulumbe et al., 2023; Watkins and 
Bonomo, 2020). In 2018, the global use of veterinary antibiotics was 
approximately 76,704 tons (Ardakani et al., 2024; de Lagarde et al., 
2022; Zeedan et al., 2023), while medical antibiotic consumption was 
14.3 defined daily doses (DDDs) per thousand people per day (Zhang 
R. M. et al., 2023). Antibiotic-resistant bacteria (ARB) account for 
over 25% of nosocomial infections, posing a growing challenge to 
healthcare systems. Projections suggest that by 2050, there will be a 
shocking 10 million deaths caused by these bacteria (Asmare et al., 
2024). Reducing the use of antibiotics is crucial to prevent the spread 
of resistance in various contexts, such as healthcare facilities, animals, 
the food chain, and the environment (Bunduki et al., 2024). It will help 
to minimize the dangers to public health.

The emergence of antimicrobial resistance in the environment, 
livestock, and humans increases the risk of human infection by 
resistant bacteria (Sachdeva et  al., 2025). The human gut, rich in 
nutrients and maintaining an ideal temperature, fosters the spread of 
antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria 
(ARB) due to its diverse microbiota (Das et al., 2022). ARGs and ARB 
within the human body pose a significant and growing health threat 

(Fang et al., 2023). This review analyzes global patterns in veterinary 
and clinical antibiotic use and presents National Action Plans (NAPs) 
(Figure 1) to combat antibiotic resistance. Additionally, it explores 
strategies for reversing resistance, reducing transmission post-
colonization, and preventing the spread of resistant bacteria. 
Implementing these measures is crucial to mitigating antimicrobial 
resistance and its transmission to humans (Mendelson et al., 2024).

2 Challenges in global antibiotic usage 
and action plans

Although a recent global decline in antibiotic use for veterinary 
purposes, excessive antibiotic consumption in clinical settings 
remains a major concern, particularly in low- and middle-income 
countries (Alabi et al., 2024; O’Leary et al., 2024; Liu L. et al., 2021; 
Liu Y. et al., 2021). While many countries have implemented National 
Action Plans (NAPs) to combat antibiotic resistance, approaches vary 
significantly (Villarreal et  al., 2023) (Table  1). The World Health 
Organization (WHO), the Centers for Disease Control and Prevention 
(CDC), and the European Centre for Disease Prevention and Control 
(ECDC) have raised alarms over the growing threat of antimicrobial 
resistance (AMR) (World Health Organization, 2024; Cobar and 
Cobar, 2024). WHO advocates for stricter regulations on 
antimicrobial use in animals, particularly those critical to human 
medicine, while the CDC and ECDC emphasize a One Health 
approach that integrates human, animal, and environmental health 

FIGURE 1

Six stages for the successful execution of NAPs on antimicrobial resistance in a sustainable manner. (A) Create an effective cross-sector coordination 
system and technical teams with defined roles, budget allocations, and accountability structures in place. (B) Conduct a consultative approach to 
select operations based on current conditions, resources, predicted impact, and feasibility. (C) Prioritize tasks, define responsibilities, dates, and 
locations, and incorporate existing financing streams into an operational plan. (D) Identify current and potential financiers, lobby to close the financing 
gap, and use indigenous funding through national initiatives and fiscal allocations when possible. (E) Work with internal and external stakeholders to 
sustainably implement prioritized initiatives. (F) Regularly evaluate and share progress and lessons from plan and endeavor execution.
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TABLE 1 Key challenges in global antibiotic usage and the limitations of current action plans in addressing antibiotic resistance (Cobar and Cobar, 2024; Berry, 2024; Bolbanabad et al., 2023; Khouja et al., 2022; 
Pham et al., 2024; Villarreal et al., 2023; Willemsen et al., 2022; Uddin et al., 2021).

Aspect Description Challenges Contributing factors Consequences Proposed solutions

Global 

Antibiotic 

Usage

The overall utilization of 

antibiotics worldwide.

- Overuse and misuse of antibiotics leading 

to resistance.

- Disparities in access to antibiotics between 

developed and developing countries.

- Limited surveillance and regulation in 

some regions.

- Easy availability of antibiotics without 

prescription.

- Lack of awareness among healthcare 

providers and patients regarding appropriate 

antibiotic use.

- Economic factors influencing prescribing 

practices.

- Rising rates of antibiotic resistance.

- Increased healthcare costs due to 

treatment failures and prolonged 

hospital stays.

- Compromised effectiveness of 

existing antibiotics.

- Strengthening antibiotic stewardship programs 

globally.

- Enhancing surveillance systems to monitor antibiotic 

use and resistance patterns.

- Promoting education and awareness campaigns on 

appropriate antibiotic use.

Action Plans Strategies and initiatives 

implemented by 

governments and 

organizations to address 

antibiotic resistance.

- Variation in the implementation and 

effectiveness of action plans across different 

regions.

- Limited resources were allocated to execute 

the action plan.

- Resistance to change among healthcare 

professionals and policymakers.

- Political and economic barriers to policy 

implementation.

- Lack of coordination between healthcare 

sectors and stakeholders.

- Insufficient investment in research and 

development of new antibiotics.

- Inadequate control over antibiotic 

resistance leading to public health 

crises.

- Continued emergence and spread of 

multidrug-resistant pathogens.

- Delayed innovation in antibiotic 

development due to market challenges.

- Strengthening regulatory frameworks to enforce 

antibiotic stewardship policies.

- Increasing funding for research and development of 

new antibiotics and alternative therapies.

- Fostering collaboration between governments, 

healthcare organizations, and pharmaceutical 

companies.

Global 

Surveillance

Monitoring and tracking 

antibiotic usage and 

resistance patterns 

worldwide.

- Inconsistent data collection and reporting 

methods.

- Limited access to surveillance data, 

particularly in low-resource settings.

- Challenges in standardizing surveillance 

metrics and definitions.

- Lack of investment in surveillance 

infrastructure and capacity building.

- Reluctance among countries to share data 

due to concerns about confidentiality and 

sovereignty.

- Fragmentation of surveillance efforts at the 

national and international levels.

- Incomplete understanding of global 

antibiotic resistance trends.

- Difficulty in identifying emerging 

resistance threats and hotspots.

- Suboptimal allocation of resources 

for targeted interventions.

- Establishing a standardized global surveillance 

network with harmonized data collection protocols.

- Providing technical and financial support to enhance 

surveillance capabilities in low-resource settings.

- Facilitating data sharing and collaboration through 

international partnerships and initiatives.

Antibiotic 

Development

Research and innovation 

in creating new 

antibiotics and alternative 

therapies.

- Decline in antibiotic discovery and 

development pipelines.

- Regulatory hurdles and market challenges 

in bringing new antibiotics to market.

- Limited investment in research for non-

traditional antibiotic approaches.

- High failure rates and long timelines in 

antibiotic development.

- Disincentives for pharmaceutical 

companies to invest in antibiotic R&D due to 

low profitability and uncertain returns.

- Scientific and technical challenges in 

targeting drug-resistant pathogens.

- Fewer treatment options for drug-

resistant infections.

- Delayed availability of novel 

antibiotics for patients in need.

- Potential resurgence of untreatable 

infections and pandemics.

- Implementing innovative funding models and 

incentives to stimulate antibiotic research and 

development.

- Streamlining regulatory pathways and providing 

support for antibiotic clinical trials.

- Investing in research on alternative approaches, such 

as phage therapy, immunotherapy, and antimicrobial 

peptides.

Public 

Awareness and 

Education

Informing and educating 

the public about 

antibiotic resistance and 

appropriate antibiotic 

use.

- Low awareness and understanding of 

antibiotic resistance among the general 

population.

- Misconceptions and misinformation about 

antibiotics and their effectiveness.

- Limited engagement of healthcare 

providers in patient education on antibiotic 

stewardship.

- Insufficient resources allocated for public 

health campaigns and educational initiatives.

- Communication challenges in reaching 

diverse populations and marginalized 

communities.

- Limited integration of antibiotic 

stewardship education into healthcare 

curricula.

- Continued overuse and misuse of 

antibiotics by patients and caregivers.

- Delayed seeking medical care for 

infectious diseases due to 

misconceptions about antibiotics.

- Resistance to behavior change and 

adherence to antibiotic treatment 

guidelines.

- Launching comprehensive public awareness 

campaigns on antibiotic resistance and prudent 

antibiotic use.

- Engaging healthcare professionals as advocates for 

antibiotic stewardship and patient education.

- Incorporating antibiotic stewardship education into 

school curricula and professional training programs.
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FIGURE 2

Global comparison of top antibiotic consumers in veterinary medicine: a detailed analysis of the leading countries in 2020 and 2023, highlighting 
trends in antibiotic usage and year variations (Ardakani et al., 2024).

(Mercy et al., 2024; Catteau et al., 2024). These organizations call for 
reduced antibiotic use in animals, enhanced surveillance, and 
improved stewardship practices to curb the spread of resistant 
pathogens (Vekemans et al., 2021).

2.1 Global antibiotic consumption trends in 
veterinary

In 2018, global veterinary antibiotic consumption was 
approximately 81,000 tons, with an estimated dosage of 75.16–82.56 mg 
per kilogram of animal weight (Sorbara et al., 2019; Sun et al., 2019). 
Ardakani et al. (2024) reported that in 2017, antimicrobial usage (AMU) 
in chickens, cattle, and pigs—comprising 93.75% of all food animals—
amounted to 93,309 tonnes of active ingredients (Ardakani et al., 2024; 
Calayag et al., 2021). This figure is projected to rise by 11.5% to 104,079 
tonnes by 2030, with pigs contributing the most to this increase (45%), 
followed by cattle (22%). In 2017, pigs consumed an average of 193 mg 
per population correction unit (PCU), while cattle had the lowest 
consumption at 42 mg/PCU (Rothrock et al., 2021).

Figure  2 illustrates trends in antibiotic usage across major 
countries over two-time points, highlighting shifts in consumption 
patterns and the rise in usage between the years under review. This 
comparison emphasizes the critical need for sustainable antibiotic use 
to combat antimicrobial resistance (AMR) (Ardakani et al., 2024; 
Al-Tawfiq et al., 2024). In 2017, chickens consumed an average of 
68 mg/PCU, contributing to 33% of the global increase in AMU 
(Murray et al., 2021; Salam et al., 2023). Asia, the largest consumer of 
veterinary antibiotics in 2017, is expected to continue this trend, with 

its usage projected to grow by 10.3% by 2030, accounting for 68% of 
global usage by that time for all used antibiotics mentioned by Tiseo 
et al. (2020) and supported by Van Boeckel et al. (2015). Africa is 
forecast to experience the most significant increase, with an expected 
rise of 37% by 2030, although it will still account for just 6.1% of 
global consumption (Mercy et al., 2024). Meanwhile, Oceania, North 
America, and Europe are projected to see minimal growth in 
antimicrobial sales (Cheng et al., 2022; Iera et al., 2025). As the largest 
consumer in 2017, China is expected to maintain its position in 2030, 
with the top 10 consuming countries collectively accounting for 72% 
of global antimicrobial consumption by that year (Zuo et al., 2021) 
(see Tables 2,3).

Tetracyclines and penicillins were the primary antibiotics used 
in animal health, accounting for 40.5 and 14.1% of total 
consumption, respectively (Ardakani et  al., 2024). However, 
discrepancies in antimicrobial usage (AMU) data, particularly from 
China, highlight the need for further investigation into the accuracy 
of reported figures. Between 2015 and 2030, human AMU is 
projected to increase by 15%, paralleling the rising demand for food 
animals (Cherian et al., 2023). Interestingly, the expected surge in 
animal antimicrobial consumption is lower than previous 
estimates—Van Boeckel et al. (2019) had predicted a 53% rise by 
2030. These discrepancies stem from variations in data sources, 
specifically in China, where recent reports from the Ministry of 
Agriculture indicate a significant decline in AMU, raising concerns 
about data reliability (Zhang K. et al., 2022). However, The fourth 
JIACRA report analyzed antimicrobial consumption (AMC) and 
antimicrobial resistance (AMR) trends across 2014–2021, based on 
data from EU surveillance networks. In 2021, the total AMC for 
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humans was 125.0 mg/kg, while for food-producing animals, it was 
92.6 mg/kg. Over this period, AMC in animals decreased by 44%, 
while human consumption remained stable (European Centre for 
Disease Prevention and Control (ECDC), 2024). Positive associations 
between AMC and AMR in both sectors were observed, indicating 
the influence of AMC on resistance patterns. The report also 
highlighted that reductions in AMC in both humans and animals 
were often associated with improved antimicrobial susceptibility in 
bacteria. These trends suggest that efforts to reduce AMC have been 
effective in many countries, although further actions are needed to 
maintain and strengthen these gains (European Centre for Disease 
Prevention and Control (ECDC), 2024). Measures such as 

vaccination and improved hygiene are crucial in reducing reliance 
on antimicrobials and promoting health.

In high-income countries (HICs), antimicrobial sales have 
declined due to stewardship programs promoting responsible 
antibiotic use (Ahmed et al., 2024). The United Kingdom and the 
United  States, for instance, have successfully reduced veterinary 
antimicrobial use through targeted resistance strategies and stricter 
guidelines (Hawkins et al., 2022; Sachan et al., 2023; Ahmed et al., 
2024). However, trends have been inconsistent across regions. 
Canada initially saw a reduction in antimicrobial sales but later 
experienced an increase. Globally, clinical antibiotic usage has risen, 
with daily defined doses (DDDs) per 1,000 people increasing from 

TABLE 2 Trends in global antibiotic consumption from 2010 to 2023: an analysis of usage patterns across different regions and antibiotic (Al-Taani 
et al., 2022; Al Meslamani, 2023; Ardakani et al., 2024; Cuevas et al., 2021; Kamere et al., 2022; Quaik et al., 2020).

Year Total antibiotic 
consumption (tons)

Consumption 
per animal (mg/kg)

Regional distribution of antibiotic 
usage (%)

Most used antibiotics 
(%)

2010 80,000 90.91–100.00 Asia (30%), Far East and Oceania (25%), Americas (20%) Tetracyclines, Penicillins

2011 82,000 88.65–96.35 Asia (32%), Far East and Oceania (24%), Americas (18%) Tetracyclines, Penicillins

2012 85,000 85.12–92.73 Asia (34%), Far East and Oceania (23%), Americas (17%) Tetracyclines, Penicillins

2013 88,000 82.89–90.55 Asia (35%), Far East and Oceania (22%), Americas (16%) Tetracyclines, Penicillins

2014 90,000 80.88–88.63 Asia (36%), Far East and Oceania (21%), Americas (15%) Tetracyclines, Penicillins

2015 92,000 79.13–86.96 Asia (37%), Far East and Oceania (20%), Americas (14%) Tetracyclines, Penicillins

2016 85,000 78.33–86.33 Asia (36%), Far East and Oceania (20%), Americas (15%) Tetracyclines, Penicillins

2017 83,000 76.74–84.44 Asia (35%), Far East and Oceania (21%), Americas (16%) Tetracyclines, Penicillins

2018 81,000 75.16–82.56 Asia (34%), Far East and Oceania (22%), Americas (17%) Tetracyclines, Penicillins

2019 79,000 73.81–81.33 Asia (33%), Far East and Oceania (23%), Americas (18%) Tetracyclines, Penicillins

2020 78,000 72.55–80.33 Asia (32%), Far East and Oceania (24%), Americas (19%) Tetracyclines (34%), Penicillins (13%)

2021 77,000 71.37–79.22 Asia (31%), Far East and Oceania (25%), Americas (20%) Tetracyclines (35%), Penicillins (14%)

2022 76,000 70.25–78.17 Asia (30%), Far East and Oceania (26%), Americas (21%) Tetracyclines (35%), Penicillins (14%)

2023 75,000 69.19–77.17 Asia (29%), Far East and Oceania (27%), Americas (22%) Tetracyclines (36%), Penicillins (15%)

TABLE 3 Global antibiotic consumption trends by class from 2010 to 2023: a comparative analysis of usage patterns across different antibiotic classes 
(Al-Taani et al., 2022; Al Meslamani, 2023; Ardakani et al., 2024; Cuevas et al., 2021; Kamere et al., 2022; Quaik et al., 2020).

Year Total antibiotic consumption (tons) T* P* M* S* A* F* O*
2010 80,000 40% 20% 15% 10% 5% 5% 5%

2011 82,000 38% 22% 16% 11% 6% 4% 3%

2012 85,000 37% 23% 17% 12% 6% 4% 3%

2013 88,000 36% 24% 17% 12% 6% 4% 3%

2014 90,000 35% 25% 18% 12% 6% 4% 3%

2015 92,000 34% 26% 18% 12% 6% 4% 3%

2016 85,000 33% 27% 19% 12% 6% 4% 3%

2017 83,000 32% 28% 19% 12% 6% 4% 3%

2018 81,000 32% 29% 19% 12% 6% 4% 3%

2019 79,000 31% 30% 20% 11% 6% 4% 3%

2020 78,000 30% 31% 20% 11% 6% 4% 3%

2021 77,000 30% 32% 20% 11% 6% 4% 3%

2022 76,000 29% 33% 21% 10% 6% 4% 3%

2023 75,000 28% 34% 21% 10% 6% 4% 3%

*T: tetracyclines, P: penicillins, M: macrolides, S: sulfonamides, A: aminoglycosides, F: fluoroquinolones, and O: others.
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9.8 in 2000 to 14.3 in 2018 (Browne et al., 2021). This trend raises 
serious concerns about the growing prevalence of antibiotic-resistant 
bacteria, which pose a significant public health threat.

A notable shift in global antibiotic consumption occurred during 
the COVID-19 pandemic. Between 2019 and 2020, antibiotic 
utilization dropped by 20.84%, from 2,928.33 units per 1,000 
individuals to 2,317.94 units (Khouja et  al., 2022). This decline 
coincided with pandemic-related control measures, suggesting a 
correlation between stricter healthcare protocols and reduced 
antibiotic use. Additionally, hospitalized patients exhibited a shift 
from using antibiotics in the “Access” category to more restrictive 
“Watch” and “Reserve” groups, reflecting changes in prescribing 
patterns (Hussein and Ali, 2021; Hussein et al., 2022).

Paradoxically, the early stages of the pandemic saw a surge in 
antimicrobial consumption, driven by concerns over bacterial 
co-infections and the precautionary use of antibiotics, despite 
COVID-19 being a viral disease (Kumar et al., 2023). Over time, stricter 
regulations led to a global decline in antibiotic consumption. However, 
the overuse and misuse of antibiotics during the pandemic exacerbated 
antimicrobial resistance (AMR), heightening the risk of treatment 
failure, prolonged hospital stays, and increased mortality (Hussein et al., 
2022). The pandemic underscored the urgent need for stronger 
antibiotic stewardship, responsible prescribing practices, and enhanced 
global awareness to mitigate the threat of AMR. Without immediate 
intervention, AMR could undermine modern medicine, making once-
treatable infections life-threatening (Gulumbe et al., 2023).

2.2 Challenges in implementing global 
action plans for antimicrobial resistance

The Global Action Plan on Antimicrobial Resistance (AMR), 
endorsed by the 68th World Health Assembly in 2015, aimed to drive 
global efforts to combat antibiotic resistance (Gostin et al., 2020; Truché 
et  al., 2020). Since then, numerous governments and regions have 
developed strategic initiatives to address AMR (Khouja et al., 2022; 
Bolbanabad et al., 2023). The AMR National Action Plan (NAP) Library 
was assessed on January 31, 2023 (Saleem et al., 2022), revealing that 
134 out of 194 countries—comprising 69% of nations worldwide, 
including 40 non-English-speaking countries—have officially adopted 
NAPs. While most nations align with the Global Action Plan (GAP) 
framework, significant variations exist in the implementation of AMR 
programs (Charani et al., 2023; Chua et al., 2021). According to the 
World Organization for Animal Health (WOAH), approximately 
one-third of countries globally continued using antibiotics for livestock 
growth promotion in 2022 (Gehring et al., 2023). These disparities 
reflect inconsistencies in the design, execution, and monitoring of NAPs 
across different regions. The necessity of a well-structured, country-
specific NAP tailored with targeted interventions to combat AMR is 
indisputable (Charani et al., 2023).

However, concerns persist regarding the effectiveness of current 
policies, particularly in low- and middle-income countries (LMICs), 
where AMR remains a pressing issue (Bolbanabad et  al., 2023). 
Willemsen et al. (2022) emphasize that inadequate infrastructure, a lack 
of skilled professionals, and limited financial resources hinder the 
successful implementation of AMR management strategies. 
Furthermore, the increased interconnection between human 
populations, livestock, and agricultural ecosystems in LMICs exacerbates 

the risk of antibiotic resistance transmission, highlighting the urgent 
need to bridge these gaps (Checcucci et al., 2020) (see Table 4).

In 2019, agricultural employment accounted for an average of 
23.51% of the global workforce, but this figure concealed stark contrasts 
between high- and low-income nations. In wealthier countries, where 
economies have shifted toward industry and services, agricultural 
employment was typically below 5%. In contrast, it exceeded 70% in 
many low- and middle-income nations, underscoring agriculture’s role 
as a primary livelihood source (Chen et al., 2023). The unregulated 
livestock trade exacerbates global challenges, particularly antibiotic 
resistance. In Colombia (2018), the widespread presence of cattle, along 
with the illegal sale of refrigerated chicken meat in Nigeria, illustrates 
how weak regulation enables the spread of resistant bacteria (Zapata-
Cortés, 2020). Many countries attempt to mitigate environmental 
resistance through top-down strategies, such as Non-Aligned Party 
interventions. However, these measures often fall short in moderate- 
and low-income nations due to systemic barriers, including a shortage 
of skilled professionals, weak veterinary drug regulations, illegal 
livestock trade, and frequent human-animal interactions (Iera et al., 
2025; Anderson et al., 2019). Effectively combating antibiotic resistance 
requires comprehensive national action plans that integrate both 
top-down policies and grassroots initiatives. While strong regulations 
and interventions are crucial for promoting responsible antibiotic use, 
community-driven strategies—such as public awareness campaigns 
and local management efforts—are equally vital, particularly in 
developing regions where agriculture remains central to the economy 
and infrastructure is limited (see Table 5).

3 Sources and transmission pathways 
of antibiotic resistance in medical and 
livestock environments

Previous studies (Checcucci et al., 2020; Hetman et al., 2022; Osman 
et al., 2021) have identified healthcare facilities, farmland, wastewater 
treatment plants (WWTPs), and agricultural areas as key sources of 
ARGs and ARB. These regions serve as significant reservoirs of resistant 
bacteria and genes, facilitating the transmission of bacterial resistance 
among animals, humans, and the environment (Bunduki et al., 2024; 
Mugerwa et al., 2021; Okpala et al., 2021). Consequently, they are crucial 
in antibiotic stewardship and resistance prevention efforts. Hospitals, in 
particular, are significant contributors to the spread of ARB and ARG 
(Haseeb et al., 2022). Table 6 provides a comprehensive overview of the 
sources and transmission pathways of antibiotic resistance in medical 
and livestock settings. It details various sources, including freshwater 
bodies, WWTPs, farms, hospitals, and their respective transmission 
mechanisms. Understanding these pathways is essential for developing 
effective strategies to curb the spread of antibiotic resistance.

Hospitals, due to their specialized functions, inevitably serve as 
reservoirs for infectious agents. Various healthcare environments, 
including water systems (sewers, taps, sinks), medical instruments 
(scissors, work tables, switches, infusion stands), and bedding 
(mattresses), are highly susceptible to microbial contamination and 
biofilm formation. The presence of antibiotic-resistant genes (ARGs) 
and antibiotic-resistant bacteria (ARBs) significantly increases the risk 
of pulmonary infections (Haseeb et al., 2022). Research by He et al. 
(2020) confirms that hospital bacteria commonly exhibit antibiotic 
resistance, reinforcing the role of healthcare facilities as hubs for ARG 
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and ARB transmission. Additionally, exposure to pharmaceuticals, 
contaminated surfaces, and shared hospital wards facilitates ARB 
spread among healthcare workers and patients. Mitigating 
contamination requires strict antibiotic stewardship, rigorous 
sterilization protocols, and standardized medical waste management.

Similarly, agricultural environments—particularly farms with 
intensive veterinary antibiotic use, high animal densities, and 

nutrient-rich conditions—are hotspots for antibiotic resistance 
emergence and proliferation (Bai et al., 2022). Studies (Bai et al., 2022; 
Cui et al., 2024; Ding et al., 2022; Georgakakos et al., 2021) confirm 
the widespread presence of ARGs and ARBs in animal waste, 
wastewater, soil, and air. Resistance genes such as tet(X) (conferring 
tigecycline resistance) and mcr-1 (associated with colistin resistance) 
have been detected in humans, animals, and the environment (Khan 

TABLE 4 A comprehensive overview of the key challenges, disparities, and barriers in the effective implementation of global action plans on 
antimicrobial resistance (AMR): A comparative analysis across regions and stakeholders (Anderson et al., 2019; Ashiru-Oredope et al., 2023; Bolbanabad 
et al., 2023; Willemsen et al., 2022; Chinemerem Nwobodo et al., 2022; Pham et al., 2024; Villarreal et al., 2023).

Challenges and disparities Description Implications

Lack of coordination Limited coordination among countries and stakeholders in 

implementing GAPs leads to fragmented efforts and inefficiencies.

Inconsistent strategies and priorities hinder the 

effectiveness of AMR containment measures.

Resource constraints Many countries, particularly low- and middle-income nations, lack 

adequate financial resources, infrastructure, and trained personnel to 

implement GAPs effectively.

Inadequate funding and infrastructure result in 

suboptimal surveillance, stewardship, and infection 

prevention efforts.

Limited surveillance capacity Weak surveillance systems in some regions result in underreporting 

and insufficient data on AMR prevalence and trends.

Inaccurate data impedes evidence-based decision-

making and monitoring of AMR containment efforts.

Inadequate access to essential medicines Disparities in access to antimicrobials and diagnostics contribute to 

inappropriate use and misuse of antibiotics, fueling AMR.

Limited access to effective treatments jeopardizes 

patient outcomes and undermines efforts to control 

resistant infections.

Poor antibiotic stewardship practices Inadequate implementation of antimicrobial stewardship programs in 

healthcare facilities leads to overuse and misuse of antibiotics.

Suboptimal prescribing practices contribute to the 

emergence and spread of resistant pathogens, 

compromising patient safety.

Antibiotic use in agriculture The widespread use of antibiotics in agriculture, particularly for growth 

promotion and prophylaxis, contributes to AMR through 

environmental contamination and selection pressure.

Agricultural practices contribute significantly to AMR 

but are often inadequately addressed in GAPs.

Limited regulatory oversight Weak regulatory frameworks and enforcement mechanisms fail to 

effectively regulate the sale and use of antibiotics in human and 

veterinary medicine.

Inconsistent regulations enable the unrestricted use of 

antibiotics, exacerbating AMR.

Global disparities in AMR awareness Variations in AMR awareness among policymakers, healthcare 

providers, and the general public hinder coordinated action and 

behavior change.

Inadequate awareness perpetuates misconceptions 

about antibiotic use and resistance, hindering efforts to 

address AMR.

Inequitable access to technology and 

innovation

Disparities in access to diagnostic tools, vaccines, and novel 

antimicrobial agents limit effective AMR management in resource-

limited settings.

Lack of access to innovative solutions impedes progress 

in controlling resistant infections and improving 

patient outcomes.

TABLE 5 A comprehensive overview of global efforts to combat antimicrobial resistance, highlighting common challenges and disparities across 
regions and countries (Catteau et al., 2024; Charani et al., 2023; Chua et al., 2021; Özçelik et al., 2022; Tanno and Demoly, 2020).

Action plan name Year 
implemented

Main focus 
areas

Challenges in 
implementation

Disparities in implementation

WHO GLOBAL Action 

Plan

2015 Surveillance, 

Awareness, Research

Limited surveillance infrastructure, lack of 

awareness among healthcare providers

Disparities in funding and resources 

between developed and developing countries

US National Action Plan 2015 Antimicrobial 

Stewardship

Resistance from agricultural and 

pharmaceutical industries, lack of 

regulatory power

Variations in implementation and 

enforcement across states

UK 5-Year Antimicrobial 

Strategy

2013 Education, 

Innovation

Resistance from prescribing physicians, 

funding limitations for research and 

education

Regional variations in awareness and access 

to antimicrobial resources

EU One Health Action 

Plan

2017 One Health 

Approach

Coordination challenges between human 

and veterinary healthcare sectors

Disparities in regulatory frameworks and 

surveillance capabilities

Australian National AMR 

Strategy

2015 Surveillance, 

Education

Limited data sharing between states and 

territories, inadequate public awareness

Rural and remote regions face challenges in 

accessing healthcare.
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TABLE 6 Sources and transmission pathways of antibiotic resistance in various environments (Acolatse et al., 2022; Harun et al., 2024; Haseeb et al., 
2022; Liu et al., 2018; Otieku et al., 2024).

Environment Sources of antibiotic resistance Transmission Pathways

Hospitals - Contaminated surfaces and objects - Direct contact with contaminated surfaces and objects

- Aerosols carrying pathogenic bacteria and ARG - Inhalation of aerosols generated in hospital environments

- Use of antibiotics leading to ARB in hospital settings - Interaction with contaminated objects or patients

Farms - Widespread use of veterinary antibiotics - Soil and water contamination with ARB and ARG

- High concentrations of animals - Direct contact between animals and humans

- Nutrient-rich environments fostering bacterial growth - Consumption of contaminated food products

Wastewater Treatment 

Plants (WWTPs)

- Presence of ARG in wastewater - Discharge of treated wastewater into the environment

- Inefficiencies in conventional treatment processes - Aerosols generated during treatment processes

- Transmission from municipal and hospital effluents - Irrigation of agricultural fields with treated wastewater

- Exposure to ARG and ARB through contaminated produce and water - Direct contact with contaminated irrigation water

Freshwater Bodies - Pollution from urban, industrial, and agricultural runoff - Recreational activities in contaminated water bodies

- Presence of ARG and ARB in aquatic environments - Inhalation of aerosols from contaminated water bodies

- Transmission via direct contact with pets and shared transportation systems - Ingestion of contaminated water and food products

et  al., 2021). Additionally, resistant bacterial strains—including 
extended-spectrum beta-lactamase (ESBL)-producing E. coli and 
methicillin-resistant Staphylococcus aureus (MRSA)—have been 
identified in agricultural settings (Crespo-Piazuelo and Lawlor, 2021). 
Environmental factors such as antibiotics, pH, temperature, and 
oxygen levels facilitate ARG transfer between bacteria, contributing 
to cross-contamination risks for agricultural workers and surrounding 
communities (Carfora et al., 2016; Liu et al., 2016; Tong et al., 2022; 
Hounmanou et al., 2021).

Wastewater treatment plants (WWTPs), processing municipal and 
hospital effluents, are also major reservoirs of ARBs and ARGs (Bueno 
et al., 2020). Studies have detected ARGs such as sulI, qnrA, ermB, and 
blaCMY in wastewater (Herraiz-Carboné et al., 2022; Kayali and Icgen, 
2020), highlighting the limitations of conventional treatment methods. 
Aerosols generated during wastewater processing can disperse ARGs 
into surrounding areas, while irrigation with contaminated water and 
agricultural use of animal waste further propagate their spread into 
food products (Liu and Song, 2019). Consequently, fresh produce and 
meat remain vulnerable to contamination throughout production and 
processing, posing potential health risks to consumers.

Freshwater bodies are similarly at risk of ARG and ARB 
contamination from urban and industrial discharges, as well as 
agricultural runoff. Human exposure occurs through direct contact 
during recreational activities, inhalation of contaminated aerosols, or 
ingestion of polluted water (Che et  al., 2019). Additionally, close 
interactions between pet owners and animals, along with shared 
public spaces, may contribute to ARG and ARB dissemination. 
However, accurately assessing human exposure remains challenging 
due to the complexity and variability of these transmission pathways.

4 Interventions for mitigating 
antibiotic resistance transmission in 
humans

ARG and ARB in the human body pose substantial health 
hazards comparable to ticking time bombs. When someone is sick or 

has a weaker immune system, opportunistic infections can quickly 
multiply, which can cause antibiotics not to work effectively (Andrina 
et  al., 2020). ARGs and ARB can arise within the human body 
through two primary mechanisms. The first mechanism involves de 
novo emergence via spontaneous mutation in the host microbiome 
or by introducing external ARBs and ARGs (Alame Emane et al., 
2021). This can be colloquially described as “starting from scratch.” 
The second mechanism involves horizontal gene transfer (HGT) of 
ARGs within bacterial communities, a process denoted as “from less 
to more” (Zhang F. et al., 2022).

Moreover, it is essential to have practical approaches for restoring 
the sensitivity of ARB to prevent the emergence of additional 
resistance. Therefore, it is crucial to hinder the colonization of foreign 
ARG and ARB in humans, reduce the horizontal gene transfer (HGT) 
of the collection of resistance genes within the body, and reverse 
bacterial resistance (see Figure 3).

4.1 ARB transmission and bacterial 
colonization dynamics

According to Salyers et al. (2004) and Lee et al. (2020), antibiotic-
resistant bacteria (ARB) play a crucial role in transferring antibiotic 
resistance genes (ARGs) to other organisms, including commensal 
bacteria in the intestines. Pathogenic bacteria have developed various 
virulence factors to overcome colonization resistance, allowing them 
to establish themselves in the gut and cause infection or disease. 
These factors significantly impact the human microbiome.

Bacterial colonization is a complex process involving movement, 
response to chemical signals, attachment, penetration, and the use of 
a specialized secretion system known as the Type VI secretion system 
(T6SS) (Klassert et al., 2021) (Figure 4). Table 7 presents a detailed 
overview of strategies to reduce bacterial colonization capacity by 
targeting flagellar motility, disrupting bacterial adhesion, and 
leveraging the Type VI secretion system. Each strategy is supported 
by examples of methods or approaches for effective implementation 
(Borgeaud et al., 2015).
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4.1.1 Targeting flagellar motility for bacterial 
colonization prevention

Flagellar motility and chemotaxis play crucial roles in helping 
bacteria detect nutrient sources and thrive in favorable environmental 
conditions, enhancing their colonizing ability (Colin et al., 2021). The 
bacterial flagellum is a remarkable molecular machinery that 
facilitates bacterial or pathogenic movement. Through flagellar-
mediated chemotaxis (Colin et  al., 2021), bacteria can navigate 
toward specific regions within new hosts, thereby promoting 
colonization, invasion, and growth (Figure 5). Recent research by 
Kreuder et al. (2020) demonstrated that a short noncoding RNA, 
CjNC110, can influence the mobility of Campylobacter jejuni, 
enhancing its ability to establish in animal hosts. Consequently, 
modulating flagellar mobility may reduce bacterial adherence 
and motility.

Additionally, studies by Šimunović et al. (2020) have shown that 
essential oils and ethanolic extracts can diminish Campylobacter jejuni 
invasion and motility on INT407 epithelial cells by targeting the LuxS 
system. Given the significance of flagellar motility and chemotaxis in 
bacterial colonization, interventions aimed at reducing bacterial or 
pathogen motility hold promise for colonization prevention. Bacteria 
with decreased motility are less likely to locate favorable environmental 
niches, limiting their ability to adhere to and penetrate host tissues 
(Colin et al., 2021).

4.1.2 Mechanisms and strategies to disrupt 
bacterial adhesion

To establish colonization and cause infection, Staphylococcus 
aureus must first adhere to and invade host tissues (Asadi et al., 2019). 
This process is facilitated by specific surface proteins known as 
adhesins, which play a crucial role in bacterial attachment. Among 
these, fibronectin-binding proteins (FnBPA and FnBPB) and laminin-
binding proteins (Lmb) are particularly significant, aiding in persistent 
colonization of the nasal passages and intestines (Tewawong et al., 
2020; Speziale and Pietrocola, 2020). Additionally, clumping factors A 
and B (ClfA and ClfB) enhance adhesion by binding to skin proteins, 
further promoting nasal colonization (Chen et al., 2020).

For successful infection, pathogens must firmly attach to the 
mucosal epithelium while overcoming host defenses such as 
secretions, movement, and peristalsis. Bacterial pili, encoded by 
multiple genes, are critical in this process, enhancing survival and 
biofilm formation. Type IV pili (T4P) are particularly essential for 
bacterial attachment, niche selection, and population expansion 
(Ligthart et al., 2020). Preventing bacterial adhesion can significantly 
reduce colonization and infection risk, strengthening the host’s ability 
to combat pathogens. Various strategies have been explored to 
disrupt bacterial attachment, including inhibiting pili formation, 
interfering with adhesion mechanisms, and utilizing vaccines or 
antibodies targeting adhesion factors (O'Brien et al., 2002).

FIGURE 3

Antimicrobial resistance and its potential implications across organisms: exposure to selective pressure can promote the transmission of antibiotic 
resistance genes (ARGs) within microbial communities, including biofilms. Floating vegetation has the ability to absorb and harbor ARGs, which are 
introduced into aquatic environments from various sources. Once in these environments, ARGs can spread through microbial genetic exchange, food 
chains, and selective pressure. A potential pathway for ARGs includes transmission to humans and animals through contaminated water or infected 
fish. (Created with BioRender.com).
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FIGURE 4

An illustration highlighting the suppression of colonization and multiplication by ARB and Antibiotic-Resistant Genes (ARG). Strategies to hinder the 
spread of the pathogen encompass the following: (01) reducing the ability of bacteria to colonize the microbiome; (02) strengthening resistance to 
colonization by the microbiome and preventing horizontal gene transfer; and (03) reversing bacterial resistance to antibiotics.

TABLE 7 Strategies to combat bacterial colonization: targeting motility, adhesion, and secretion mechanisms (Ducarmon et al., 2019; Hsieh et al., 2019; 
Klassert et al., 2021; Klassert et al., 2020).

Strategy Description Examples/Methods

Targeting Flagellar Motility Flagellar motility is crucial for bacterial 

movement and colonization. Inhibiting 

flagellar function can impede bacterial 

migration and adhesion to host surfaces.

1. Chemical inhibitors: Compounds that interfere with flagellar motor proteins or 

disrupt flagellar assembly.

2. Genetic manipulation: Knocking out genes involved in flagellar synthesis or assembly 

can impair flagellar motility.

3. Physical barriers: Surface coatings or materials that inhibit flagellar movement by 

creating an unfavorable environment for bacterial attachment.

4. Antibodies: Targeting flagellar proteins with specific antibodies can prevent bacterial 

motility and adhesion.

Disrupting Bacterial Adhesion Bacterial adhesion is a critical step in 

colonization. Disrupting adhesion 

mechanisms prevents bacteria from attaching 

to host tissues and surfaces, reducing 

colonization capacity.

1. Adhesion inhibitors: Compounds that interfere with bacterial adhesins or host 

receptors, preventing attachment.

2. Anti-adhesion vaccines: Vaccines containing antigens from bacterial adhesins can 

induce an immune response, blocking bacterial attachment.

3. Antibodies: Monoclonal antibodies targeting bacterial adhesins can block adhesion to 

host cells.

4. Competitive inhibitors: Molecules that compete with bacteria for binding sites on host 

surfaces, preventing colonization.

Type VI Secretion System 

(T6SS)

The T6SS is a bacterial weapon used for 

interbacterial competition and host 

colonization. Inhibiting T6SS activity can 

disrupt bacterial colonization and virulence.

1. Small molecule inhibitors: Compounds that target T6SS components or disrupt T6SS 

function, impairing bacterial competition and colonization.

2. Genetic manipulation: Knocking out or downregulating T6SS genes in bacteria can 

attenuate virulence and colonization capacity.

3. Phage therapy: Bacteriophages targeting T6SS-positive bacteria can selectively kill 

pathogens, reducing colonization in the host.

4. Immunotherapy: Neutralizing antibodies against T6SS effectors or structural proteins 

can block T6SS-mediated toxicity and colonization.
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One promising approach involves lactoferrin, which exhibits 
antibacterial properties by downregulating virulence genes associated 
with adhesion, such as flagellin, F18 fimbriae, and F4 fimbriae in 
intestinal epithelial cells (Dierick et al., 2020). Similarly, Ortiz et al. 
(2021) demonstrated that rifaximin, oregano extract, and carvacrol 
can modulate the expression of adhesion-related genes (ae, aggA, aap, 
pic, and aggR) in Escherichia coli, reducing its ability to adhere to 
HEp-2 cells. These findings offer promising insights into the 
molecular mechanisms governing bacterial colonization and 
highlight potential pathways for developing targeted anti-
adhesion vaccines.

Further research by Von Mentzer et  al. (2020) identified 
glycosphingolipids as potential receptors for enterotoxigenic E. coli 
(ETEC) colonization factor CS30. Additionally, studies by Akhtar 
et al. (2019), Leach et al. (2017), and Qadri et al. (2020) suggest that 
combining multiple antigens—such as colonization factors CS5, CS3, 
and CFA/I—with cross-reactive antibodies effectively inhibits 
bacterial attachment in humans. This multi-antigen strategy provides 
a comprehensive defense against bacterial colonization and infection.

Beyond pharmaceutical interventions, bioactive compounds 
found in food, such as proanthocyanidins and polyphenols, have 
demonstrated the ability to bind bacterial flagella and pili, preventing 
aggregation and adhesion. This targeted approach offers advantages 
over conventional antibiotics, as it selectively disrupts bacterial 
adhesins without inducing bacterial death, thereby reducing the risk 
of resistance development (Gowd et al., 2019). While sub-inhibitory 
antibiotic doses can also reduce bacterial adherence, they contribute 

to the spread of antibiotic resistance genes (ARGs) due to selective 
pressure. In contrast, natural bioactive compounds present a 
promising early-stage therapy alternative, as they do not promote 
antibiotic-resistant bacteria (Gurumallu and Javaraiah, 2021). 
Continued research into adhesion inhibitors and their mechanisms 
of action holds great potential for novel therapeutic interventions 
against bacterial infections.

4.1.3 T6SS and OMVs
The Type VI secretion system (T6SS) is a specialized mechanism 

employed by Gram-negative bacteria to inject toxic compounds into 
rival microbes, fostering microbial competition (Borgeaud et  al., 
2015). This system allows pathogens to bypass the natural defense 
mechanisms of the host’s commensal microbiota, granting them a 
competitive edge and enabling prolonged persistence within the host. 
Additionally, bacterial cell death triggered by T6SS releases DNA, 
serving as a substrate for horizontal gene transfer and facilitating the 
spread of antibiotic resistance genes (ARGs) (Hachani et al., 2016). 
By manipulating the microbiota in this manner, pathogenic bacteria 
can evade immune responses and outcompete beneficial microbes.

Outer membrane vesicles (OMVs) play a crucial role in bacterial 
competition, antibiotic resistance, and horizontal gene transfer. 
Recent findings by Li et al. (2022) highlight the importance of the 
lipopolysaccharide (LPS)-binding effector TeoL in T6SS-mediated 
recognition and utilization of OMVs. TeoL interacts with OMVs in 
the surrounding environment, enhancing bacterial adaptation. T6SS 
thus provides a substantial advantage for bacteria colonizing 

FIGURE 5

Overview of the Bacterial Flagellum as an Adhesin (a) The flagellum facilitates bacterial attachment to eukaryotic cells indirectly by enabling motility, 
allowing bacteria to reach target sites. (b) It can also directly bind to epithelial cells on both the apical and basolateral surfaces. (c) The flagellum targets 
various receptors, including mucus, mucins, glycans on cell surfaces or in mucus, extracellular matrix (ECM) proteins, and the bacterial-secreted 
protein EtpA, which aids in adhesion to host cells. (d) Furthermore, the flagellum can mediate inter-bacterial adhesion, connecting different bacterial 
species. (Created with BioRender.com).
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symbiotic microbiota niches (Figure  6), shaping microbial 
communities and influencing horizontal gene transfer. Exploring the 
interactions between T6SS, OMVs, and gene transfer mechanisms 
could provide deeper insights into the role of T6SS in the 
dissemination of ARGs.

Efficient suppression of the Type VI Secretion System (T6SS) 
presents a promising strategy to control the infiltration of 
symbiotic bacteria into specific niches and regulate the invasion of 
foreign pathogens. Research by Sima et al. (2018) and Balta et al. 
(2021) has demonstrated that Auranta 3,001, a formulation 
containing organic acids and plant extracts, effectively reduces the 
infection potential and cecal colonization of Campylobacter coli 
and Campylobacter jejuni. This occurs through the downregulation 
of genes associated with T6SS. Similarly, paramyxoviruses can 
diminish their virulence when exposed to a combination of citrus 
extract, lactic acid, and citric acid (E330), which inhibits the T6SS-
associated hcp1 and hcp2 genes. These findings suggest that 
reducing T6SS activity or minimizing direct interactions with 
unrelated bacteria can help protect bacterial populations while 
preserving microbial diversity and abundance. By counteracting 
T6SS-dependent mortality, this approach enhances the resilience 
of commensal bacteria, enabling them to better withstand 
colonization in the human host.

4.2 Microbial colonization resistance

Colonization resistance (CR) is vital in host-microbial 
interactions. It actively hinders the establishment of foreign microbes 
in the body by many mechanisms, such as immune-mediated 
responses (Buffie and Pamer, 2013). The mechanisms involve the 
secretion of antimicrobial substances such as bacteriocins, bile acids, 
and short-chain fatty acids. They also include competing for necessary 
nutrients, maintaining the integrity of the intestinal barrier, and 
influencing the host’s immune response (Seekatz et  al., 2022; 
Styczynski et al., 2023). Microbiota disruptions caused by variables, 
including antibiotic usage and non-antibiotic medications, such as 
antipsychotics and anti-diabetic drugs, might change the makeup of 
microbes, leading to a compromised ability to resist colonization 
(Seekatz et al., 2022).

The host’s microbiota typically demonstrates tolerance towards 
the majority of invading germs. Microbiomes with a higher diversity 
level show a more vital ability to withstand and recover from external 
bacterial assaults or infections. Hence, maintaining the composition 
and variety of indigenous microbiota improves its capacity to resist 
colonization by exogenous bacteria (Styczynski et al., 2023). ARGs can 
spread among bacterial species by horizontal gene transfer (HGT), 
particularly in diverse microbial communities like human and animal 

FIGURE 6

Pathogenic Escherichia coli (E. coli) and commensal Citrobacter rodentium (C. rodentium) employ Type VI secretion systems to facilitate their 
colonization and persistence within the gut environment. (Created with BioRender.com).
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gut. Gaining a more profound comprehension of horizontal gene 
transfer (HGT) pathways in the gastrointestinal tract could expedite 
the advancement of medicines to diminish the dissemination of 
antibiotic-resistant genes (Ducarmon et  al., 2019). Several studies 
(Buffie and Pamer, 2013; Khazaei et al., 2020; Le Guern et al., 2021) 
have confirmed a robust association between the distribution of ARGs 
and the evolutionary relationships of bacteria. In addition, the 
microbiome makeup is influenced by several factors that also impact 
the abundance of ARGs.

4.2.1 Gut microbiome response to antibiotics
The human gut microbiome serves as a significant reservoir of 

antibiotic resistance genes (ARGs) and plays a crucial role in the 
emergence and spread of antibiotic-resistant bacteria (ARB) and 
ARGs (Zhang et al., 2024). Antibiotic use profoundly impacts the gut 
microbiome’s composition and resistance gene profile, often leading 
to the depletion of both beneficial and harmful bacteria. The extent of 
this impact depends on factors such as the specific antibiotic used, the 
mode of administration, and the patient’s preexisting gut microbiota 
(Ahuja et al., 2022). Broad-spectrum antibiotics, in particular, tend to 
reduce microbial diversity, facilitating the proliferation of antibiotic-
specific ARGs. The influence of different antibiotics on the gut 
microbiome varies significantly. For instance, Willmann et al. (2019) 
demonstrated that cotrimoxazole administration led to a 148.1% 
increase in sulfonamide ARGs, whereas ciprofloxacin had little effect 
(Batra et al., 2017). Similarly, certain antibiotics, such as macrolides, 
glycopeptides, and β-lactams, can reduce populations of beneficial 
commensals like lactic acid bacteria and bifidobacteria, disrupting gut 
homeostasis (Li et al., 2023).

The distinction between bacteriostatic and bactericidal antibiotics 
further influences resistance development and dissemination. 
Bacteriostatic agents inhibit bacterial growth and replication without 
directly killing the bacteria, allowing the immune system to clear the 
infection. They primarily target processes like protein synthesis or 
metabolic pathways. In contrast, bactericidal agents directly kill 
bacteria by disrupting essential cellular structures, such as the cell 
wall, membrane, or DNA integrity (Hong P. Y. et  al., 2020). The 
effectiveness of these agents depends on factors like bacterial species, 
antibiotic concentration, and environmental conditions. While 
bactericidal agents are often preferred for severe infections due to 
their rapid action, bacteriostatic agents are useful for controlling 
bacterial growth in less critical cases. Notably, bactericidal antibiotics 
tend to reduce mutation rates, thereby lowering the risk of 
resistance development.

The mode of antibiotic administration also influences gut 
microbiota disruption and ARG selection. Studies by Fan et al. (2021), 
Guo et al. (2022), Kelly et al. (2021), and Zhang et al. (2013) indicate 
that injectable tetracycline and ampicillin have a lesser impact on 
intestinal ARGs compared to oral administration. Injections help 
maintain microbiota stability and reduce the depletion of beneficial 
bacteria. Additionally, the composition of the gut microbiome before 
antibiotic treatment plays a crucial role in determining treatment 
outcomes. Interestingly, non-antibiotic drugs can also contribute to 
ARG dissemination in clinical and environmental settings through 
plasmid-mediated transfer (Ding et al., 2022; Wang M. et al., 2022).

Given these complexities, a comprehensive assessment of 
antibiotic administration’s effects on the microbiome and resistome in 
real-world scenarios is essential. Translating laboratory and clinical 

findings into practical strategies is key to combating antibiotic 
resistance while minimizing harm to the host. Selecting antibiotics 
and delivery methods that exert minimal impact on the gut microbiota 
is crucial. Advances in precision medicine, such as supramolecular 
antibiotics, gold nanoparticles, bacteriophage therapy, antibody-
antibiotic conjugates, and nanoparticle-based drug delivery, offer 
promising solutions for targeted antimicrobial therapy. Maier et al. 
(2021) identified compounds like benzbromarone, dicumarol, and 
tolfenamic acid, which protect Bacteroides from erythromycin 
without affecting other microbes. Such counteractive agents, along 
with optimized drug administration techniques and the use of specific 
antibiotics, can significantly reduce microbiota disruption and limit 
ARG proliferation. By integrating these approaches, we can mitigate 
the adverse effects of antibiotics while maintaining a balanced and 
resilient gut microbiome.

4.2.2 Nutritional strategies for gut health and 
antibiotic resistance

Maintaining a healthy gut microbiome is essential for defending 
against the invasion of harmful microorganisms. Diet plays a significant 
role in shaping the composition and resistance capabilities of the gut 
microbiota. Polyphenols, found in fruits, vegetables, cereals, tea, coffee, 
and wine, have garnered attention for their potential health benefits, 
including antioxidant, anti-inflammatory, and anticancer properties 
(de Llano et al., 2020; Gowd et al., 2019; Lal et al., 2021; Maisto et al., 
2023). In vitro studies have shown that polyphenols can regulate the 
human gut microbiota by inhibiting harmful pathogens such as 
Helicobacter pylori and Staphylococcus sp., while promoting beneficial 
bacteria like Lactobacillus and Bifidobacteria (Gowd et  al., 2019). 
Evidence from animal and clinical trials further supports that 
polyphenols influence gut microbial composition, diversity, and the 
Firmicutes to Bacteroidetes (F/B) ratio, largely due to their prebiotic-
like effects (Man et  al., 2020). Flavonoids such as anthocyanins, 
phenolic acids like epicatechins, p-coumaric acid, and o-coumaric acid, 
and other polyphenols, including quercetin, rutin, chlorogenic acid, 
and caffeic acid, have been shown to enhance beneficial gut bacteria 
like Bifidobacterium and Lactobacillus while reducing harmful bacterial 
colonization (Samarasinghe et al., 2019). Catechins, a subgroup of 
polyphenols, promote helpful bacteria such as Clostridium coccoides, 
Eubacterium rectale, and Bifidobacterium sp., while inhibiting harmful 
bacteria like Clostridium histolyticum (Kumar Singh et al., 2019).

However, antimicrobial treatments can disrupt the balance of gut 
bacteria, reducing beneficial species, particularly those that produce 
short-chain fatty acids (SCFAs). This imbalance can create a favorable 
environment for the growth of carbapenem-resistant 
Enterobacteriaceae (CRE) (Lagadinou et al., 2024; Korach-Rechtman 
et al., 2020; Sorbara et al., 2019). Additionally, diets high in sugar, fat, 
and protein have been linked to the promotion of skin bacteria, 
facilitating the spread of genes that confer antibiotic resistance. A 
study by Tan et al. (2022) found that dietary patterns could potentially 
enhance the expression of regulatory genes associated with the 
amplification and transfer of antibiotic resistance genes (ARG). 
Research has shown a strong correlation between high-fat diets and 
an increase in specific ARGs and mobile genetic elements (MGE), 
leading to dysbiosis and compromised immune function (Tan et al., 
2022). Diets tailored to promote gut health, such as low-fat, high-fiber 
diets, can help maintain a healthy microbiome and prevent the 
development of antibiotic-resistant bacteria.
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Further studies have shown that polyphenols, along with essential 
nutrients like vitamins A and D, and Omega-3 fatty acids, significantly 
impact gut microbiota and its barrier function (Cantorna et al., 2019; 
Duan et al., 2022; Gowd et al., 2019; Kawabata et al., 2013). Vitamin 
A, for instance, is suggested as an adjunctive treatment for infectious 
diseases and autism spectrum disorders (ASD), potentially by 
modulating the gut microbiota (Cantorna et al., 2019). Deficiency in 
vitamin A has been linked to reduced gut microbiota diversity and 
lower levels of butyrate-producing bacteria. On the other hand, 
supplementation with retinoic acid has been shown to inhibit murine 
Norovirus replication and lessen infection severity (Lee and Ko, 2016).

Higher calcium intake has been associated with a reduced 
prevalence of obesity, likely due to changes in gut flora linked to lean 
body composition (Surmeneva et al., 2019). Intervention trials have 
found that a daily calcium intake of 1,000 mg increases the presence of 
beneficial Clostridium XVIII in male fecal samples, indicating a higher 
abundance of butyrate-producing bacteria (Yang et al., 2020). In high-fat 
diet mouse studies, calcium supplementation at a dosage of 5.25 g/kg 
enhanced the diversity and abundance of Ruminococcaceae and 
Akkermansia bacteria in the fecal microbiome. Such interventions are 
essential to maintain the structural integrity of the intestinal lining and 
promote a healthy balance of beneficial bacteria, which is crucial for 
preventing the spread of harmful bacteria and antibiotic-resistant genes 
(Surmeneva et al., 2019). Non-nutritive sweeteners, as specific dietary 
additives, have antimicrobial properties and can mimic the effects of 
antibiotics on the gut microbiota (Yang et al., 2020). Therefore, it is 
critical to evaluate dietary choices and nutritional intake carefully to 
regulate the gut microbiome and its susceptibility to antibiotic 
resistance. More research is needed to determine how dietary 
interventions can mitigate health risks related to the load of ARGs and 
antibiotic resistance, as well as to identify which food components are 
most effective against different antibiotic-resistant bacteria (ARB).

4.3 Overcoming antibiotic resistance: 
reversing resistance and enhancing 
susceptibility

Bacteria have developed a variety of mechanisms, both inherent 
and acquired, to mitigate the adverse effects of antibiotics (Table 8). 
Intrinsic resistance predominantly relies on three principal strategies: 
enzymatic inactivation or alteration of antibiotics, mutation of 
antibiotic targets, and the presence of cellular membrane barriers and 
efflux pumps that restrict antibiotic penetration (Zhang H. et al., 2023; 
Zhang R. M. et al., 2023). Conversely, acquired resistance primarily 
results from horizontal gene transfer (HGT) (Chen et al., 2021). This 
process encompasses mechanisms such as transformation 
(incorporation of exogenous DNA into the bacterial genome), 
transduction (transfer of DNA mediated by bacteriophages), 
conjugation (direct exchange of genetic elements between bacteria), 
and DNA transfer facilitated by membrane vesicle transport (Bai et al., 
2022). Developing these mechanisms enables bacteria to acquire 
antibiotic resistance, leading to the emergence of highly resistant 
strains. Carbapenemase-producing colistin-resistant Klebsiella 
pneumoniae is an appropriate example of this phenomenon because it 
exhibits resistance to almost all of the currently available antibiotics 
(Weterings et al., 2015). The World Health Organization (WHO) has 
expressed serious concern regarding a critical shortage of effective 

antibiotics and a concern about the lack of new research and 
development (R&D) efforts in the field (World Health Organization, 
2024; Bull et  al., 2020; Bertagnolio et  al., 2024). To combat the 
escalating threat of antibiotic resistance and ensure the continued 
efficacy of existing antibiotics, strategies beyond the sole development 
of novel drugs are crucial.

4.3.1 Combination of antibiotics
Combination antibiotic therapy, commonly used in clinical 

practice, involves administering two or more antibiotics together to 
prevent bacterial resistance (Liu L. et al., 2021; Liu Y. et al., 2021). This 
approach offers advantages over monotherapy, including improved 
efficacy, broader bacterial coverage, and potentially fewer side effects 
(Eskenazi et al., 2022). Specifically, combinations of aminoglycoside 
antibiotics (AGAs), such as gentamicin, enhance treatment 
effectiveness, accelerate bacterial eradication, and combat antibiotic 
resistance through synergistic effects with β-lactam antibiotics. 
β-lactams facilitate the entry of AGAs into bacteria by causing 
non-lethal damage to the bacterial cell wall, amplifying their 
bactericidal activity (Wang N. et al., 2022). This strategy is particularly 
useful in treating severe hospital-acquired infections caused by 
multidrug-resistant organisms, including pneumonia and sepsis.

Azithromycin, a widely used macrolide with strong antibacterial 
properties and a long half-life, is effective when combined with AGAs 
like gentamicin, specifically in treating Pseudomonas aeruginosa 
infections. This combination allows for dose reductions of both 
antibiotics (Wang N. et  al., 2022). Gentamicin enhances the 
bactericidal effect of azithromycin on both planktonic and biofilm 
cells, with notable success in treating genitourinary gonorrhoea. 
Additionally, antimicrobial peptides (AMPs), derived from plants and 
animals, play a crucial role as the body’s first line of defense against 
pathogens (Costa et al., 2021). With broad-spectrum resistance and 
rapid action, AMPs are emerging as promising antibacterial agents. 
Research shows that AMPs, like PMAP-36 or PRW4, when combined 
with gentamicin, produce synergistic effects against Escherichia coli 
and Staphylococcus aureus by disrupting the bacterial outer membrane, 
enhancing permeability, and facilitating gentamicin’s entry into the 
cytoplasmic membrane. AMPs also exhibit direct antibacterial activity 
through interactions with intracellular targets like DNA.

In treating sepsis and severe Pseudomonas infections caused by 
gram-negative bacteria, combination therapies involving beta-lactam 
antibiotics, aminoglycosides, and fluoroquinolones are common (Fish 
et al., 2002). Studies have also evaluated the combination of polymyxin 
B, doripenem, and rifampin against multidrug-resistant strains of 
A. baumannii and K. pneumoniae (Fish et al., 2002). However, clinical 
outcomes can vary, and the development of antibiotic resistance is 
influenced by factors such as drug interactions and the inadvertent 
selection of resistant bacterial subpopulations. Some studies suggest 
that combination therapy may contribute to the emergence of 
resistance, exacerbating the spread of resistant strains (Liu et al., 2020; 
Bassetti et al., 2022). The increasing prevalence of antibiotic resistance, 
coupled with the slow pace of new antibiotic discovery, highlights the 
need for innovative therapeutic strategies, focusing on next-generation 
antibiotics and alternative treatments. While combination therapy can 
enhance antimicrobial treatment efficacy, it may also lead to 
unintended consequences (Liu L. et al., 2021; Liu Y. et al., 2021). In 
some cases, antibiotics may interact antagonistically, reducing each 
other’s effectiveness. This is particularly concerning when drugs target 
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the same bacterial pathways or have overlapping mechanisms of 
action (Thu et al., 2021). For instance, combining beta-lactams with 
tetracyclines can reduce bacterial cell wall synthesis, as beta-lactams 
inhibit cell wall formation, while tetracyclines prevent protein 
synthesis (Hamadamin et al., 2024). This may impair the bacteria’s 
ability to respond to the cell wall damage caused by beta-lactams, 
reducing treatment efficacy.

Combination therapy, commonly used to treat bacterial infections, 
offers benefits such as a broader activity spectrum and reduced 
resistance risk. However, it can pose challenges like reduced 
bioavailability and increased toxicity (Stielow et  al., 2023). When 
multiple drugs are combined, one may interfere with the absorption 
or distribution of another, decreasing its effectiveness. For instance, 
rifampin can reduce the bioavailability of protease inhibitors by 
inducing liver enzymes that accelerate their metabolism, lowering 
plasma concentrations (Zhuang et al., 2022). Additionally, combining 
drugs with overlapping toxicities, such as aminoglycosides and 
vancomycin, can increase nephrotoxicity and ototoxicity risks. Hence, 
carefully evaluating the risks and benefits of combination therapy is 
crucial to avoid reducing therapeutic efficacy or causing harmful side 
effects. While combination therapies are widely used to treat bacterial 

infections, they can lead to adverse effects, particularily in patients 
with impaired organ function or those on multiple medications (Thu 
et al., 2021). Antibiotics with different mechanisms of action may 
increase resistance, as seen in the use of ampicillin and ceftriaxone for 
Enterococcus faecalis infections, which has led to vancomycin-resistant 
enterococci colonization (Cusumano et  al., 2022). Research by 
Okoliegbe et al. (2021) showed that combination therapy can enhance 
bacterial fitness and resistance, particularly through mexR gene 
inactivation in P. aeruginosa, which reduces antibiotic susceptibility. 
Mathematical models by Berríos-Caro et al. (2021) also demonstrated 
how resource scarcity and bacterial competition could drive resistance 
expression, resulting in double resistance under certain conditions.

The synergy in antimicrobial resistance (AMR) can have 
contradictory effects, accelerating pathogen elimination while 
promoting single-drug resistance. Carolus et al. (2024) found that 
collateral sensitivity could alter AMR development, potentially 
reducing resistance evolution. Anusha et al. (2023) highlighted that 
genetic evolution and cross-resistance are key when considering 
combination therapies. The development of resistance depends on 
factors like drug interactions and both host and pathogen 
characteristics. Angst et  al. (2021) suggested that combination 

TABLE 8 Comprehensive strategies and mechanisms for combating antibiotic resistance: approaches, examples, and applications (Gholipour et al., 
2024; Gitaka et al., 2020; Kasimanickam et al., 2021; Pattnaik et al., 2023).

Strategy Description Examples

1. Antibiotic 

Adjuvants

Chemical compounds or molecules are administered alongside antibiotics to 

enhance their efficacy or counteract resistance mechanisms.

Example: Beta-lactamase inhibitors like clavulanic acid inhibit 

bacterial enzymes that degrade beta-lactam antibiotics, thus 

restoring antibiotic activity.

2. Combination 

Therapy

Simultaneous use of two or more antibiotics targeting different pathways or 

mechanisms within bacteria, synergistically enhancing antimicrobial activity 

and minimizing resistance development.

Example: Using a combination of beta-lactam antibiotics and beta-

lactamase inhibitors to combat beta-lactamase-producing bacteria.

3. Bacteriophage 

Therapy

Using bacteriophages, viruses that infect and kill bacteria, to target specific 

antibiotic-resistant strains, offering a precise and alternative therapeutic 

approach.

Example: Phage therapy treats infections caused by ARB like MRSA 

(Methicillin-resistant Staphylococcus aureus).

4. CRISPR-Cas 

Systems

Application of CRISPR-Cas gene editing technology to selectively target and 

deactivate ARGs within bacterial genomes, effectively reversing resistance 

phenotypes.

Example: CRISPR-Cas9-mediated disruption of genes encoding 

antibiotic resistance mechanisms in bacteria, rendering them 

susceptible to antibiotics.

5. Antibiotic Cycling Rotating or alternating the use of different antibiotics over time to prevent 

the emergence and spread of resistance, exploiting bacterial vulnerabilities 

during susceptible phases.

Example: Rotating the use of different classes of antibiotics in 

hospitals based on surveillance data to reduce selective pressure and 

resistance emergence.

6. Repurposing 

Existing Drugs

Identifying and utilizing non-antibiotic drugs with secondary antimicrobial 

properties or synergistic effects when combined with antibiotics, expanding 

treatment options, and overcoming resistance.

Example: Repurposing antipsychotic drug chlorpromazine, which 

has been found to potentiate the activity of certain antibiotics 

against resistant bacteria.

7. Probiotics and 

Prebiotics

Administration of beneficial bacteria (probiotics) or compounds promoting 

their growth (prebiotics) to restore or maintain a healthy gut microbiota can 

indirectly enhance antibiotic susceptibility.

Example: Probiotics containing Lactobacillus species can modulate 

gut microbiota and reduce colonization by ARB.

8. Targeting Biofilm 

Formation

Disruption of bacterial biofilms, complex communities of bacteria encased in 

extracellular matrix, using enzymes, surfactants, or antibiofilm agents, which 

can restore antibiotic susceptibility.

Example: Treatment with biofilm-disrupting enzymes like dispersin 

B or DNase to degrade biofilm matrix and enhance antibiotic 

penetration.

9. 

Immunomodulation

Modulation of the host immune response to enhance clearance of bacterial 

infections, reducing the reliance on antibiotics and potentially reversing 

resistance by eliminating bacterial populations.

Example: Administration of immunostimulatory compounds like 

interferons or monoclonal antibodies targeting bacterial surface 

antigens to enhance host immunity against infections.

10. Environmental 

Interventions

Implementing measures to reduce environmental reservoirs of antibiotic 

resistance, such as improved sanitation, waste management, and 

antimicrobial stewardship practices, can limit resistance spread.

Example: Restricting antibiotics in agriculture and promoting 

responsible antibiotic use in healthcare to minimize environmental 

contamination and resistance dissemination.
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therapies are more effective than monotherapies if double resistance 
does not emerge, as resistance mutations usually occur independently, 
and fitness costs of resistance-associated genes are influenced by 
microbial competition. Future research should focus on 
understanding the mechanisms of resistance in combination 
therapies and exploring new combinations that minimize resistance 
development (Wang et al., 2022). Identifying synergistic effects and 
aligning treatments with the pathogen’s behavior can optimize 
therapeutic outcomes. Future studies should assess the impact of 
these strategies on clinical endpoints, such as infection resolution, 
patient morbidity, and long-term resistance patterns (Liu L. et al., 
2021; Liu Y. et al., 2021; Hamadamin et al., 2024).

4.3.2 Antibiotic-adjuvants
The notion of “adjuvant therapy” holds promise in antimicrobial 

therapies, yet its exploration remains constrained (Douafer et  al., 
2019). Thus, it is imperative to reassess the reliance solely on 
antibiotics for treating bacterial infections and instead explore 
non-antibiotic substances that could mitigate the emergence of 
antibiotic resistance (Douafer et al., 2019). Antibiotic adjuvants are 
compounds designed to bolster the effectiveness of antibiotics by 
either reducing or directly inhibiting mechanisms that confer 
resistance to them. The concept of antibiotic adjuvants draws from the 
successful use of synergistic combinations of two or more antibiotics 
in clinical settings (Hu Y. et al., 2023). These approaches, informed by 
empirical evidence, aim to harness the combined effects of multiple 
agents, broaden the spectrum of efficacy, and overcome resistance 
mechanisms. Unlike conventional antibiotic combinations, antibiotic 
adjuvants exhibit minimal or no antibacterial activity.

Antibiotic adjuvants can be classified into three primary types 
based on their target profiles: direct, indirect, and host-modulating 
resistance breakers (Douafer et al., 2019; Song et al., 2020). Direct 
antibiotic adjuvants target various active and passive resistance 
mechanisms in bacteria. These mechanisms fall into three main 
categories: outer membrane permeabilizers, efflux pump inhibitors, 
and β-lactamase inhibitors (Figure 7). β-lactamase inhibitors, such as 
diazabicyclooctanones (DBOs) and boronate-based compounds, 
have garnered attention for enhancing the efficacy of β-lactam 
antibiotics (Farhat and Khan, 2022). However, the emergence of 
reduced Susceptibility to DBOs, mainly due to KPC mutations, 
underscores the need for ongoing exploration of novel combinations. 
Efflux pump inhibitors (EPIs) that target specific pumps, such as 
NorA, AcrAB-TolC, and MexAB-OprM, have shown promise in 
combating multidrug resistance, as evidenced by studies conducted 
by Brawley et al. (2022), Tsutsumi et al. (2019), and Sulavik et al. 
(2001). Notwithstanding extensive investigation, none of these 
experimental pharmaceutical interventions (EPIs) have progressed 
to clinical utilization.

Polymyxins, surfactants, antimicrobial peptides, and other outer 
membrane permeabilizers make it easier for antibiotics to enter 
bacteria by making their membranes more permeable. Studies by 
researchers (Song et al., 2020; Song et al., 2022; Song et al., 2023) have 
validated the efficacy of SLAP-S25 and nordihydroguaiaretic acid 
(NDGA) as broad-spectrum antibiotic adjuvants. Combining 
adjuvants with antibiotics represents a proactive strategy against 
multidrug-resistant (MDR) pathogens. These combinations augment 
the effectiveness of existing antibiotics and help forestall the 
development of novel antibiotic resistance mechanisms.

4.3.3 Bacteriophage therapy
Highly specific for their bacterial targets, bacteriophages (phages) 

have emerged as a promising alternative therapeutic strategy, 
particularly for combating multidrug-resistant (MDR) bacteria 
(Moghadam et al., 2020) (Figure 8). While introducing antibiotics 
initially overshadowed Felix d’Herelle’s pioneering discovery of phages 
in 1910 (Vandamme and Mortelmans, 2019), the alarming rise of 
antibiotic resistance has reignited interest in phage therapy. Unlike 
broad-spectrum antibiotics, phages exhibit remarkable selectivity, 
lysing only targeted bacterial strains, including MDR pathogens, while 
preserving the commensal microbiota. This unique characteristic has 
spurred exploring various phage-based therapeutic approaches, 
including phage cocktails, combination therapies with antibiotics, and 
genetically modified phages (Moghadam et al., 2020; Yacoby et al., 
2007). Phage cocktails, offering a broader antimicrobial spectrum, 
have demonstrated superior efficacy in eradicating bacterial 
populations compared to single-phage therapies, potentially reducing 
the emergence of resistance.

Clinical successes have been documented in the treatment of 
Mycobacterium abscessus infections in cystic fibrosis patients and 
Pseudomonas aeruginosa infections in burn victims (Dedrick et al., 
2023). Despite these achievements, significant challenges remain in 
the use of phage cocktails for antimicrobial therapy (Kering et al., 
2019). Key areas of ongoing research focus on identifying optimal 
multi-component mixtures that target specific pathogens and 
expanding the host range of phages. Additionally, the co-evolution of 
bacteria and phages requires continual efforts to address the 
emergence of phage resistance within bacterial populations.

Phage-antibiotic synergy (PAS) presents a promising approach to 
enhance antibacterial efficacy while mitigating resistance development 
(Comeau et  al., 2007). PAS exploits the phenomenon whereby 
sub-inhibitory antibiotic concentrations can promote phage 
replication, leading to a synergistic reduction in bacterial populations. 
Combining phage therapy with antibiotics has shown promise in 
treating infections caused by multi-drug resistant (MDR) bacteria, 
including MRSA and pan-drug-resistant Klebsiella pneumoniae 
(Eskenazi et al., 2022; Zalewska-Piątek and Piątek, 2020). However, it 
is crucial to carefully assess each phage-antibiotic combination, as not 
all are synergistic; some antibiotics may inadvertently hinder phage 
replication and reduce their effectiveness.

Bioengineered phages offer exciting possibilities for enhancing 
antibiotic efficacy and specifically targeting MDR bacterial infections 
(Cui et al., 2023). These phages can be engineered in various ways, 
such as increasing host diversity, altering host specificity, delivering 
foreign genes, and modifying capsids. For instance, modifying phages 
to deliver antibiotics directly into bacterial cells has led to substantial 
therapeutic improvements (Kumar et al., 2023). Additionally, the use 
of CRISPR-Cas systems to target virulence factors and antibiotic 
resistance genes (ARGs) in bacteria shows promise for restoring 
antibiotic susceptibility in resistant strains (Wu et  al., 2021). By 
introducing the long tail fibre gene from bacteriophage IP008 into T2 
bacteriophage, the host range of E. coli can be broadened (Dunne 
et al., 2021). Pires et al. (2016) developed a hybrid bacteriophage that 
combines IP008’s broad host range with T2’s potent cell destruction 
capability. Similarly, Tabib-Salazar et  al. (2017) modified E. coli 
bacteriophage T7 to produce enzyme protein B, which disrupts 
biofilms and enhances host cell invasion, reducing cellular biofilms by 
over 100-fold.
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Moreover, bioengineered bacteriophages can improve antibiotic 
selectivity and address the challenge of multidrug-resistant infections. 
A pediatric cystic fibrosis patient with a life-threatening infection 
from antibiotic-resistant Mycobacterium abscessus was successfully 
treated using a combination of three genetically modified 
bacteriophages after conventional treatments had failed (Adesanya 
et al., 2020). This novel treatment led to a favorable prognosis without 
significant adverse effects. Bacteriophages are increasingly being used 
as theranostic platforms, with advancements in synthetic biology and 
drug delivery strategies. For instance, Yacoby et al. (2007) developed 
a delivery method that attaches chloramphenicol molecules to lysed 
bacteriophages, resulting in a 2000-fold increase in treatment efficacy 
while reducing side effects. Furthermore, phages can be employed to 
transport photosensitizers for more efficient photodynamic 
inactivation of harmful bacteria, minimizing damage to the normal 
microbial community (Sheng et al., 2022). In vivo studies have shown 
the effectiveness of this method in treating infections caused by 
antimicrobial-resistant bacteria and Candida albicans.

Despite these advancements, some bacteria have developed 
resistance to bacteriophages through mechanisms such as CRISPR-Cas 
immunity, restriction-modification systems, and receptor mutations 
that prevent phage attachment (Hasan and Ahn, 2022). For example, 
Escherichia coli can acquire CRISPR-Cas spacers to recognize and 
degrade phage DNA, conferring resistance to certain bacteriophages 
(Mitić et al., 2023). To overcome these challenges, researchers are 
developing genetically engineered bacteriophages that bypass bacterial 
defense mechanisms, enhance phage lysis of resistant bacteria, and 
deliver antimicrobial genes. Ongoing research, including the 
engineering of Mycobacteriophage D29 to target antibiotic-resistant 
Mycobacterium tuberculosis, suggests that these phages could provide 

an alternative to traditional antibiotics in combating antimicrobial 
resistance (Pal et al., 2024; Biswas et al., 2024).

Bacteriophage-based technology also has significant potential in 
the field of cancer treatment. By displaying antibodies, peptides, or 
proteins on the surfaces of bacteriophages, researchers can utilize 
them to study the molecular characteristics of tumor cells and the 
tumor microenvironment. Phages serve as effective delivery vehicles 
for imaging agents and therapeutic treatments, making them valuable 
tools in tumor immunology. Additionally, phages have been 
engineered to deliver suicide genes into cancer cells, significantly 
improving the efficacy of gene therapy for anti-tumor treatments. 
Bioengineered bacteriophages hold great promise across a variety of 
biomedical applications. However, further research is needed to fully 
exploit their therapeutic potential and to overcome the challenges 
posed by bacterial resistance mechanisms.

4.3.4 Monoclonal antibodies and vaccines
Due to their targeted action, monoclonal antibodies (mAbs) 

exhibit promise in treating severe bacterial infections (Imran et al., 
2021). Clinical investigations are underway for humanized mAb 
CMTX-001, which targets the DNABII protein crucial for biofilm 
formation, thereby enhancing antibiotic efficacy and bacterial 
eradication by disrupting biofilms (Ding et al., 2023).

Moreover, mAbs can target bacterial virulence factors. For instance, 
panobacumab neutralizes the outer membrane and lipopolysaccharide 
(LPS) of Pseudomonas aeruginosa (Figure 9), while the KB001 fusion 
antibody shows potential in targeting bacterial virulence factors (Nagy 
et al., 2017). In spite of their therapeutic potential, the development and 
clinical utilization of mAbs are challenging due to high production costs 
and the need for intravenous administration.

FIGURE 7

The dynamic interaction between β-lactam antibiotics and β-lactam interactive proteins in gram-negative bacteria plays a crucial role. β-lactamases 
function as interceptors, impeding the efficient binding of antibiotic molecules to penicillin-binding proteins (PBPs). [Source: Bush K. and Bradford P.A./
Clinical Microbiology Reviews, 2020].
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In addition to combating bacterial infections, vaccines play a 
pivotal role in reducing antibiotic usage and resistance. The success of 
Streptococcus pneumoniae vaccination has reduced antibiotic-resistant 
pneumococcal strains and antibiotic consumption by bolstering herd 
immunity (Saeed et al., 2023). Similarly, the introduction of conjugated 
Haemophilus influenzae type b (Hib) vaccinations has substantially 
decreased Hib-related illnesses and beta-lactamase-producing strains, 
thus mitigating antibiotic resistance (Storz et  al., 2016). These 
achievements underscore the importance of ongoing vaccine research 
in combating bacterial diseases. While both vaccines and mAbs offer 
the potential to fight bacterial infections, mAbs face challenges related 
to cost and administration (Imran et al., 2021). Conversely, preventive 
vaccines can potentially significantly decrease antibiotic use and 
resistance. A comprehensive and practical approach to bacterial 
pathogens necessitates continued research and development in 
vaccine and mAb domains.

Regardless of promising findings in treating multidrug-resistant 
(MDR) bacterial infections, mAb-based immunotherapy encounters 
significant development hurdles (Seixas et  al., 2022). Challenges 
include the potential for humanized mAbs to elicit a human anti-
chimeric antibody (HACA) response, rendering therapeutic efficacy 
uncertain (Almagro et al., 2018). Moreover, mAb targets are often 
specific to bacterial antigens, emphasizing the importance of rapid 
pathogen detection. Additionally, mAbs may be less effective if the 
target antigen is expressed only in certain circulating strains, specific 

organ infections, or disease phases. Exopolysaccharide architectures, 
particularly serotype-specific variations, pose challenges for mAb 
efficacy against diverse bacterial strains. For instance, Streptococcus 
pneumoniae serotypes exhibit differences in exopolysaccharide 
capsule content and structure, complicating mAb efficacy across all 
serotypes (Wang-Lin and Balthasar, 2018).

Furthermore, PNAG (β-1-6-linked poly-N-acetyl-d-
glucosamine), a conserved exopolysaccharide in numerous pathogens, 
influences microbial survival and biofilm formation (Champion et al., 
2019). Although mAb F598 effectively minimized microbial issues 
across various models and microorganisms, further clinical studies 
were not pursued. Addressing commercial hurdles and aligning 
development efforts with disease market size is imperative for 
advancing broad-spectrum mAb development. Future research 
endeavours are warranted to address these challenges comprehensively.

4.3.5 Nanoparticles
The combination of antibiotics with nanomaterials, particularly 

silver nanoparticles (AgNPs), has a combinatorial antibacterial effect 
(Figure 10) (Scandorieiro et al., 2022). Antibiotics commonly promote 
bacterial cell death by stimulating the generation of reactive oxygen 
species (ROS) (Hong Y. et al., 2020). Studies show that gentamicin 
significantly enhances the production of reactive oxygen species 
(ROS) by silver nanoparticles (AgNPs) (Mazur et al., 2020). Luminol 
chem-iluminescence (CL) indicates that reactive oxygen species 

FIGURE 8

The principal methods for executing phage therapy include. (A) Utilizing a variety of bacteriophages in a phage cocktail to selectively target ARB. 
(B) Employing bacteriophage engineering to augment the efficacy of the response against ARB. (C) Employing bacteriophages to deliver the clustered 
regularly interspaced short palindromic repeats-associated (CRISPR-Cas) system for host cell elimination. (D) Depicting the synergistic effect between 
bacteriophages and antibiotics with a green circle symbol. (Created with BioRender.com).
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FIGURE 10

Silver nanoparticles (AgNPs) exhibit a range of antimicrobial properties through multiple mechanisms, including disruption of the cell wall and 
cytoplasmic membrane, denaturation of ribosomes, generation of reactive oxygen species (ROS) leading to membrane disruption, interference with 
DNA replication, and membrane denaturation and perforation. (Created with BioRender.com).

(ROS) are generated when Tween-stabilized AgNPs have an 
antibacterial impact (Wang N. et al., 2022). The concurrent use of 
gentamicin and Tween-stabilized AgNPs exhibits a synergistic effect 

in combating gentamicin-resistant Staphylococcus epidermidis, as 
observed in the study by Mazur et al. (2020). The combination of 
AgNPs plus antibiotics can efficiently eradicate microbes through 

FIGURE 9

The mechanism of action of Panobacumab monoclonal antibody against Pseudomonas aeruginosa Panobacumab operates through a unique 
mechanism to combat infections caused by P. aeruginosa, a notorious pathogen known for its resistance to multiple antibiotics. This monoclonal 
antibody targets a specific antigen on the surface of P. aeruginosa bacteria, namely, the PcrV protein, a critical component of the type III secretion 
system (T3SS). (Created with BioRender.com).
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numerous pathways, enhancing their antibacterial effectiveness 
(Mohammed and Abdel Aziz, 2019; Scandorieiro et al., 2022). Silver 
nanoparticles (AgNPs) have been reported to infiltrate the bacteria’s 
cell wall, disrupt the cellular membrane, and trigger bacterial death. 
The study by Katva et al. (2017) revealed a noteworthy synergistic 
antibacterial impact when combining various antibiotics and AgNPs, 
specifically gentamicin and chloramphenicol, with AgNPs in the 
context of E. faecalis (Ef) infection (Katva et al., 2017).

Graphene is a well-known substance that is compatible with living 
organisms and has several uses in the fields of antibacterial activity, 
biosensing, cancer therapy, and biocarriers (Hu X. et al., 2023; Huang 
et al., 2022; Saha, Visconti, Desipio, & Saha et al., 2020; Zhang H. et al., 
2023). The study (Wang N. et al., 2022) The study investigated the 
antibacterial properties of TOB-GO-Ag, a water-soluble hybrid 
composed of silver nanoparticles (AgNPs), graphene oxide (GO), and 
tobramycin,. The investigation focused on its effectiveness against 
multidrug-resistant gram-negative E. coli bacteria. The results revealed 
that TOB-GO-Ag demonstrated the highest antibacterial efficacy 
compared to GO, AgNPs, and tobramycin, which were used separately. 
Scientists (Wang N. et  al., 2022) revealed how the TOB-GO-Ag 
composite fights bacteria. The combination disrupts the bacterial cell 
wall, allowing silver ions (Ag+) and graphene oxide (GO) to enter the 
cells. This one-two punch triggers oxidative stress within the bacteria, 
ultimately leading to their death. Additionally, the tobramycin 
component further hinders bacterial growth by blocking protein-
synthesis (Ullah et al., 2018). Some compounds containing bismuth 
(Bi) have synergistic antibacterial properties when combined with 
antibiotics (Keogan and Griffith, 2014). Studies (Ma et al., 2017) have 
demonstrated that Bi2S3 nanoparticles do not possess antibacterial 
properties when tested against Staphylococcus aureus and methicillin-
resistant S. aureus (MRSA), with minimum inhibitory concentration 
(MIC) values exceeding 1,024 μg/mL. Nevertheless, combining 
gentamicin with Bi2S3 nanoparticles demonstrates a synergistic 
antibacterial impact on MRSA. The reaction between Bi2S3 and 
gentamicin is the key strategy for this interaction. It leads to bacterial 
cell membrane rupturing, increased gentamicin accumulation, and 
the production of reactive oxygen species (ROS) (Ma et al., 2017).

CCNPs, or microscopic calcium carbonate particles, possess a 
consistent structure consisting of crystal grains measuring around 
62.5 nanometers in diameter. Research has demonstrated that these 
CCNPs can function as carriers for the antibiotic gentamicin, 
effectively prolonging its release duration by up to 24 h. In addition, 
CCNPs significantly enhance the bactericidal efficacy of gentamicin 
(Pan et  al., 2018). According to Pan et  al. (2018), examining zeta 
potential and microscopic observations have shown that when CCNPs 
are absorbed into bacterial surfaces, they cause more harm to the 
bacterial cell wall and make the membrane more permeable. This 
ultimately results in more bacterial death.

4.3.6 Fecal microbiota transplantation (FMT)
Fecal microbiota transplantation (FMT) has emerged as a 

promising intervention for addressing a range of gastrointestinal 
disorders, with potential applications in reducing the impact of 
antimicrobial resistance (AMR) (Lou et al., 2023; Singh et al., 2022). 
AMR, where bacteria evolve to resist the effects of antibiotics, poses a 
significant threat to global health by rendering many existing 
antibiotics ineffective. The rise of resistant infections is exacerbated by 
the overuse and misuse of antibiotics in human and veterinary 

medicine. FMT, a procedure that involves transplanting fecal bacteria 
from a healthy donor into the gastrointestinal tract of a recipient, has 
gained attention as a potential tool in the fight against AMR (Wang 
et al., 2021). The rationale behind FMT’s possible role in reducing 
AMR lies in its ability to restore a healthy, diverse microbiome, which 
can be crucial in preventing infections and reducing the need for 
antibiotics. Antibiotic resistance worsens outcomes in cirrhosis, and 
fecal microbiota transplant (FMT) may reduce antibiotic resistance 
gene (ARG) burden. The study bt Bajaj et al. (2021) analyzed ARG 
abundance in cirrhotic patients undergoing capsule or enema FMT 
across two trials. Capsule FMT reduced beta-lactamase and rifamycin 
ARGs, while enema FMT initially increased ARGs post-antibiotics but 
decreased them by day 15. Overall, FMT lowered ARG abundance 
compared to baseline and non-FMT groups, showing its potential in 
decompensated cirrhosis. In another study Rashidi et  al. (2024) 
conducted a randomized placebo-controlled trial analyzed 226 stool 
samples from 100 patients undergoing intensive cancer therapy to 
assess the short- and long-term effects of fecal microbiota 
transplantation (FMT) on antibiotic resistance genes (ARGs). Initially, 
low-level transfer of ARGs from donor microbiota occurred, followed 
by long-term resistance to new ARGs as stable microbial communities 
formed. This suggests FMT may aid in reducing multidrug-resistant 
organism colonization in high-risk patients. Further research is 
needed to determine its clinical implications, particularly in 
preventing infections during intensive therapy. Woodworth et  al. 
(2023) reported that Faecal microbiota transplantation (FMT) is a 
promising strategy for decolonising multidrug-resistant organisms 
(MDROs) like vancomycin-resistant enterococci (VRE) and 
carbapenemase-producing Enterobacteriaceae (CPE). This study 
assessed the genetic response of MDROs to FMT in 29 patients, 
showing a significant decrease in resistance gene expression, 
particularly VanA and blaNDM. Both culture-dependent and 
independent methods confirmed gene downregulation over time. 
FMT was well tolerated, with no adverse events, highlighting its 
potential for reducing MDRO carriage in infected patients.

FMT works by reintroducing a balanced microbiome into a 
recipient’s gut, often after it has been disrupted by factors such as 
antibiotic use, disease, or other environmental factors. The gut 
microbiome is a complex ecosystem of bacteria, viruses, fungi, and 
other microorganisms that play a vital role in digestion, immune 
function, and protection against pathogenic microbes (Bajaj et al., 
2021). When this microbiome is disrupted, often by antibiotics, the 
balance of microorganisms in the gut is disturbed, allowing pathogenic 
bacteria, including antibiotic-resistant strains, to proliferate. By 
restoring this balance, FMT can help re-establish microbial 
communities that outcompete harmful pathogens, including 
antibiotic-resistant ones, and may reduce the need for further 
antibiotic treatment (Minkoff et  al., 2023). One of the most well-
established uses of FMT is in treating Clostridium difficile infection 
(CDI), a common and serious bacterial infection often triggered by 
antibiotic use (Gupta et  al., 2022; Nooij et  al., 2021). Antibiotic 
treatments for CDI can disrupt the gut microbiome, leading to 
recurrent infections. FMT is highly effective in treating recurrent CDI, 
with up to 90% success rates. This success is largely attributed to the 
ability of FMT to restore a healthy microbiome that can prevent the 
overgrowth of C. difficile (Gupta et  al., 2022). This microbiome 
restoration helps control CDI and reduces reliance on antibiotics, 
which is crucial in the fight against AMR.
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FMT also promises to reduce the colonization and transmission 
of multidrug-resistant organisms (MDROs). Studies (Nooij et  al., 
2021; Chiu et  al., 2021) have shown that restoring a healthy gut 
microbiota through FMT can reduce the colonization of resistant 
bacteria, such as extended-spectrum beta-lactamase (ESBL)-
producing E. coli and vancomycin-resistant Enterococcus (VRE), in 
patients who are carriers of these pathogens. The process works by 
rebalancing the microbiota and restoring microbial diversity, which 
can help limit the dominance of resistant bacteria, potentially reducing 
their spread within healthcare settings.

Furthermore, FMT may contribute to reducing AMR by 
promoting the natural resilience of the microbiome to pathogenic and 
resistant bacteria. A healthy microbiome is a barrier to pathogenic 
organisms by outcompeting them for resources and producing 
substances that inhibit their growth. This resilience could help prevent 
infections from developing or becoming severe, thus reducing the 
need for antibiotics and limiting the opportunity for the emergence of 
resistance (Bajaj et al., 2021). While FMT shows significant promise 
in addressing AMR, its widespread use still has challenges and 
limitations. Standardizing FMT protocols, ensuring the safety and 
quality of donor samples, and understanding the long-term effects of 
microbiome restoration are all areas that require further research.

Additionally, FMT may not be  appropriate for all patients, 
particularly those with compromised immune systems or severe 
underlying health conditions (Lou et  al., 2023). Fecal microbiota 
transplantation represents a novel and promising approach to 
reducing the impact of AMR. By restoring a healthy microbiome, 
FMT can lessen the prevalence of antibiotic-resistant infections, lower 
the need for antibiotics, and potentially prevent the spread of resistant 
pathogens (Wang et al., 2021). As more research is conducted, FMT 
may become an integral part of strategies to combat AMR, providing 
a valuable alternative to traditional antibiotic treatments and 
preserving antibiotic efficacy for future generations.

5 Conclusion and outlook

In conclusion, the COVID-19 pandemic has highlighted the 
urgent need to tackle bacterial resistance as a global health threat. 
Despite a decrease in global antibiotic consumption, the overall 
volume remains high, underscoring the need for stricter regulations 
and proactive prevention strategies. Although National Action Plans 
(NAPs) have been implemented worldwide, significant disparities 
persist, specifically in developing countries where limited resources 
and healthcare infrastructure hinder effective action. Key reservoirs 
for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs) 
include farms, hospitals, wastewater treatment plants, and agricultural 
settings, necessitating targeted mitigation strategies.

While promising approaches such as dietary modifications, 
probiotic supplementation, and combination therapies with adjuvants 
or phages offer potential, challenges remain in their large-scale 
implementation, regulatory approval, and long-term effectiveness. 
Dietary modifications may be ineffective if they do not specifically 
target pathogenic resistance mechanisms or modify the microbiome 
in beneficial ways. Probiotics may struggle to outcompete resistant 
bacteria, specifically in severe cases of antimicrobial resistance (ABR). 
Combination therapies could also face resistance if pathogens evolve 
against phages or adjuvants, or if biofilm formation or immune system 
interference hinders phage efficacy.

Emerging treatments like customized antibiotics, monoclonal 
antibodies, vaccines, and nanoparticles offer alternatives but face 
challenges in cost, technological complexity, and accessibility. Despite 
advances in next-generation sequencing and bioinformatics, there are 
still gaps in understanding the role of gut microbiota in resistance 
dynamics, indicating a need for further research. Effectively addressing 
antibiotic resistance requires comprehensive policies and regulatory 
frameworks that balance public health protection with sustainable 
antibiotic use. However, global coordination remains challenging due 
to differences in governance, economics, and healthcare priorities. 
Strengthening surveillance, raising public awareness, and fostering 
interdisciplinary collaboration will be  key to overcoming these 
barriers. Through evidence-based strategies and global cooperation, 
we can work toward managing antibiotic resistance and ensuring the 
continued efficacy of antibiotics for future generations.
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