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Introduction: Infections caused by Campylobacter spp. represent a severe 
threat to public health worldwide. National action plans have included source 
attribution studies as a way to quantify the contribution of specific sources 
and understand the dynamic of transmission of foodborne pathogens like 
Salmonella and Campylobacter. Such information is crucial for implementing 
targeted intervention. The aim of this study was to predict the sources of human 
campylobacteriosis cases across multiple countries using available whole-
genome sequencing (WGS) data and explore the impact of data availability and 
sample size distribution in a multi-country source attribution model.

Methods: We constructed a machine-learning model using k-mer frequency 
patterns as input data to predict human campylobacteriosis cases per source. 
We then constructed a multi-country model based on data from all countries. 
Results using different sampling strategies were compared to assess the impact 
of unbalanced datasets on the prediction of the cases.

Results: The results showed that the variety of sources sampled and the quantity 
of samples from each source impacted the performance of the model. Most 
cases were attributed to broilers or cattle for the individual and multi-country 
models. The proportion of cases that could be attributed with 70% probability to 
a source decreased when using the down-sampled data set (535 vs. 273 of 2627 
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cases). The baseline model showed a higher sensitivity compared to the down-
sampled model, where samples per source were more evenly distributed. The 
proportion of cases attributed to non-domestic source was higher but varied 
depending on the sampling strategy. Both models showed that most cases 
could be attributed to domestic sources in each country (baseline: 248/273 
cases, 91%; down-sampled: 361/535 cases, 67%;).

Discussion: The sample sizes per source and the variety of sources included 
in the model influence the accuracy of the model and consequently the 
uncertainty of the predicted estimates. The attribution estimates for sources 
with a high number of samples available tend to be overestimated, whereas 
the estimates for source with only a few samples tend to be underestimated. 
Reccomendations for future sampling strategies include to aim for a more 
balanced sample distribution to improve the overall accuracy and utility of 
source attribution efforts.

KEYWORDS

source attribution, foodborne disease, campylobacteriosis, machine learning, 
European union

Introduction

Infections caused by Campylobacter spp. represent a severe threat 
to public health worldwide. This foodborne pathogen, known for its 
high prevalence in food production animals like poultry, cattle, and 
pigs, is mainly transmitted through contaminated undercooked meat 
and raw milk (World Health Organization, 2024). In the European 
Union (EU), Campylobacter alone was responsible for more than 
137,000 confirmed human cases of campylobacteriosis in 2022 
(European Food Safety Authority, European Centre for Disease 
Prevention and Control, 2023), which highlights the need for targeted 
intervention methods to reduce further cases. In the European Union 
(EU), Campylobacter spp. is considered a zoonotic agent of priority 
with mandatory monitoring.

In the current approach to managing food-related diseases, an 
emphasis is placed on surveillance and monitoring. Sampling is 
conducted to monitor and track disease trends and is typically collected 
through national monitoring programs (NMPs) or other projects (Gaia 
et al., 2021). As a result, most samples are usually collected from food 
and animal sources believed to contribute most to human infections, 
meaning that the available data is skewed toward the selected sources 
(Lassen et  al., 2024). This can impact the representativeness of the 
monitoring data available for source attribution analyses. Source 
attribution models link sporadic human cases of an illness to different 
sources like food and animal reservoirs (Munck et al., 2020). These 
models can predict the probability of human cases originating from a 
particular food or animal reservoir, providing information about the 
most important sources that stakeholders and policymakers can use to 
establish interventions to control or prevent transmission routes and 
ultimately reduce the number of human infections. In Denmark, 
national action plans have included source attribution as a way to 

understand the transmission pathways of different pathogens in the 
food production chain (Channie Kahl Petersen, 2021). As a result of 
this, Salmonella spp. has been reduced effectively in the broiler and table 
egg production in Denmark (Danish Veterinary and Food 
Administration, 2025; Wegener et  al., 2003). Both Salmonella and 
Campylobacter is still being managed by action plans, which continues 
to use source attribution to inform risk management (Lassen 
et al., 2024).

Numerous source attribution models have been developed in 
recent years. In Denmark, source attribution has routinely been 
performed using the Hald model (Hald et al., 2004), which has been 
modified and subsequently adopted by other countries like Australia, 
New Zealand, and the Netherlands (Mullner et al., 2009; Glass et al., 
2016; Fearnley et  al., 2018; Mughini-Gras et  al., 2021). The 
development of machine-learning algorithms that use supervised 
classification models to predict the probability of a case originating 
from a specific source has paved the way for new methods (Munck 
et al., 2020). Combined with the use of WGS data, these approaches 
have become the preference for characterizing bacterial isolates from 
food and animal products in source attribution (Arning et al., 2021).

With the use of WGS data, source attribution models can infer 
allelic variations between sources and accurately predict the origin of 
a specific isolate causing infection (Munck et al., 2020). Both core 
genome multi-locus sequence typing (cgMLST) and k-merisation 
have been used for taxonomic analysis in numerous studies and have 
proved to be quite efficient, especially for large genomes (Bernard 
et  al., 2016; Panyukov et  al., 2020). Based on the use of short 
oligonucleotides and free from alignment, k-mer counting can be used 
to determine the number of k-mers matching a reference sequence, 
either against a reference genome or against other genomes of interest 
(Zielezinski et  al., 2017). The idea of using k-mers to distinguish 
between different genomes of Campylobacter is coupled to the concept 
of genomic signatures, which was first introduced for dinucleotide 
composition (e.g., GC content) by Deschavanne et al. during 1999. In 
this case, the assumption is that Campylobacter infections from the 
same source share a similar frequency of k-mers, thereby making it 
possible to track infections across different reservoirs (Deschavanne 
et al., 1999).

Abbreviations: WGS, Whole-Genome Sequencing; EU, European Union; NMP, 

National Monitoring Programs; cgMLST, core-genome Multi-Locus Sequence 

Typing; DiSCoVer, Discovering the sources of Salmonella, Campylobacter, VTEC 

and antimicrobial resistance; ENA, European Nucleotide Archive; QC, Quality 

Control.

https://doi.org/10.3389/fmicb.2025.1519189
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Thystrup et al. 10.3389/fmicb.2025.1519189

Frontiers in Microbiology 03 frontiersin.org

Most source attribution models are focused on transmission 
within single countries and do not account for cross-border 
contamination in imported food. In Denmark alone, while 
approximately 140,000 tons of meat products were imported in 2023, 
the country exported more than 1 million tons to other countries 
(Statistics Denmark, 2024). This trade with animal-food products 
between member states can significantly exacerbate the spread of 
diseases like campylobacteriosis, especially in the EU, where food 
products have no barriers to trade.

This study aimed to attribute human sporadic and domestically 
acquired Campylobacter infections to sources across multiple 
countries using data from seven EU member states. We modified the 
source attribution models developed by Munck et  al. (2020) and 
Brinch et  al. (2023) to explore the impact of data availability and 
sample distribution on the multi-country source attribution estimates 
and compared these with the results from the individual 
country models.

Materials and methods

Data collection and pre-processing

Existing surveillance and monitoring data were collected as part of 
the EU project “Discovering the sources of Salmonella, Campylobacter, 
VTEC and antimicrobial resistance” (DiSCoVer) project.1 WGS data of 
Campylobacter spp. from eight countries (Denmark, France, Ireland, the 
Netherlands, Poland, Portugal, Spain, and Sweden) were used. The data 
set included isolates from humans, the environment, such as freshwater 
and wastewater source, and a variety of animal and food sources, such 

1 https://onehealthejp.eu/jrp-discover

as chicken, ruminants and other animals (Table  1). The sampling 
strategies varied across countries, with differences in both the types of 
sources sampled and the number of samples collected from each source.

The individual countries provided metadata, while sequences 
were either downloaded from European Nucleotide Archive (ENA) or 
provided directly by the involved countries. Metadata included 
information on the country of origin, the institute responsible for the 
sampling, the year of collection, and the sampling material (manure/
faces, fresh meat, carcass swab, etc.). For humans, information on 
whether the case was domestic or travel-related, or part of an outbreak 
or sporadic, was also noted. Samples with missing metadata were 
removed from the data set. Human cases with a travel history or cases 
related to outbreaks were removed to focus the model on sporadic and 
domestically acquired cases. The sample sources were grouped based 
on the reservoir in order to reduce the number of different groups of 
sources (for example, layer chicken and broilers were collapsed into a 
single category).

The WGS data were pre-processed as part of the in-house Food 
QC-and assembly pipeline, using bbduk (Bushnell et al., 2017) and 
FastQC (Simon, 2024) for adapter trimming and quality checking. 
Assembly of the trimmed genomes was performed using the assembler 
SPAdes (version 3.9) (Prjibelski et  al., 2020). Median number of 
contigs was 29 (range 1–4,305) and N50 ranged between 560 and 
1,105,278 (median: 160,175).

K-mer counting

Assembled genomes were used for k-mer extraction using the tool 
KMC (version 3.0) (Kokot et  al., 2017) with length of k = 9. An 
in-house Python script was used to combine the k-mer frequencies 
from all samples into a single matrix, where each row corresponded 
to a sample and each column represented an individual k-mer. For 
each k-mer, its standard deviation across all samples were calculated 

TABLE 1 Number of Campylobacter spp. isolates from each animal and food source and humans included in the model.

DK ES FR IE NL PL PT SE

Broiler 829 114 61 272 254 162 94 50

Broileri 111 – – – – – 10 –

Cat – – 4 – 15 – 3 –

Cattle 253 46 39 24 207 6 – –

Dog 21 – 27 – 85 – 15 –

Duck 4 – – – – – – –

Ducki 22 – – – – – – –

Freshwater 2 – 28 – 59 – 27 –

Pig 27 17 10 6 110 77 7 –

Sheep/goat – – – 5 110 – – –

Turkey – 28 – – 38 – 16 –

Turkeyi 9 – – – – – – –

Wastewater 10 21 – – 194 – – –

Wild animals – 14 2 – – – 3 –

Wild bird – 7 21 – 63 – 7 40

Human 1,558 128 – 267 280 15 379 –

iImported sources. DK, Denmark; ES, Spain; FR, France; IE, Ireland; NL, the Netherlands; PL, Poland; PT, Portugal; SE, Sweden.
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based on its frequency values using the formula for standard deviations 
for samples. For example, if a k-mer had frequencies of 15, 10, and 22 
across three samples, its standard deviation was calculated as 6.03.

To reduce the size of the matrix, any k-mers with a standard 
deviation of less than 10 were removed from the combined matrix.

Machine learning

A machine-learning model developed by Brinch et al. (2023) to 
predict the sources of human campylobacteriosis cases in Denmark 
using k-mers was adapted to this study. Click or tap here to enter text. 
First, models for each country with human WGS data available were 
constructed, which was followed by the construction of a 

multi-country model based on data from all the participating 
countries. A flowchart showing the modeling process is available in 
Figure 1.

Feature reduction and up-sampling

Feature reduction was carried out on the matrix to reduce the 
number of 9-mers in the final model using the caret package (version 
6.0–94) and the Boruta package (version 8.0.0). The near-zero-
variance method was used to reduce the number of 9-mers. The 
Boruta algorithm, which uses the random forest classifier, was then 
applied to select important attributes in a given dataset.

FIGURE 1

Conceptual model of the machine learning method using k-mers. Adapted from Munck et al. (2020).
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Up-sampling was applied to balance the dataset by artificially 
increasing the number of samples in underrepresented source 
categories to match those in the largest category. This meant that 
sources with less than 50 isolates were up-sampled to the largest 
number of isolates. For example, ‘duck’ was up-sampled from 4 to 
829 in the Danish model. The up-sampled model was denoted as the 
baseline model.

To further investigate the impact of sampling on the model’s 
performance, down-sampling was also performed to reduce the 
number of samples in overrepresented categories to match the size 
of a smaller category (Kuhn and Johnson, 2013). Sources exceeding 
300 samples were down-sampled to achieve balance. For example, 
‘broilers’ were reduced from 829 to 300 samples in the Danish 
model. Down-sampling avoids artificially inflating the number of 
samples as is done with up-sampling. The two strategies were 
then compared.

Model selection

Two machine-learning algorithms, logit-boost, and random 
forest, which had previously been applied in sequencing studies 
successfully were evaluated (Ogutu et al., 2011; Machado et al., 2015; 
Njage et al., 2019, 2019; Brinch et al., 2023).

For the model selection, the source data were split into test-and 
training data. The training data was used to randomly generate 
training data sets corresponding to 70% of the total number of 
samples. The remaining 30% of the samples were used to evaluate the 
performance of the model using 7-fold cross-validation. After 10 
iterations, the accuracy of each algorithm was assessed, and the 
algorithm with the highest accuracy was selected for 
model construction.

Model construction and evaluation

The selected model was constructed again following the modeling 
procedure as described in model selection. The model’s performance 
was evaluated using its valid accuracy, which is the accuracy of the 
cross-validation, kappa value, and confusion matrix. Cross-validation 
is a statistical method to assess the generalizability of the model. In 
this study, the dataset was split into multiple subsets, where the model 
was trained on some part of the data and tested on the remaining. This 
process was repeated several times to ensure robust performance and 
to reduce the risk of overfitting. The final accuracy metric reflected the 
models’ ability to predict the sources of the samples in the non-human 
data set. The confusion matrix further assessed the model’s ability to 
predict the sources of the samples. The confusion matrix compares the 
predicted classifications of the model to the true known classifications, 
while summarizing true positives, true negatives, false positives and 
false negatives. This allows for a more detailed understanding of the 
model’s performance by identifying, where predictions deviate from 
the observed, true sources (Kuhn, 2008). The kappa value is a measure 
that quantifies the agreement between observed and predicted 
sources. It was calculated by dividing the predicted number of sources 
minus the observed number of sources with the observed number of 
sources (Kuhn, 2008).

The proportion of samples predicted to the correct source 
(sensitivity) and the proportion of samples correctly predicted not to 
belong to a specific source (specificity) were also reported. The 
different performance measured were used to select the final model, 
which was then applied to determine the origin of the human 
campylobacteriosis cases by estimating the likelihood for each case to 
originate from a particular source.

Results

The final dataset for the multi-country model included data from 
6,313 Campylobacter isolates from humans with sporadic 
Campylobacter infections (n = 2,627) and various sources (n = 3,686; 
Table  1). The number of samples and sources varied between 
countries. Sample sizes ranged from 90 to 2,846, with Denmark 
contributing the largest number of samples and Sweden the fewest. 
Similarly, the number of sources sampled per country varied from two 
to 10, with Denmark again sampling the most sources and Sweden the 
fewest. Denmark’s dataset included a substantial number of samples 
from imported meat. The dataset was also skewed toward broiler 
samples, particularly from Denmark (n = 829), Ireland (n = 272), and 
the Netherlands (n = 254), while other sources were underrepresented. 
France and Portugal sampled a relatively wide range of sources but 
collected fewer samples per source. Conversely, countries like Ireland 
and Poland sampled larger numbers of samples but from a more 
limited range of sources. A total of 431 human cases related to travel 
and outbreaks were excluded from the model. No human samples 
were available from France and Sweden.

The final k-mer matrix used in the source attribution model 
consisted of 3,996 9-mers after reduction. The Boruta algorithm found 
277 confirmed 9-mers to be included in the multi-country model, 
based on the accuracies of the prediction of the source by each feature 
(9-mer).

Individual model results

The performance measures of the random forest and logit-
boost algorithm were compared for each country individually 
(Supplementary Table S1). The average accuracies, obtained from 
taking the average accuracy across 10 iterations, ranged from 
0.507–0.959, with Spain having the lowest accuracy and Poland 
having the highest. The valid accuracy and the kappa-value for the 
selected algorithm were reported for each individual country 
model (Supplementary Table S1). The final model was run on 
individual cases using the model with the highest overall valid 
accuracy (Supplementary Table S1). The cumulative probability 
plot for each country showed that most cases could be attributed 
to domestically produced broilers (Supplementary Figures S1–S6). 
The total number of cases that could be attributed to each source 
were reported and the number of cases with at least a 0.7 
probability to one source (Table 2). For all countries, this reduced 
the number of potential sources drastically, indicating that 
applying a threshold for the probability removes cases attributed 
with large uncertainty. The overall prediction of human cases 
across all countries showed that most could be  attributed to 
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broilers. Cattle and dogs were also found to be associated with 
human cases of campylobacteriosis.

Selection and construction of 
multi-country model

The model selection showed the average accuracy using the 
baseline dataset was highest for the random forest algorithm (0.674, 
95% CI 0.669–0.680) compared to the logit boost algorithm (0.666, 
95% CI 0.658–0.673). When using the down-sampled dataset, the logit 
boost algorithm showed the highest average accuracy (0.67, 95% CI 
0.6587–0.6818) compared to the random forest algorithm (0.654, 95% 
CI 0.645–0.663). The valid accuracy and the kappa value for the 
baseline and down-sampled models are shown in 
Supplementary Table S2. The average accuracies for both the baseline 
sampling strategy and the down-sampled strategy were similar, 
indicating that having a balanced dataset for the model selection did 
not improve the accuracy of the model. Therefore, the sensitivity and 
specificity of the different datasets were compared, using the model 
algorithm with the highest accuracy for each (baseline data: random-
forest; down-sampled data: logit-boost).

For the down-sampled model, the specificity ranged from 0.97–
1.0, indicating the model’s low misclassification rate of samples to 
incorrect sources (Supplementary Table S3). The sensitivity varied 
much more between sources, ranging from 0.07–1.0 with a single 
source having a sensitivity of 0.0, highlighting the model’s poor ability 
to predict sources correctly. The baseline model had a slightly lower 
specificity, ranging from 0.87–1.0, but had an overall higher sensitivity 
ranging from 0.2–1.0 (Supplementary Table S4), apart from a single 
source having a sensitivity of 0.0. Overall, due to the up-sampling, the 
sources with very few samples had a much higher sensitivity than 
sources with a higher number of samples. While the down-sampled 
model had a higher specificity (few samples allocated to the wrong 

source) overall, the much lower sensitivity suggested a shortfall in 
allocation samples to the correct source.

Multi-country attribution model

Using the baseline data in the logit boost algorithm, the machine-
learning model predicted that 273 of the human campylobacteriosis 
cases could be  attributed to a single source with at least 70% 
probability (Figure 2). According to the model, the majority of cases 
could be attributed to sources from the same country (248/273 cases, 
91%), with fewer than 1 in 10 cases attributed to sources outside the 
country (Supplementary Table S5). Broilers from Denmark were the 
most important infection source for Danish cases (199/232 cases, 
86%), followed by cattle from Denmark (19/232 cases, 8%). Few 
Danish cases could be attributed to sources outside of Denmark, like 
imported broiler meat (6/232 cases, 3%), meat from broilers in Poland 
(2/232 cases, 1%) or The Netherlands (2/232 cases, 1%). The cases 
from The Netherlands also showed a higher proportion of the 
infections attributed to broilers from The Netherlands (5/8 cases, 
63%), with fewer attributed to Danish broilers (3/8 cases, 38%). The 
Portuguese cases were mainly attributed to broilers from Portugal (5/9 
cases, 56%), with a few attributed to broilers from Denmark (3/9 cases, 
33%) and a single case attributed to broilers in Poland (1/9 cases, 
11%). For Ireland, the cases were mainly attributed to broilers from 
Ireland (12/16 cases, 71%) and a few were attributed to Danish broilers 
(3/17 cases, 18%). All the Polish samples were attributed to Polish 
broilers (7/7 cases, 100%).

The machine-learning model using the down-sampled dataset 
with a random forest algorithm predicted 535 of the human 
campylobacteriosis cases with at least a 70% probability (Figure 3). 
Contrary to the baseline random forest model, the down-sampled 
logit boost model attributed 535 cases to a larger number of sources 
from 11 to 31 (Supplementary Table S6). Still, most cases could 

TABLE 2 Results of the individual country models.

DK IE NL PL PT ES

Broiler 1,008 (731) 236 (236) 118 (64) 15 (15) 183 (102) 54 (36)

Broileri 154 (16) – – – 22 (0) –

Cat – – 8 (0) – 8 (0) –

Cattle 296 (92) 24 (13) 51 (9) 0 (0) – 32 (17)

Dog 36 (0) – 29 (1) – 44 (6) –

Duck 3 (0) – – – – –

Ducki 24 (0) – – – – –

Freshwater 2 (0) – 4 (0) – 39 (10) –

Pig 13 (4) 1 (0) 5 (2) 0 (0) 12 (0) 5 (1)

Sheep/goat – 6 (4) 31 (1) – – –

Turkey – – 14 (0) – 48 (0) 13 (3)

Turkeyi 20 (0) – – – – –

Wastewater 3 (0) – 16 (2) – – 16 (12)

Wild animals – – – – 7 (0) 7 (2)

Wild birds – – 5 (0) – 16 (0) 1 (1)

Total number of cases 1,559 (843) 267 (253) 281 (79) 15 (15) 379 (118) 128 (72)

Each column shows the number of cases predicted for each specific source for that country. iThe numbers in parenthesis are Campylobacter infection cases with ≥70% probability of the case 
being attributed to that source. DK = Denmark, ES = Spain, IE = Ireland, NL = the Netherlands, PL = Poland, PT = Portugal.
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be attributed to domestic sources (361/535 cases, 67%), meaning that 
around 1 out of 3 cases (174/535 cases, 33%) could be attributed to 
sources from outside the country. Ireland had the largest proportion 
of cases attributed to non-domestic sources (23/34 cases, 68%). In 
contrast, Denmark had the lowest proportion of cases attributed to 
non-domestic sources (75/365 cases, 21%), except for Poland, where 
the sources were all predicted to be from Polish broilers.

As with the baseline model, cases from Denmark were mostly 
attributed to broilers from Denmark (226/365 cases, 62%), with some 
also attributed to cattle from Denmark (54/365 cases, 15%), as well as 
broilers from the Netherlands (22/365 cases, 6%). More cases from the 
Netherlands were attributed to Danish broilers (26/68 cases, 38%) 
than domestic broilers (22/68 cases, 32%). There was a similar trend 
for the cases from Portugal (16/46 cases attributed to Danish broilers, 
35%) and Ireland (8/34 cases attributed to Danish broilers, 24%). 
Poland still had all cases attributed to domestic broilers (8/8, 100%), 
whereas Spain had the majority of cases attributed to domestic broilers 
(8/14 cases, 57%).

Discussion

The aim of the study was to predict the relative contribution of 
sources to human Campylobacter infections using data from different 

European countries. By adapting the source attribution model 
introduced by Brinch et al. (2023), the effects of data availability and 
sampling distribution on the robustness and applicability of a multi-
country source attribution model were assessed. The results showed 
that the distribution of sources, as well as the number of samples, had 
an impact on the sensitivity of the model. Applying the baseline source 
attribution model showed a higher sensitivity compared to the down-
sampled model, where the sources were more evenly distributed. The 
notable difference suggested that the model’s ability to allocate samples 
to the correct source was better for the unevenly distributed dataset, 
even when one source was overrepresented.

The results from our multi-country modeling showed that while 
most cases could be attributed to domestic sources, there were still a 
notable likelihood that some cases originated from imported products. 
Imported food introduces additional complexity because genetic 
variability of Campylobacter strains in these products may differ 
significantly from each other and from the domestic strains, 
depending on the source of the sample (Stevens et  al., 2024). To 
address this, one potential solution could be to introduce a weight 
matrix based on data regarding the proportion of specific food sources 
that are imported. Such a matrix would allow the model to assign 
different likelihood scores to attributions, reflecting the actual import 
volume of each source. For example, if a large proportion of a 
particular food type is imported, the model could adjust the 

FIGURE 2

A Sankey diagram showing the probable (>70% probability) source of the 273 human campylobacteriosis cases using the baseline data (Made with 
sankeymatic.com). Numbers are available in Supplementary Table S5.

https://doi.org/10.3389/fmicb.2025.1519189
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://sankeymatic.com


Thystrup et al. 10.3389/fmicb.2025.1519189

Frontiers in Microbiology 08 frontiersin.org

probabilities accordingly to account for the higher likelihood of cross-
border origins. However, the effectiveness of this approach would 
depend on the availability of data on food imports, which is not always 
accessible in all cases. Incorporating this information where available 
could significantly enhance the model’s capacity to account for cross-
border food trade and improve the accuracy of source attribution.

Still, both models showed that the majority of cases could 
be attributed to sources domestic to each country. Most cases were 

attributed to broiler or cattle, both for the individual country models 
and the multi-country models, which correlates with numerous other 
studies on Campylobacter infections in humans (EFSA Panel on 
Biological Hazards, 2011; Cody et  al., 2019; Douglas Inglis et  al., 
2021). Two studies from France and the Netherlands pointed to pets 
and environmental sources like wild birds and surface water as well, 
something that our results also support (Thépault et  al., 2018; 
Mughini-Gras et al., 2021).

FIGURE 3

A Sankey diagram showing the probable (>70% probability) source of the 535 human campylobacteriosis cases using the down-sampled data (Made 
with sankeymatic.com). Numbers are available in Supplementary Table S6.
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The analysis of the individual countries showed some disparities 
in the distribution of sources when implementing a threshold to the 
attribution of cases. A threshold of 0.7 was applied to the cases to 
ensure that only cases with a high likelihood of attribution to a given 
source were included in the final prediction. For some countries like 
Denmark and the Netherlands, this meant that when no threshold was 
implemented, the cases were distributed to a broader range of sources. 
The Netherlands included a large number of sources, but relatively few 
samples for each, which likely reduced the model’s ability to attribute 
cases with a high probability. So, when the threshold was imposed, this 
resulted in a pronounced narrowing of the range of sources to which 
human cases were attributed, suggesting a concentrated source profile 
within the country. In contrast, the data from Spain showed uniformity 
in the different distribution of sources, even when the threshold was 
applied. Despite the increased stringency of case attribution, the 
consistency in Spain’s source distribution indicates a more distributed 
source profile. This could likely be explained by the relatively few 
samples per source and a high number of sources, making it 
challenging for the model to discern clear patterns. In Portugal, a 
significant proportion of the samples were derived from bird-related 
sources (e.g., wild birds, turkey, broilers), which could have increased 
the genetic similarity among sources, making it more difficult to 
predict a source. For further source attribution modeling, this 
highlights the importance of choosing a suitable threshold. 
Implementing a threshold enhances the specificity and precision of 
the model but with the risk of losing important information about 
potential reservoirs.

When comparing the multi-country model’s valid accuracies with 
each individual country’s model, some individual country models had 
a lower accuracy than the multi-country model. This indicated that 
the model relied not only on the distribution and number of samples 
available from each source but also on the sample’s origin, suggesting 
that some sources increased the complexity of the source prediction. 
Wildlife reservoirs, such as wild birds, have been linked to human and 
animal cases of Campylobacter infection in other studies, although 
their exact role in their spread has not yet been established (Gardner 
et  al., 2011; Cody et  al., 2015). This variety in sources introduces 
complexity in the model, leading to lower precision, which is the case 
for Spain, the country with the lowest valid accuracy of 0.54 for the 
logit boost model.

The machine-learning model initially developed by Munck et al. 
(2020) was designed for cgMLST-based predictions. However, as 
highlighted in the study by Brinch et al. (2023), cgMLST data often 
suffer from the issue of missing alleles. To address this, imputation is 
typically required, but this process can introduce bias into the dataset. 
Such biases may influence the model’s ability to accurately capture the 
trends in the allele distributions, which leads to lower accuracy. The 
k-mer approach eliminates the issue of missing values entirely, as 
k-mers are directly extracted from the genomic sequences without 
relying on allelic information. Additionally, the k-mer-based model is 
computationally faster, which allows the model to run on 
larger datasets.

Limitations of this study include the variation in the number of 
samples available for each source, which highlights the need for a 
uniform sampling strategy when it comes to monitoring and 
surveillance of Campylobacter infections. Since sources was grouped 
based on shared animal reservoirs to increase the number of samples 
in each source category, the model’s specificity may have been reduced, 

leading to a less granulated attribution analysis. Despite the model’s 
accuracy, a considerable number of cases were assigned to a specific 
source with only a low or moderate probability level. This could 
indicate that Campylobacter strains are widely dispersed across 
sources, making it more difficult to distinguish each strain from each 
other. Increasing the size of the k-mers used in the analysis could 
potentially improve the model’s discriminatory by capturing more of 
the genomic content, but this approach presents different 
computational challenges.

As the k-mer length increases, the number of possible 
combinations for each of the four nucleotides grows exponentially, 
which leads to computational constraints. Longer k-mers also reduce 
the availability of information on their frequencies across samples, as 
they can become too specific. On the other hand, sequencing errors 
are much more likely to confound the analysis when using short 
k-mers. This is why using high-quality genomes is important, because 
it minimizes biases in recognizing genetic patterns across individual 
sources. The key to effective use of k-mers is to capture trends in their 
frequencies without losing critical information. Based on these 
considerations, 9-mers were selected as the optimal length for 
this study.

All these results highlight the importance of having a complete and 
representative sampling strategy, where household animals and wildlife 
are also included in the monitoring system, while maintaining a high 
number of samples. Absence of data for a particular source in a specific 
country does not necessarily imply that the source is not a potential 
cause of disease. For instance, no cases of human campylobacteriosis 
were found to be attributed to wild birds, despite evidence from other 
countries indicating that wild birds can be a reservoir for Campylobacter 
(Cody et al., 2015). Gaps like this in the available data can influence 
source attribution model outcomes, potentially leading to an 
underestimation of important sources. If the monitoring system focuses 
exclusively on the production chain, the source attribution models will 
only identify cases linked to sources within that chain. However, 
Campylobacter is also transmitted through environmental reservoirs, 
such as wildlife and household animals (Zenebe et al., 2020; Mughini-
Gras et al., 2021). While these reservoirs may not account for the largest 
proportion of infections, their inclusion in monitoring systems is 
essential for a comprehensive understanding of Campylobacter 
transmission dynamics. By incorporating data from household animals 
and wildlife, the model will gain a more comprehensive base of 
potential reservoirs, reducing the risk of underestimating their role in 
disease transmission. This could also improve model performance, 
since the model will be able to accurately attribute cases to their original 
source. This is especially important for implementing effective control 
strategies, since overlooking these sources could underestimate the 
effect of implemented action plans. Therefore, a more representative 
sampling strategy that includes household animals and wildlife is 
essential to better inform public health interventions.

The model also found that the majority of cases were attributed to 
livestock (broilers and cattle). Other studies have also found livestock 
to be the largest reservoir of Campylobacter infections, but it is likely 
that predictions are skewed toward these sources simply because of 
their overrepresentation. Overestimation can, therefore, also happen, 
making it even more evident that sampling should be standardized in 
all aspects. To clarify this, when further exploring the impact of 
sample size on source attribution, it becomes clear that more samples 
from a specific source like broilers not only introduces more genetic 
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variation in the samples included in the model but also increases the 
probability that a random human case of campylobacteriosis is 
allocated to that source. Conversely, a source with fewer samples will 
have a weaker ability to detect rare types in a reservoir that is sparsely 
sampled. This discrepancy is critical for understanding the concepts 
of sensitivity and specificity within this context. For example, the 
Netherlands showcased a well-distributed sample collection across 
various sources, which results in more balanced outcomes in the 
source attribution models. This approach helps in preventing the 
misallocation of cases to sources that are overrepresented in the 
dataset, emphasizing the necessity for an evenly distributed number 
of samples from each potential source to avoid biased results. 
Legislation should be more focused on implementing more samples 
in the regulatory sampling strategy for source-attribution studies in 
the future. The quantity of samples and the diversity of sources from 
where they are collected play an important role when using source 
attribution models to predict human campylobacteriosis cases across 
multiple countries. To improve future models and the effectiveness of 
surveillance programs, efforts should be made to ensure that multiple 
relevant sources are covered, including those that might not have been 
recognized yet as large contributors. This can be  achieved by 
implementing a One Health strategy, combining the analysis of 
human, animal, and environmental samples. The sampling strategy 
largely depends on national priorities and available resources, as each 
country must determine the most feasible approach for its monitoring 
system. However, our study demonstrates that adopting a broader and 
more representative sampling strategy could significantly enhance 
surveillance by capturing a wider range of potential sources. To 
minimize bias, we recommend designing sampling plans that aim for 
a more balanced distribution of samples across sources. Over-
representing one source, such as broilers, may not necessarily provide 
additional valuable information and can skew the model’s attribution 
outcomes. A more equitable sampling strategy would help ensure that 
undersampled but potentially important reservoirs are adequately 
captured, improving the overall accuracy and utility of surveillance 
and source attribution efforts.
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