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vitamin B12 in deep-sea 
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The intricate relationship between prokaryotic vitamin B12 (cobalamin) producers and 
metazoans in deep-sea ecosystems, particularly within ferromanganese crusts and 
polymetallic nodules, is critical for understanding oceanic biogeochemical cycling 
of cobalt. Microbial communities are key regulators of essential biogeochemical 
cycles, with cobalt serving as a vital component in the synthesis of cobalamin, a 
metallocofactor indispensable for numerous metabolic processes. We analyzed 
the significance of cobalamin biosynthetic pathways confined to prokaryotes 
and emphasized the ecological importance of auxotrophic organisms that rely 
on exogenous sources of vitamin B12. Additionally, we recognize recent research 
regarding the spatial distribution of dissolved cobalt and its consequential effects 
on cobalamin production and bioavailability, indicating the scarcity of cobalt and 
cobalamin in marine environments. We propose that cobalt-rich environments 
may foster unique interactions between prokaryotic and eukaryotic organisms, 
potentially altering the food web dynamics owing to the localized abundance of this 
element. By investigating the roles of cobalt and cobalamin in nutrient cycling and 
interspecies interactions, we outlined key criteria for future research on deep-sea 
microbial communities and their contributions to the cobalt biogeochemical cycle.
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1 Introduction

Microbial communities represent most of the ocean’s diversity and are of fundamental 
importance in maintaining the functionality and stability of global ocean ecosystems. 
Microorganisms, while not strictly essential for survival, play a pivotal role in regulating 
marine C, N, P, and S biogeochemical cycles. However, trace elements (<0.1 μM) are also 
required for growth and are interlinked with the global biogeochemical cycles of macro and 
microelements (Giovannelli, 2023). One such example is cobalt (Co), as cobalt and iron cycles 
are co-regulated by phytoplankton, as they require both nutrients for optimal growth, and the 
availability of one can influence the utilization of the other (Chmiel et al., 2022).

In addition, Co is used for numerous metabolic functions, including non-corrin 
Co-containing enzymes such as methionine aminopeptidase, prolidase, nitrile hydratase, 
glucose isomerase, methylmalonyl-CoA carboxytransferase, aldehyde decarbonylase, lysine-
2,3-aminomutase, and bromoperoxidase (Okamoto and Eltis, 2011).
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We focused on cobalt as a central constituent of the corrin 
cofactor cobalamin or vitamin B12 present in early life as 
methanogenesis (Buan, 2018) and globally as phytoplankton, 
particularly cyanobacteria, which have an absolute requirement 
for cobalamin (Chmiel et  al., 2022). Cobalamin has been 
demonstrated to be of crucial importance in trophic networks 
from several environments, including marine systems. 
Consequently, Co can limit certain metabolic pathways, 
potentially restricting the metabolic niches of cobalamin 
synthesis and auxotrophy, and incentivizing ecological 
relationships linked to the acquisition of vitamin B12, such as 
predation and symbiosis.

The sensitivity of trophic networks to Co has been studied in 
Co-depleted systems with nutrient amendments. In this regard, 
we  propose to study sites naturally characterized by a high 
abundance of cobalt. We  specifically refer to ferromanganese 
nodules and cobalt-rich crusts, which are mineral deposits found 
on the deep ocean floor that are enriched in metals, such as 
manganese, iron, copper, nickel, and cobalt. These mineral 
concretions are recognized as important habitats that support a 
unique deep-sea biodiversity (Rabone et al., 2023).

We review the importance of understanding the sources and 
delivery pathways of vitamin B12 in marine ecosystems, 
particularly those linked to polymetallic nodules and cobalt 
crusts, considering that the bioavailability of cobalt may regulate 
its use in different life forms. This allowed us to gain new insights 
into the biogeochemical cycling of Co in deep-sea ecosystems.

2 Cobalamin: structure, biosynthesis 
and ecological significance

2.1 Cobalamin is a corrinoid with cobalt

Coenzyme B12 is the only vitamin that contains metal ions; 
therefore, it is an organometallic cofactor. It also has the most complex 
structure and largest formula weight, with a chemical structure 
characterized by a tetrapyrrole with a central Co atom (Figure 1). 
Cobalamin is derived from the same porphyrin precursor as heme and 
chlorophyll and the F420 coenzyme. It has the most complex structure 
of any biological cofactor (Bryant et  al., 2020) and contains a 
tetrapyrrole corrin ring surrounding a central Co atom with an 
oxidation state of 3+. The fifth coordinated position of Co is occupied 
by a dimethyl-benzimidazole nucleotide loop, and the sixth catalytic 
upper ligand position is occupied by either a methyl group or 
deoxyadenosine, leading to methylcobalamin (MeCbl) or 
deoxyadenosylcobalamin (AdoCbl), respectively (Doxey et al., 2015; 
Figure 1).

The main driving force for the utilization of Co is the 
chemistry of this transition metal. The essential ability of Co is to 
form metal-carbon bonds, which is facilitated by its powerful 
nucleophilicity. Three cobalt oxidation states participate in the 
functioning of the B12 coenzyme: Co+, Co2+, and Co3+ (Okamoto 
and Eltis, 2011), each in a coordinated manner and a spatial 
arrangement facilitated by conformational rearrangements in the 
corrin ring (Osman et al., 2021).

FIGURE 1

Structure of cobalamin. The cobalt ion is coordinated equally to the four pyrrolic nitrogen atoms of the corrin macrocycle. Cobalamines differ in their 
sixth ligand (R −). The sixth ligand differentiates between the cofactors cyanocobalamin, methylcobalamin, hydroxocobalamin, and 
adenosylcobalamin. Modified from Buckel (2007). Credit design: L. Montoya and C. F. Franco-Rodríguez.
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2.2 Biosynthetic pathways for cobalamin

There are essentially two alternative cobalamin biosynthetic routes 
in bacteria and archaea, aerobic and anaerobic. These routes differ 
primarily in the contraction stage of the macrocycle: (a) the late 
insertion pathway is an aerobic pathway because cobalt is inserted into 
the tetrapyrrole macrocycle after ring contraction, where molecular 
oxygen is a prerequisite; and (b) the early insertion pathway can 
operate under anaerobic conditions, where cobalt is chelated before 
ring contraction (Scott and Roessner, 2002). Despite the differences in 
the timing of cobalt insertion and the mechanism of ring contraction, 
many other enzymes associated with methylation and amidations 
operate in the same order along the pathway (Osman et al., 2021).

In natural ecosystems, B12 biosynthesis is energetically expensive 
and imposes a high metabolic burden on the B12 producers. The 
cobalamin biosynthetic pathway (aerobic or anaerobic) is one of the 
most complex pathways in nature, requiring approximately 20 
enzymes for complete de novo synthesis, starting with cobalt (Co2+) 
(Warren et  al., 2002). Cofactors are often imported by cobalamin 
producers, a strategy that is energetically more favorable than 
biosynthesis (Nijland et al., 2022).

2.3 Metabolic processes dependent on 
cobalamin

Coenzyme B12 or cobalamin-dependent enzymes are mainly 
included in the following groups: (a) transferases (E.C. 2.x.x.x), such 
as methylcobalamin (MeCbl)-dependent transferases and (b) 
isomerases (E.C. 5.x.x.x), such as adenosylcobalamin (AdoCbl) 
deoxyadenosyl cobalamin-dependent isomerase (Table  1). These 
catalysts are present in both prokaryotes and eukaryotes and reductive 
dehalogenases (E.C. 1.x.x.x) are found only in organohalide-respiring 
bacteria (Giedyk et al., 2015).

MeCbl serves as the intermediate carrier of activated methyl 
groups. During the catalytic cycle, the coenzyme shuttles between 
MeCbl and the highly nucleophilic cobalamin form (Giedyk et al., 
2015). Examples of MeCbl-dependent enzymes include methionine 
synthase, which is a cytosolic methionine synthase (formation of 
methionine) (Balabanova et al., 2021) that reacts with cobalamin-
dependent methionine synthesis and DNA synthesis through the 
conversion of ribonucleotides to deoxyribonucleotides and tRNA 
biosynthesis (Banerjee and Ragsdale, 2003).

AdoCbl functions as a source of carbon-based free radicals that 
are unmasked by homolysis of the cobalt-carbon bond of the 
coenzyme. Free radicals are subsequently used to remove non-acidic 
hydrogen atoms from substrates to facilitate a variety of reactions 
involving cleavage of carbon–carbon, carbon–oxygen, and carbon–
nitrogen bonds. Most of these reactions involve the migration of 
hydroxy-, amino-, and carbon-containing groups. In addition, one 
class of ribonucleotide reductases uses AdoCbl (Giedyk et al., 2015).

2.4 Ecological interactions between 
cobalamin producers and auxotrophs in 
marine ecosystems

The natural forms of vitamin B12, MeCbl, and AdoCbl are 
synthesized only by prokaryotes via aerobic and anaerobic pathways 
(Balabanova et al., 2021). Cyanobacteria and key taxa within α- and 
γ-Proteobacteria (Sañudo-Wilhelmy et al., 2014), Actinobacteria, and 
Bacteroidetes Thaumarchaeota (Doxey et al., 2015; Shelton et al., 2019) 
are included among the cobalamin producers. The involvement of 
archaea in cobalamin production is poorly understood; thus, the 
insight into the cobalamin biosynthesis have mainly focused on 
bacteria (Table 2). The ability to synthesize cobalamin has neither been 
inherited by eukaryotes nor has it been subjected to lateral gene transfer 
(Croft et al., 2005). In eukaryotes, vitamin B12 is acquired in two ways:

 a Directly from a metabolite pool released by prokaryotes, either 
through cell lysis of the producers or via passive transport 
(Romine et  al., 2017), benefiting cobalamin-dependent 
eukaryotic consumers, such as the diatom Thalassiosira 
pseudonana (Sultana et  al., 2023). Several experimental 
amendments support this, showing that dissolved cobalamin 
in the ocean stimulates the growth of eukaryotic phytoplankton 
(Bonnet et al., 2013) and heterotrophic protists (Wienhausen 
et al., 2022).

 b Indirectly through interactions with prokaryotes, such as 
mutualism, symbiosis, or predation (Joglar et al., 2021). Among 
marine cultures, symbiosis and mutualism are the most studied 
interactions. For example, symbiosis has been explored in 
co-cultures such as Ostreococcus tauri and the 
alphaproteobacterium Dinoroseobacter shibae (Cooper et al., 
2018). Additionally, it has been hypothesized that marine 
sponges obtain cobalamin through symbiotic relationships 
with associated microbes (Degnan et al., 2014).

These mechanisms of eukaryotic acquisition of cobalamin from 
external sources have shaped ecosystems. In all ecosystems, auxotrophs 
are organisms that depend on cobalamin, but lack the ability to 
synthesize these cofactors, including both prokaryotes and eukaryotes 

TABLE 1 Metabolism processes linked to cobalamin are denoted as 
cobalamin-dependent enzymes (Buckel, 2007; Degnan et al., 2014).

MTR Methyltetrahydromethanopterin:coenz

yme M methyltransferase

2.1.1.86

Mta/Mtt Methanol/methylamine/trimethylamine 

methyltransferases

2.1.1.247

Lyases

PduCDE Propanediol dehydratase/Glycerol 

dehydratase

4.2.1.28/4.2.1.30

EutBC Ethanolamine ammonia-lyase 4.1.3.7

Isomerases

MCM/SpcA/

MutAB

Methylmalonyl-CoA mutase 5.4.99.2

Mgm 2-methyleneglutarate mutase 5.4.99.4

GlmES Glutamate mutase, metylaspartate 

mutase

5.4.99.1

IcmAB Isobutyryl-CoA mutase 5.4.99.13

KamED b-Lysine 5,6-aminomutase 5.4.3.3

OraSE D-ornithine 4,5-aminomutase 5.4.3.5
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(Nijland et  al., 2022). Examples of auxotrophs are organohalide-
respiring bacteria and several eukaryotic lineages, such as vertebrates, 
most protists, and invertebrates, but not plants, insects, or fungi 
(Degnan et al., 2014). Intriguingly, higher plants have no cobalamin-
dependent enzymes and so do not utilize or synthesize cobalamin 
(Croft et al., 2006); in comparison, nearly half of marine species are 
cobalamin auxotrophs (Croft et al., 2005). Eukaryotic auxotrophy has 
evolved several times, resulting in close and intricate ecological 
relationships. For example, algae can be influenced by their symbionts, 
which supply fixed carbon in return for vitamin B12 (Grant et al., 2014).

As one of the highly limited nutrients and growth factors 
controlled by a minority of microbes, B12 can be considered as “hard 
currency” in the global ocean ecosystem (Zhou et al., 2023). Therefore, 
cobamide sharing creates a network of cobamide-dependent 
interactions, providing a useful system for studying mechanisms that 
influence community composition and function (Sokolovskaya et al., 
2020). Evidence of this shaping of B vitamins in the photic zone, 
including vitamin B12, has been studied in the Mediterranean Sea and 
the Eastern Atlantic Ocean, exploring picoplankton and suggesting 
that cobalamin is crucial for determining the structure and function 
of microbial ecosystems (Suffridge et al., 2018).

3 Cobalt and cobalamin in the water 
column

3.1 Distribution and dynamics of cobalt

Cobalt (Co) is required for the de novo synthesis of vitamin B12 
(Panzeca et  al., 2008), as this trace metal serves as the central 
coordinating ion within the molecule. However, the total dissolved Co 
concentrations (mainly Co2+ and Co3+) are relatively low, ranging from 
3 to 120 picomolar (pM) in the open ocean (Saito and Moffett, 2002), 
and only a small fraction of this Co pool is thought to exist in the 
bioavailable dissolved form as Co2+ (Panzeca et al., 2009). Generally, 
dissolved metals, including Co, increase with depth because of the 
release associated with the decomposition of organic matter (Gerringa 
et al., 2021). In comparison, at the surface, dissolved cobalt exhibits 
low concentrations and high variability, whereas in the ocean interior, 
cobalt concentrations increase from the surface to intermediate waters 
and decline in the deep ocean (Tagliabue et al., 2018). Considering the 
low cobalt concentrations and chemical speciation, the total dissolved 
cobalt pool of redox state 2+, suitable for B12 synthesis, is very low, 
within the femtomolar (fM) range (Panzeca et al., 2008). This low Co 
(II) content is consistent with the proportional distribution of 
dissolved B12 in the North Atlantic Ocean according to the abundance 
of total dissolved Co availability (Panzeca et  al., 2009). A similar 
conclusion was reported by Hawco et al. (2020), who found that Co 
could limit the growth of the cyanobacterium, Prochlorococcus, in the 
Pacific Ocean.

3.2 Cobalamin availability

Vitamin B12 is an energetically costly metabolite, which may 
explain why less than 40% of prokaryotes encode the genes required 
for its complete biosynthesis (Shelton et al., 2019). In the open ocean, 
vitamin B12 concentrations range from sub-picomolar to picomolar 
(Sañudo-Wilhelmy et al., 2012). This distribution is influenced by Co 
availability (Moore et al., 2013), which plays a role in shaping the 
ecological structure. Sañudo-Wilhelmy et al. (2006) conducted field-
based vitamin B12 amendment experiments and observed an increase 
in phytoplankton biomass, leading to the recognition of this 
metallocofactor as a limiting factor in some marine ecosystems (Wang 
L. et al., 2024). Additionally, cobalt has been identified as playing a 
secondary role in biogeochemical interactions, such as phosphorus, 
whereas nitrogen and iron remain the primary limiting nutrients 
(Valiela, 2015).

TABLE 2 Cobalamin producers in marine ecosystems (Sañudo-Wilhelmy 
et al., 2014; Wang J. et al., 2024; Wang L. et al., 2024).

Phylum1 Order Described at 
polymetallic 
nodules/cobalt 
crusts

Cyanobacteria Chroococcales No

Cyanobacteria Prochlorales No

Cyanobacteria Nostocales No

Cyanobacteria Oscillatoriales No

α-Proteobacteria Mycoplana 

(Hyphomicrobiales)

No

α-Proteobacteria Magnetococcales2 Yes (Liu et al., 2024)

α-Proteobacteria Rhodobacter 

(Rhodobacterales)

Yes (Shulga et al., 2022)

β-Proteobacteria Achromobacter 

(Burkholderiales)

Yes (Zhang et al., 2023)

γ-Proteobacteria3 Pseudomonas 

(Pseudomonadales)

Yes (Zhang et al., 2015)

γ-Proteobacteria Halomonas 

(Oceanospirillales)

Yes (Zhang et al., 2015)

γ-Proteobacteria Marinomonas 

(Oceanospirillales)

Yes (Zhang et al., 2015)

γ-Proteobacteria Neptuniibacter 

(Oceanospirillales)

No

Bacteroidetes Flavobacterium 

(Flavobacteriales)

Yes (Huo et al., 2015)

Actinobacteria Micrococcus 

(Micrococcales)

Yes (Bergo et al., 2022)

Actinobacteria Corynebacterium, 

Nocardia 

(Mycobacteriales)

No

Actinobacteria Streptomyces 

(Kitasatosporales)

No

Firmicutes Bacillus (Caryophanales) Yes (Liao et al., 2011)

Thaumarchaeota Nitrosopumilales Yes (Hollingsworth et al., 

2021)

Thaumarchaeota Nitrososphaerales Yes (Hollingsworth et al., 

2021)

1Proteobacteria were divided into classes.
2Magnetococcales have been implicated in the occurrence of biogenic magnetotactic bacteria 
in polymetallic nodules (Liu et al., 2024).
3With the exception of Pseudomonas, Halomonas, Marinomonas, and Neptuniibacter, 
marine γ -Proteobacteria lack genes for B12 synthesis (Sañudo-Wilhelmy et al., 2014).
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The concentration of vitamin B12 in seawater varies significantly 
across marine regions. For instance, in coastal areas, cobalamin levels 
range from undetectable to 30 pM (Sañudo-Wilhelmy et al., 2012). 
Additionally, it has been reported that coastal waters generally contain 
higher concentrations of vitamin B12 compared to open ocean waters 
(Sañudo-Wilhelmy et al., 2012; Heal et al., 2017). A similar trend was 
observed when comparing water depths, with lower vitamin B12 
concentrations found in deeper waters (100–200 m) than in surface 
and subsurface waters (0–100 m) (Bonnet et al., 2013).

Cobalamin de novo synthesis in surface waters has been linked to 
heterotrophic Proteobacteria bacteria, mainly Rhodobacterales 
(Gómez-Consarnau et  al., 2018), and to photoautotrophic 
Cyanobacteria synthesizing pseudocobalamin with a peak 
concentration within the euphotic zone (Heal et  al., 2017). These 
cobalamin providers are related to different biogeographic settings, 
including the Mediterranean Sea and Eastern Atlantic Ocean 
(Suffridge et al., 2018), Northwest Atlantic Ocean (Soto et al., 2023), 
subtropical, equatorial, polar frontal Pacific Ocean (Wienhausen et al., 
2022), and North Pacific Ocean (Heal et al., 2017).

Cobalamin compounds (cyanocobalamin, methylcobalamin, and 
hydroxycobalamin; Figure 1) are labile after aerobic light exposure, 
even in various aqueous solutions (Vaid et  al., 2018). The 
photosensitivity of cobalamin is attributed to the dissociation of 
covalent cobalt-carbon bonds upon exposure to light, resulting in its 
photolabile characteristics (Vaid et al., 2018; Bannon et al., 2024). 
Consequently, enzymatic reactions involving cobalamin must 
be conducted under dim light (Giedyk et al., 2015).

4 Polymetallic nodules and cobalt 
crusts: key study sites in cobalt 
biogeochemistry

4.1 Generalities of polymetallic nodules 
and cobalt crusts

Polymetallic nodules and cobalt-rich crusts are classified in the 
same paragenetic group (Hazen and Morrison, 2022). Their formation 
involves complex interactions among geological, chemical, and 
biological processes that occurr over millions of years (Wang and 
Müller, 2009). Nodules develop through three main types of 
precipitation: hydrogenesis refers to the growth of nodules through 
the direct precipitation of metals from the water column, whereas 
diagenesis involves the growth of nodules through the precipitation of 
metals from the sediment pore water. Mixed-type nodules contain 
layers formed by both hydrogenesis and diagenesis (Benites et al., 
2018; Hein et al., 2020). Hydrogenetic nodules form on the sediment 
surface in well-oxygenated environments where sedimentation rates 
are low because of the direct supply and precipitation of metallic 
elements from seawater and diagenetically unenriched sediment pore 
water (Sujith and Gonsalves, 2021). These nodules are mainly 
composed of manganese, iron, and trace metals such as nickel (Ni), 
copper (Cu), cobalt, molybdenum (Mo), and rare earth elements 
(REE) (Mukhopadhyay et al., 2008). Cobalt crusts are found globally 
on the ocean floor, generally adjacent to the oxygen minimum zone 
(OMZ), where less oxidizing conditions prevail (Verlaan and Cronan, 
2022). The exposed rock surfaces of the seamounts and ridges are the 
most concentrated areas. Cobalt-rich crusts occur at shallower depths 

(<2,500 m) in the deep sea, whereas nodules are formed at much 
deeper depths (up to 5,500 m) (Verlaan and Cronan, 2022). Initially, 
it was hypothesized that cobalt precipitates formed solely through 
inorganic precipitation; however, increasing evidence suggests the 
involvement of certain bacteria found within nodules and crusts that 
can oxidize both Mn and Co (Moffett and Ho, 1996; Murray 
et al., 2007).

4.2 Cobalt enrichment in deep-sea 
minerals

Both polymetallic nodules and cobalt-rich crusts are enriched in 
cobalt, Ni, Cd, Zn, and REE, relative to their lower concentrations in 
seawater (Hawco et al., 2018; Hein et al., 2020). Oxidized cobalt (Co3+) 
precipitates in the water column and eventually precipitates via 
hydrogenesis. Cobalt enrichment in nodules can be up to 100-fold 
higher than its elemental abundance in Earth’s crust. Cobalt (II) in 
seawater can undergo surface oxidation to Co (III) via adsorption 
onto iron and manganese oxyhydroxides (Koschinsky and Hein, 2003; 
Wang et al., 2009) in minerals, such as birnessite (Wu et al., 2019). 
Factors such as sedimentation, oxygen concentration, temperature, 
and growth rate influence Co enrichment in crusts. Slower rates lead 
to greater Co accumulation, resulting in an average Co content of up 
to 0.77% in the crust (Verlaan and Cronan, 2022). These factors 
explain the higher Co concentration in cobalt crusts than in nodules 
(Mukhopadhyay et  al., 2008). Hydrogenetic-type nodules are 
characterized by higher Co/Mn ratios (Hein et al., 2020). In cobalt-
rich crusts, the Co content ranges from 0.3 to 1.2% (Halbach et al., 
2017). Nodules from the Clarion-Clipperton Zone (CCZ) have higher 
Co concentrations, with an average content of 0.21%, compared to 
other locations (Hein et  al., 2020). The Co oxidation state 
predominantly exists as +3 and a minor fraction as +2  in these 
deposits (Wegorzewski et al., 2020).

4.3 Cobalt crusts: a reliable system for 
comparative studies

Experiments on cobalt limitation or co-limitation of cobalamin 
availability have shown that B12 synthesis can be restricted by cobalt 
concentrations in certain ocean regions. For example, amendment 
experiments conducted in waters with low dissolved cobalt 
(approximately 20 pM) resulted in a two-fold increase in B12 
production compared to unamended controls (Panzeca et al., 2008). 
Furthermore, in amendment experiments conducted in the South 
Atlantic gyre, the addition of cobalt after nitrogen and iron limitation 
was alleviated, leading to a significant increase in phytoplankton 
growth (Browning et al., 2017). It has been proposed that cobalamin 
availability is regulated not only by photodegradation, alteration, and 
the supply/demand ratio but also by cobalt availability (Bannon et al., 
2022). This suggests that, in surface waters, cobalt and light frequently 
modulate and limit cobalamin availability, as phytoplankton, 
especially cyanobacteria, are the main sources of this metallocofactor 
(Heal et  al., 2017). However, this scenario is not equivalent to an 
increase in depth, considering that anoxic ecosystems favor cobalt 
dissolution, leading to a long residence time for cobalt (Tagliabue 
et al., 2018).
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Therefore, different conditions of cobalamin availability, such as 
light, phytoplankton distribution, and oxygen concentration, provoke 
distinctive ecological networks in the deep sea. In this regard, sites 
enriched in ferromanganese (Fe-Mn) nodules and cobalt crusts are 
useful for resolving these ecological questions and testing hypotheses. 
As mentioned earlier, these deposits are broadly characterized by high 
levels of Mn oxides, where cobalt is incorporated into the octahedral 
sheets of phyllomanganates, particularly vernadite (δ-MnO2) 
(Wegorzewski et  al., 2020). A relevant question arises regarding 
whether cobalamin synthesizers in these regions play a role in 
supporting local auxotrophic organisms, or whether and to what 
extent the communities depend on surface sources, such as 
cyanobacteria, given that previous studies have shown phytodetritus 
contributes to particulate organic carbon in sediments within the 
Clarion Clipperton Zone (Cecchetto et al., 2023).

4.4 Thaumarchaeota as potential key 
players in cobalamin biosynthesis

Thaumarchaeota, formerly known as Crenarchaeota, is a phylum 
that is frequently found in the deeper waters of the ocean (Heal et al., 
2017; Qin et al., 2020). Their distribution is likely due to the sensitivity 
of ammonia oxidation to light (Merbt et  al., 2012). Ammonia-
oxidizing archaea (AOA) or Thaumarchaeota strains are typically 
isolated under dark conditions (Stieglmeier et al., 2014). Indeed, the 
initial steps of both ammonia-oxidizing pathways, archaeal and 
bacterial (AOA and AOB, respectively), are inhibited by light (Merbt 
et al., 2012). In this sense, ammonia-oxidizing archaea are abundant 
in sediments (coastal and estuarine) (Francis et  al., 2005). These 
archaea are the major cobalamin sources in the oxygen-deficient zone 
(ODZ) of coastal productive ecosystems (Heal et al., 2017), and as 
suggested by their genomic potential, they could potentially inhabit 
bathypelagic habitats (Doxey et  al., 2015). Interestingly, 
Thaumarchaeota, formerly known as Crenarchaeota, is a significant 
source of vitamin B12 in these environments (Heal et al., 2017).

Isolation of the non-cyanobacterial and cobalamin synthesizers 
Nitrosopumilus spp. (Thaumarchaeota), Sulfitobacter sp. SA11, and 
Ruegeria pomeroyi DSS-3 (α-Proteobacteria) from deep water support 
the hypothesis of vertical niche differentiation (Heal et al., 2017). This 
is particularly noteworthy given that cobalamin itself is photosensitive 
(Bannon et  al., 2024), suggesting an interplay between the light 
environment and cobalamin dynamics in the ocean. The growth of 
Thaumarchaeota, also known as AOA, can be promoted by ammonia 
provided by auxotrophs (Heal et  al., 2017; Hollibaugh, 2017). 
Therefore, in mesophotic ecosystems, only selected cobalamin 
auxotrophic hosts (bacteria and eukaryotes) provide this essential 
nutrient for AOA. This contrasts with Cyanobacteria, which have a 
distinct euphotic ecological niche.

The presence of the cobalamin biosynthetic pathway in an 
ecosystem implies a level of sustainability at which auxotrophic 
organisms can thrive only in communities that provide this essential 
vitamin. In this context, we  hypothesized that certain taxa 
characteristic of these aquatic environments play key roles in 
cobalamin biosynthesis. In this regard, we highlight the abundance of 
Thaumarchaeota associated with these concretions, as recognized by 
the clone library (Shulse et al., 2017) and metagenomic approaches 
(Zhang et al., 2023). Notably, analysis of bacterial and archaeal 16S 

rRNA gene sequences from deep-sea polymetallic nodules and 
sediment extracted from the South Pacific Gyre revealed that the 
phylum Thaumarchaeota was more abundant in the nodules than in 
the surrounding sediments (Shiraishi et  al., 2016). Based on this, 
we  suggest that members of this archaeal phylum may serve as a 
source of cobalamin for both prokaryotes and eukaryotes. 
Furthermore, considering the high cobalt content in cobalt crusts and 
some polymetallic nodules, it is plausible that, in these habitats, a 
cobalt-cobalamin connection exists along the food web and involves 
prokaryotes and metazoans (Figure 2).

Therefore, cobalamin-producing prokaryotes, including 
Thaumarchaeota, play key roles in linking cobalt and cobalamin. 
Furthermore, the availability of cobalt, a critical element in the 
organometallic metabolite cobalamin, may explain the 
sustainability of auxotrophs in these deep-sea regions. To examine 
this claim, it is essential to study organisms, such as 
Thaumarchaeota and other cobalamin producers, as they provide 
this vital metabolite to auxotrophic bacteria and metazoans. This 
study aimed to explore the relative abundance of these 
prokaryotes, and the genetic repertoire associated with cobalamin 
synthesis in the metazoan microbiome thriving on cobalt crusts 
and polymetallic nodules and compare them with other deep-sea 
regions. The relationship between metazoans and their cobalamin-
producing symbionts or mutualists may be particularly relevant 
for bacterivorous meiofauna.

4.5 Proposed ecological networks driven 
by cobalt and cobalamin availability

Prokaryotic B12 sources in some unicellular eukaryotes and 
metazoans may occur through symbiosis, predation, or 
commensalism. Within the nodule and cobalt crust communities, 
some prokaryotes, such as α- and γ-Proteobacteria and 
Thaumarchaeota, may benefit to other populations with essential 
vitamin B12. An ecological example to argue this is the commensalism 
between the auxotrophic algal species Porphyridium purpureum, 
which obtains cobalamin from marine Halomonas sp. In return, algae 
provide γ-Proteobacteria with carbon sources (Croft et al., 2005) and 
and also acquire cobalamin through particulate organic carbon (POC) 
and dissolved organic carbon (DOC) (Moran et  al., 2022). The 
implications of cobalt availability modulation on cobalamin synthesis 
have been demonstrated in surface water samples from the North 
Atlantic Ocean (Panzeca et  al., 2008). Therefore, we  propose that 
contrary to the cobalt limitation prevailing in the North Atlantic 
Ocean, as reported by Panzeca et  al. (2008), cobalt crusts and 
polymetallic nodules support an abundance of cobalamin synthesizers 
in the absence of light.

Polymetallic nodules provide crucial hard surfaces for deep-sea 
benthic life with organisms such as stalked and encrusting sponges 
(Stratmann et al., 2021). An example is Plenaster craigi, an abundant 
sponge frequently attached to nodules that relies on particulate 
organic matter, bacteria, and other microbes (Taboada et al., 2018). 
Some annelids like the polychaeta Neanthes goodayi reside inside 
polymetallic nodules highlight the importance of the mineral itself as 
microhabitat (Drennan et al., 2021; Neal et al., 2022). In this sense, 
nodules and crusts represent a cobalt micro-oasis to sessile life that is 
likely to provide metal content that is beneficial to the synthesis of 
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cobalamine. The experimental extraction of nodules from the 
Clarion-Clipperton Fracture Zone (CCZ) in the central Pacific has 
recorded impacts on biodiversity loss and changes in deep-sea water-
sediment processes (Bonifácio et  al., 2024; Stratmann, 2023; 
Stratmann et  al., 2021). Bacterivores, such as Bryozoa, Cnidaria, 
Platyhelminthes, and Porifera, are among the most affected ecological 
groups (Stratmann et al., 2021). Other studies have experimentally 
focused on Nematoda and found that this taxon does not recover 
after extraction (Miljutin et al., 2011). These taxa, together with the 
rotifers and polychaetes present in nodules and crusts, represent a 
trophic link between bacteria and larger fauna (Stratmann, 2023; 
Uhlenkott et al., 2023). In this context, we propose a role for cobalt in 
the loss of taxa induced by nodule extraction. This proposal arises 
from keeping in mind that model species for some of the phyla 
described in the CCZ metazoan organisms acquire vitamin B12 from 
bacteria directly by ingestion or commensalism, as cobalamin-
producing bacteria are abundant resident gut microbes (Degnan 
et  al., 2014), such as α-, γ-Proteobacteria and Thaumarchaeota 
(Shulse et al., 2017). Nematodes are noteworthy in this context as they 
are the most abundant meiobenthic taxon in the ecosystems of 
nodule-bearing deep-sea sediments (Hauquier et  al., 2019). 
Experimental work with the laboratory nematode Caenorhabditis 
elegans highlights cobalamin limitation, resulting in reduced fertility 
and longevity (Degnan et al., 2014) and predatory behavior, such as 
Pristionchus pacificus, where vitamin B12 is an important inducer (Lo 
and Sommer, 2022). Additional experimental work has shown 

symbiotic synthesis of cobalamin in a microbial co-culture of the 
bacteria Colwellia sp. and Roseovarius sp. (Wienhausen et al., 2024). 
Shallow water Aplysina aerophoba sponges show B12 synthesis 
dependency on Poribacteria (Siegl et al., 2011). Similar ecological 
interactions can occur in the mesophotic water columns and 
seafloor ecosystems.

5 Future research questions for 
understanding cobalt-cobalamin 
dynamics in deep-sea ecosystems

The ecological significance of cobalamin (vitamin B12) in 
other ecosystems remains largely unexplored. Future field studies 
should clarify the physiological requirements of organisms for 
cobalamin, particularly the minimum concentration required for 
growth and survival in the absence of light and oxygen. Laboratory 
evidence demonstrating the effects of B vitamins, specifically 
cobalamin, on microplankton has shed light on how marine 
bacteria fulfill the cobalamin requirements of auxotrophic 
organisms. For example, key research, such as the co-culture of 
Ostreococcus tauri with the bacterium Dinoroseobacter shibae 
(Cooper et al., 2018), provides a foundation for analyzing cobalt-
rich crust prokaryotic and eukaryotic isolates. In addition, the 
co-culture approach employed by Wienhausen et  al. (2024) 
further enhances research on prokaryote-prokaryote interactions, 

FIGURE 2

Scheme illustrates the proposed interrelationship between cobalt found in cobalt crusts (1) and polymetallic nodules (2), and cobalamin and trophic 
interactions within the community in these systems, mediated through synthesizers (prokaryotes) and bacterivores. Credit design: L. Montoya and C. F. 
Franco-Rodríguez.
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revealing a closer ecological connection where a symbiosis of two 
bacteria (Colwellia sp. and Roseovarius sp.) is required for 
complete cobalamin synthesis.

It is crucial to determine whether metazoans living in the absence 
of light selectively or preferentially ingest cobalamin directly or rely 
on symbiotic microbes (endo- or exosymbionts) to synthesize and 
provide cobalamin. Furthermore, investigating whether cobalamin-
dependent metabolism offers an advantage to organisms living in 
environments with high concentrations of cobalt despite the absence 
of light or oxygen is essential for understanding the occurrence of 
microbial species that use cobalt and their adaptations.

The potential influence of cobalt availability on deep-sea 
metazoan distribution owing to cobalamin requirements highlights 
the urgent need for further research on the ecological implications of 
cobalt. In this regard, cobalt crusts and nodule habitats are sites for 
study. Advancements in genomics and metagenomics, particularly 
regarding the microbiome of metazoans, will be  instrumental in 
characterizing their potential role as vitamin B12 auxotrophs. A 
valuable strategy for understanding the importance of cobalamin in 
ocean microbial communities and their integration along the food 
web will lead to new discoveries (Wang L. et al., 2024).

However, the chemical profile of Co in areas containing Co 
crusts and polymetallic nodules remains poorly characterized. A 
thorough investigation of cobalt distribution, particularly its 
redox speciation, is needed, as is research on abiotic and biotic 
cobalt oxidation from Co2+ to Co3+ within these systems, where 
microorganisms interact with the global cobalt biogeochemical 
cycle (Swanner et al., 2014). Some approaches already used in this 
context have involved cobalt amendment experiments (Bannon 
et  al., 2022) and characterization of cobalamin-dependent 
enzymes (Hawco et al., 2020). This review provides a synthesis for 
future research determining whether cobalt limits or co-limits 
ecosystems in the absence of light and/or oxygen.

Studies focused on this topic will not only provide a clearer 
understanding of this subset of prokaryotes in the global ocean 
but will also shed light on its function (Zhou et  al., 2023). As 
stated by Moore et  al. (2013) and Giovannelli (2023), the 
distribution and availability of trace elements in the environment 
are required to understand the diversity of life on the planet.
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