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Diarrhea is a significant ailment that causes heavy economic losses in the pig industry. 
The Tibetan pig is a native Chinese breed that is unique to high-altitude regions and 
displays strong disease resistance. However, scientific research on the structural 
characteristics of the gut microbiota and key genera associated with diarrhea in 
Tibetan pigs is still scarce, especially those involving adult Tibetan pigs. In this study, 
fresh fecal samples from diarrheic (case, N = 9) and healthy adult Tibetan pigs (control, 
N = 10) were collected and sequenced using 16S rRNA gene sequencing. Our results 
revealed that the gut microbial community of the case pigs exhibited lower alpha 
diversities but higher intragroup variability in microbiota composition. The genera 
Treponema and Prevotellaceae_UCG-001 were underrepresented in the pigs, serving 
as hallmarks of diarrhea, while Lactobacillus, Escherichia-Shigella, and Muribaculaceae 
showed increased abundance. Moreover, the genera Lactobacillus and Ignatzschineria 
were significantly enriched biomarkers in the case pigs. Notably, these changes were 
not consistent with those observed in Tibetan piglets and other commercial pigs. 
Furthermore, the decreased abundance of Treponema in the diarrheic pigs indicated 
that this disease was associated with a high-fiber diet and environmental adaptability. 
The differentially enriched pathways in the case and control pigs further revealed 
that gut dysbiosis exacerbated immune and inflammatory responses to promote the 
development of diarrhea. In conclusion, this study characterized the distribution of 
gut microbiota composition in adult Tibetan pigs with different health status, which 
may enhance our understanding of the role of the gut microbiota in intestinal issues.
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1 Introduction

The Tibetan pig is a unique native Chinese breed that mainly lives on the Qinghai-Tibetan 
plateau. It is characterized by high adaptability to harsh environments, such as hypoxia, severe 
coldness, intense ultraviolet radiation, and rough feeding (Yang et al., 2011; Yang et al., 2017). 
These characteristics contribute to its strong environment and disease resistance, which are 
reflected in its genome and its unique intestinal flora (Zhao et al., 2023). Like all animals, 
Tibetan pigs have a complex intestinal microbiota community that includes bacteria, archaea, 
protozoa, and eukaryotic organisms, populated by hundreds to thousands of different microbes 
(Liu et al., 2021). A stable gut microbiota is a prerequisite for various normal metabolic 
activities and overall host health (Lynch and Pedersen, 2016), while gut dysbiosis has often 
been associated with digestive ailments such as diarrhea, weight loss, and irritable bowel 
syndrome in both pigs and humans (Qi et al., 2021; Kim et al., 2023).
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Diarrhea is a common disease that seriously threatens animal 
husbandry, causing productivity losses and even death (Li B. et al., 
2019; Panah et al., 2021). It can affect pigs of all ages, especially piglets 
during weaning (Ruiz et al., 2016). Generally, diarrhea in neonatal pigs 
can be fatal, with diarrheic infections accounting for up to 49% of 
deaths (Morris et al., 2002), while it usually leads to loss of appetite, 
submissive behavior, and reduced fertility in adult swine. Many 
factors, including genetic and environmental influences—such as 
toxicity, nutrition, stress, and infectious and non-infectious factors can 
cause this disease. Among these, infectious factors, including bacteria, 
parasites, and viruses, contribute to its high incidence (Lee et al., 2018; 
Lazov et  al., 2022). The gut microbiota plays a direct role in the 
development of gut diseases such as diarrhea and inflammatory bowel 
disease due to its function in defending against pathogenic invaders 
(Li Y. et al., 2021; Wang et al., 2023). It is well established that this 
disease can disrupt the host’s gut microbiota, regardless of the 
causative factor. Extensive research has highlighted the disruption of 
gut flora caused by diarrhea across various livestock species, such as 
lambs (Kong et al., 2019), dairy calves (Kim et al., 2021; Cendron et al., 
2020), goats (Cheng et al., 2022), commercial piglets (Sun et al., 2019), 
and early-weaned Tibetan piglets (Qi et al., 2021; Kong et al., 2022). 
Despite this, there is a lack of knowledge regarding the gut microbiota 
in adult Tibetan pigs with the problem of diarrhea.

On the other hand, previous studies have tried to better 
understand the differences in the intestinal microbes of Tibetan pigs 
at different growth stages (Jiang et  al., 2018). Furthermore, the 
composition and diversity of the intestinal microbiota in swine change 
depending on age and breed (He et al., 2023; Yang et al., 2022). Based 
on previous findings, it is hypothesized that diarrhea alters the gut 
microbiota structure and function in adult Tibetan pigs, potentially in 
ways different from those observed in Tibetan piglets or commercial 
piglets. To test the hypothesis, the study aimed to evaluate the effects 
of diarrhea on the gut microbiota of adult Tibetan pigs (1–1.5 years).

2 Materials and methods

2.1 Feces sampling

In this study, female Tibetan pigs (1–1.5 years old), inhabiting 
the Ganzi Tibetan Autonomous Prefecture, were used for sample 
acquisition (Kangding city, Sichuan, China; 100°E, 28°N, 
approximately 3,500 m above sea level). All animals grazed on the 
same pasture during the day and were housed in a livestock shed at 
night, where each pig was offered ~1 kg of corn kernels. The health 
status of the pigs was assessed by trained veterinarians. Diarrheic 
pigs (case) were identified based on symptoms including 
dehydration, reduced feed and water intake, and feces that were 
thin, unformed, and gray or gray-white watery, lasting more than 
2 days. In contrast, the feces of the healthy pigs (control) were 
granular or stripe-shaped. Fresh fecal samples from the case group 
were collected on day 2 after symptom onset, and the age-matched 
controls were also sampled. From January to August 2021, a subset 
of 19 fresh fecal samples (one sample per animal, ~8 g each) were 
collected from the herd, including nine samples from the case group 
(N = 9), and 10 from the control group (N = 10). Each sample was 
collected in a sterile 50 mL plastic tube, labeled, and transferred to 
a −80°C freezer until DNA extraction.

2.2 DNA isolation and sequencing

Total bacterial genomic DNA was extracted from each thawed 
sample using a stool DNA isolation kit (Qiagen, Shanghai, China). 
Genomic DNA concentration assessment was carried out using a 
NanoDrop ND1000 spectrophotometer (NanoDrop Technologies, 
Montchanin, DE, United States), and its purity and integrity were 
checked by 2% gel electrophoresis. Afterwards, 30 ng of the DNA was 
used to amplify the hypervariable V3–V4 regions of the 16S rRNA 
gene using primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 
806R (5′-GGACTACHVGGGTWTCTAAT-3′). PCR was performed 
with 25 cycles of 94°C (30 s), 55°C (30 s), 72°C (60 s), and 72°C 
(10 min). After this, 2% agarose gel electrophoresis was used to extract 
the amplicon products. Subsequently, the qualified amplicons were 
quantified for sequencing library construction, and 2 × 250 bp 
paired-end sequencing of the qualified library was performed on the 
Illumina HiSeq 2500 platform.

2.3 Bioinformatics and data analysis

Sequence data analysis was performed as previously reported (Wu 
et al., 2024), using the open-source bioinformatics tool Quantitative 
Insights into Microbial Ecology 2 (QIIME2) (Bolyen et  al., 2019). 
Briefly, the pyrosequencing reads were demultiplexed and assigned to 
their original samples based on their unique barcode sequences. Next, 
the Trimmomatic software (Bolger and Giorgi, 2014) was used to screen 
the qualified reads. Afterward, primer sequences were trimmed from 
the sequences using Cutadapt (1.9.1) (Martin, 2011), resulting in high-
quality target reads. De novo operational taxonomic units (OTUs) were 
then clustered at a 97% sequence identity threshold using QIIME2, with 
redundant sequences removed during the process. Representative OTUs 
were aligned through the DEBLUR program (Amir et al., 2017). Then, 
taxonomic information was obtained by aligning them to the SILVA 
reference database (v138). We used the Chao1 and Shannon diversity 
indices to evaluate alpha diversity, and statistical differences were 
assessed using the Kruskal–Wallis test. Beta diversity was calculated 
using the Bray–Curtis dissimilarity and the unweighted UniFrac metric 
within the QIIME2 platform. Cluster analysis was visualized using 
principal coordinates analysis (PCoA). Statistical analyses were 
performed using R (v4.1.3). Linear discriminant analysis (LDA) effect 
size (LEfSe) was conducted to identify specific taxa and biomarkers that 
were differentially abundant between the diarrheic and healthy pigs, 
using an LDA score threshold of 4.0 at the genus level and above (Segata 
et al., 2011). A p-value of <0.05 was considered statistically significant, 
and the results were presented as means ± SD. The software PICRUSt2 
(v1.7.3) was utilized to predict the functional profiles of significantly 
different taxa associated with the animals’ health status (Douglas et al., 
2020). Pathway predictions were made using the KEGG database.

3 Results

3.1 Analysis of sequencing data and 
taxonomy

After the quality control of the raw data, a total of 1,520,136 high-
quality paired-end reads with an average of 80,007 per fecal sample 
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were obtained from all the 19 animals. As shown in Figure 1A, these 
sequences were assigned to 255 bacterial OTUs (237 in the case group 
and 247 in the control group) at ≥97% similarity. Of these, 229 OTUs 
were shared among all pigs, accounting for ~89.80% of the total OTUs. 
Venn diagrams demonstrated that there were 28 common OTUs 
among the case pigs (Figure 1B) and 63 common OTUs among the 
control pigs (Figure 1C). Subsequently, a rarefaction analysis of the 
observed features was performed to assess sequencing depth. It was 
observed that as sequencing depth increased, the curves for each 
sample gradually flattened and plateaued, indicating that the sequencing 
depth was adequate in all samples for further analysis (Figure 1D).

3.2 Microbial community diversity of the 
Tibetan pigs in the different groups

In terms of species richness and diversity, as measured by the 
Chao1 (Figure 2A) and Shannon indices (Figure 2B), the case Tibetan 
pigs showed lower alpha diversity compared to the control animals. 
However, according to the boxplot of the Bray–Curtis dissimilarity 
(Figure 2C) and unweighted UniFrac distances (Figure 2D), the case 
Tibetan pigs showed increased beta diversity compared to the control 
animals. The PCoA results based on both Bray–Curtis dissimilarity 
(Figure 2E) and unweighted UniFrac distances (Figure 2F) showed 
that the bacterial communities and structures of the case and control 

pigs ranged from completely different to partially similar. Interestingly, 
the samples from the control group formed more homogeneous 
clusters, while the case samples displayed greater heterogeneity.

3.3 Composition of the microbial 
community structure in the different 
groups

The relative abundances of dominant bacterial communities at the 
taxonomical levels of the phylum and genus were analyzed based on 
the taxonomic assignment of all samples. A total of 15 phyla were 
identified in the 19 samples, of which Firmicutes (37.63%), Bacteroidota 
(34.57%), Spirochaetota (12.71%), and Proteobacteria (12.28%) were 
the four dominant phyla (Figure  3A), collectively accounting for 
approximately 97% of the sequences. Of note, the case group had a 
significantly higher relative abundance of Firmicutes compared to the 
control group, while the abundance of Spirochaetota was decreased in 
the case animals as compared to the controls (Figure 3B). In addition, 
189 genera were identified in these samples, and the 20 most expressed 
genera of the gut flora are presented in Figures  3C,D. The most 
prevalent bacteria included Lactobacillus (16.24%) and Treponema 
(12.32%), followed by Muribaculaceae (7.29%), Prevotellaceae_
UCG-001 (7.14%), Acinetobacter (4.86%), and Escherichia-Shigella 
(4.46%). Moreover, the distribution patterns of the bacterial genera in 

FIGURE 1

Venn diagrams and rarefaction curves of the case and control Tibetan pigs. Venn diagrams showing the OTU distribution between the case and control 
pigs (A). Venn diagrams showing the core OTUs in the samples of the case group (B) and control group (C). Alpha rarefaction curves of the observed 
features (D).
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each sample are shown in the heat map (Figure 4A). In addition, the 
abundance of Lactobacillus (3.18%), Escherichia-Shigella (0.81%), 
Muribaculaceae (0.88%), Ignatzschineria (0.42%), Rikenellaceae_RC9_
gut_group (0.28%), unclassified Prevotellaceae (0.20%), and Bacteroides 
(0.23%) tended to increase in the case pigs compared to the controls 
(0.39, 0.17, 0.86, 0.01, 0.16, 0.13, and 0.13%, respectively). Conversely, 
the relative abundance of Treponema (0.76%), Prevotellaceae_UCG-001 
(0.32%), Acinetobacter (0.05%), Streptococcus (0.06%), Prevotellaceae_
NK3B31_group (0.26%), and unclassified Bacteroidales (0.05%) was 
lower in the case pigs than in the control animals (1.78, 1.14, 0.92, 0.60, 
0.37, and 0.29%, respectively) (Figure 4B).

We performed LEfSe analysis to identify biomarkers of the 
diarrheic pigs and found a total of 19 biomarkers with LDA values >4, 
including seven genera, six families, three orders, one class, and two 
phyla (Figure 5A). The genera Lactobacillus and Ignatzschineria were 
significantly enriched biomarkers in the case pigs, while Treponema, 
Acinetobacter, Prevotellaceae_UCG-001, Streptococcus, and p-251-o5 
were significantly enriched biomarkers in the control pigs (Figure 5A). 

Of note, all these genera were among the top 20 most abundant taxa 
(Figure 3D). The relative abundance of Lactobacillus was 16.24%, and 
it was significantly associated with diarrhea in the control group. 
Furthermore, the cladogram represents the phylogenetic distribution 
of microorganisms related to health status (Figure 5B).

3.4 Predicted functional differences in the 
gut microbiota between the case and 
control Tibetan pigs

To further predict the functional composition of the gut 
microbiome related to the phenotype of the case and control pigs, 
we used PICRTSt2 to infer the global functions of the gut microbiota 
based on the KEGG annotation database. As illustrated in Figure 6, a 
total of 10 affiliated KEGG pathways between the case and control pigs 
were detected to achieve statistically significant differences at an 
adjusted p-value of <0.05. Notably, the pathways related to peroxisome, 

FIGURE 2

Bacterial community diversity distinguishes the case and control Tibetan pigs. Chao1 (A) and Shannon (B) alpha diversity indices by sampling group; 
boxplot showing the beta diversity distances calculated using the Bray–Curtis dissimilarity (C) and unweighted UniFrac distances (D). The bottom of 
each box represents the first quartile, the top of each box represents the third quartile, and the middle line inside the box represents the median value. 
Scatterplot from principal coordinates analysis (PCoA) based on the Bray–Curtis dissimilarity (E) and unweighted UniFrac distances (F).
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African trypanosomiasis, valine, leucine and isoleucine degradation, 
and the biosynthesis of unsaturated fatty acids were significantly 
enriched in the case group. On the other hand, the pathway of 
isoflavonoid biosynthesis was significantly enriched in the 
control group.

4 Discussion

Diarrhea is widely prevalent across different animal species and 
is considered an important factor leading to the disruption of 
production and causing a large number of deaths. To date, a wide 
range of factors such as pathogenic agents, weaning, dietary 
composition, growth stages, physiological status, and environmental 

conditions have been linked to diarrhea (Langel et al., 2020; Liu et al., 
2022; Mai et  al., 2020). Although there is considerable evidence 
suggesting that intestinal function and microbiome could be one of 
the reasons for diarrhea (Li Y. et al., 2019), how the taxonomic and 
functional architecture of the gut flora changes during diarrhea in 
adult Tibetan pigs remains largely unknown. To address this 
knowledge gap, we comprehensively evaluated the gut microbiome in 
fresh fecal samples using 16S rRNA sequencing. Comparing the 
characteristics and predicted functional potential of bacterial taxa 
between the case and control pigs may provide a foundation for 
guiding the design of future preventative measures against diarrhea 
in adult Tibetan pigs.

Consistent with the findings of a previously reported study (He 
et al., 2023), the phylum Firmicutes was the most predominant, 

FIGURE 3

Gut bacterial phyla and genera in the case and control Tibetan pigs. Each bar shows the distribution of bacterial phyla in each individual (A) and both 
groups (B); the distribution of bacterial genera (top 20) in each individual (C) and both groups (D).
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along with enrichment of Bacteroidota and Spirochaetota. 
Importantly, Firmicutes possess many healthy gut bacteria that 
contribute to improving the intestinal environment, with some also 
providing protection against pathogenic invasion (Li A. et  al., 
2019). Interestingly, diarrhea was associated with an increased 
relative abundance of Firmicutes and a decreased relative 
abundance of Spirochaetota, which is in line with the findings of 

Wang et al. (2023). However, this contrasts with the results of a 
study on commercial diarrheic piglets, where the phylum 
Proteobacteria was enriched during diarrheic episodes, while 
Bacteroidetes showed a decline (Sun et al., 2019). Generally, gut 
microbiota changes at the genus level reflect pathogenic infections 
and may indicate gut dysbiosis. The abundance of Treponema, 
Escherichia-Shigella, Sphaerochaeta, Slackia, and Staphylococcus has 

FIGURE 4

Significant dysbiotic genera in the gut bacterial composition of the case and control Tibetan pigs. Heat map comparing the top 20 genera in the gut 
bacterial community of each individual (A), and summary of the 13 important taxa that were differentially expressed between the case and control 
samples (B).

FIGURE 5

Differential phylotypes between the case and control Tibetan pigs on the basis of linear discriminant analysis effect size (LEfSe) analysis. Histogram of 
the linear discriminant analysis (LDA) scores indicating bacterial groups significantly enriched in the case (red) or control (green) samples (A). 
Cladogram illustrating statistically and biologically consistent taxonomic differences between the two groups (B).
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been associated with diarrhea in piglets (Zhu et  al., 2024). Our 
results revealed that the abundance of Lactobacillus, Escherichia-
Shigella, Muribaculaceae, Ignatzschineria, and Bacteroides was 
significantly higher in the diarrheic samples, while the abundance 
of Treponema, Prevotellaceae_UCG-001, Acinetobacter, 
Streptococcus, Prevotellaceae_NK3B31_group, and unclassified 
Bacteroidales was decreased. Thus, we speculate that the observed 
changes in relative abundance at both the phylum and genus levels 
in diarrheic pigs may be influenced by breed and age.

Lactobacillus bacteria possess several probiotic properties and 
play positive roles in antipathogenic activity (Yang et al., 2015), 
antioxidant activity (Wang et al., 2013), and immune system (Suda 
et  al., 2014). A low abundance of Lactobacillus is considered a 
potential indicator of gastrointestinal problems in piglets 
(Gryaznova et  al., 2022). In previous studies, it was found that 
diarrheic commercial piglets (Sun et al., 2019; Mach et al., 2015) 
and Tibetan piglets (Qi et al., 2021) showed a lower abundance of 
Lactobacillus. However, our data revealed a higher abundance of 
Lactobacillus in the diarrheic pigs. The difference may be due to 
variations in animal breeds and harsh feeding conditions, but 
further investigation is needed to confirm these factors. In 
addition, we  found a much higher abundance of Escherichia-
Shigella in the pigs with diarrhea. Several members belonging to 
the Escherichia-Shigella group are known to play key roles in 
diarrhea (Bin et al., 2018). Our data suggest that these bacteria may 
play an important role in causing diarrhea in adult Tibetan pigs. 
Other species such as Treponema and Prevotellaceae_UCG-001 
were present at low abundance in the case pigs. Notably, Treponema 
has been reported to be enriched in the gut microbiota of high-
altitude swine and the hunter-gatherer Hadza people, where it 
contributes to environmental fitness and adaptation to a high-fiber 
diet (Schnorr et al., 2014). Our findings revealed that the diarrheic 
animals had reduced Treponema in their gut. Interestingly, a 
similar result was observed in another livestock species on the 

Qinghai-Tibetan plateau, where the abundance of the genus 
Treponema was decreased in diarrheic yaks (Wu et  al., 2022). 
We  hypothesize that diarrhea may alter the gut microbiota 
associated with adaptation to a high-fiber diet and environmental 
conditions, but this requires further investigation.

In this study, the cause of diarrhea was not taken into 
consideration; instead, we  focused on comparing the 
characteristics of microbiota composition between groups. Gut 
microbial diversity and community structure are positively related 
to intestinal function (Bui et  al., 2020), with alpha and beta 
diversity metrics commonly used to assess the classification and 
variation of microbial communities among subjects (Patel et al., 
2019). Previous research has shown that higher gut microbial 
abundance supports the maintenance of intestinal homeostasis 
and physiological function (Bui et al., 2020). Conversely, in this 
study, we found lower alpha diversity in the diarrheic samples, 
consistent with findings in other animal species including rats 
(Ma et al., 2020), piglets (He et al., 2020), horses (Li et al., 2022), 
yak (Wu et al., 2022), and giraffes (Li A. et al., 2021), indicating 
gut microbial dysbiosis. Moreover, PCoA based on Bray–Curtis 
dissimilarity and unweighted UniFrac distances (Figures 2E,F) 
was performed and revealed that the bacterial communities in 
each group ranged from completely different to partially similar. 
Furthermore, the bacterial functional predictions using PICRUSt2 
indicated that the gut bacteria of the diarrheic pigs were more 
robustly associated with pathways related to peroxisome, amino 
acid metabolism, and the biosynthesis of unsaturated fatty acids. 
This suggests that changes in gut microbiota composition may 
influence the host’s immune function. For instance, peroxisomes 
help eliminate microbial infections by modulating canonical 
innate immunity pathways through ROS signaling (Di Cara et al., 
2018). Furthermore, unsaturated fatty acids possess anti-
inflammatory properties and suppress inflammatory responses 
(Morrison and Preston, 2016). Together, we  conclude that gut 

FIGURE 6

PICRUSt2 predictions of functional differences in the gut microbiota between the case and control Tibetan pigs. Significant differences in the KEGG 
pathways were identified using ANOVA with a corrected p-value threshold of <0.05.
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dysbiosis exacerbated immune and inflammatory responses to 
promote the development of diarrhea.

5 Conclusion

The diarrheic adult Tibetan pigs showed lower alpha 
diversity and higher beta diversity of the gut microbiota 
than the control animals. The levels of specific bacteria 
changed noticeably with health status. The phylum 
Firmicutes in the diarrheic pigs was much more abundant 
than in the control animals. At the genus level, Lactobacillus, 
Escherichia-Shigella, Muribaculaceae, Ignatzschineria, 
Rikenellaceae_RC9_gut_group, unclassified Prevotellaceae, and 
Bacteroides were significantly more abundant in the 
diarrheic pigs. Among them, Lactobacillus and Ignatzschineria 
were significantly enriched biomarkers of this disease.  
Moreover, diarrhea may have disrupted the gut 
microbiota balance associated with a high-fiber diet and 
environmental adaptability. This dysbiosis exacerbated immune 
and inflammatory responses to promote the development 
of diarrhea.
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