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Introduction: Serratia marcescens is a significant causative agent of hospital-
acquired infections (HAIs), particularly in intensive care units (ICUs). Carbapenem 
resistance represents a major concern in HAI management, as carbapenem-resistant 
bacteria can trigger outbreaks in hospital settings. While molecular evaluation of 
outbreaks typically relies on pulse field gel electrophoresis (PFGE) or core genome 
multilocus sequence typing (cgMLST) methods, alternative rapid, reliable, and 
cost-effective methods for assessing clonal relatedness are needed.

Methods: This study aimed to characterize a carbapenem-resistant S. marcescens 
outbreak that occurred during the COVID-19 pandemic in a tertiary care hospital, 
using the flagellin gene as a single-locus sequence typing (SLST) method. In 
addition, we evaluated the genetic context of carbapenemase genes through 
whole-genome sequencing (WGS).

Results: Among the 170 carbapenem-resistant Serratia marcescens isolates recovered, 
high resistance to gentamicin, ciprofloxacin, and cefepime was observed. The 
predominant carbapenemase gene detected by qPCR-HRM was blaKPC (92.2%). 
Phylogenetic analysis of the flagellin gene grouped the sequences into two distinct 
clades, with all outbreak-related blaKPC-positive S. marcescens isolates clustering 
within clade B. The blaKPC gene was carried on an IncP6 plasmid.

Discussion: Our findings indicate that the flagellin gene serves as an effective 
marker for characterizing carbapenem-resistant S. marcescens carrying blaKPC, 
confirming that the outbreak was caused by the clonal expansion of isolates 
harboring blaKPC on an IncP6 plasmid.
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1 Introduction

Serratia marcescens is a ubiquitous, fermentative, rod-shaped 
Gram-negative bacteria belonging to the Enterobacterales order. This 
organism typically exhibits multiple resistance mechanisms, including 
intrinsic resistance to polymyxins, which significantly limits 
therapeutic options (Iguchi et al., 2014). As an opportunistic pathogen, 
S. marcescens has been associated with high mortality rates, 
particularly among immunocompromised patients, during hospital 
outbreaks (Šiširak, 2013; Iguchi et al., 2014).

Carbapenems are the primary antibiotics used to treat infections 
caused by Enterobacterales, including strains of S. marcescens that are 
resistant to other antimicrobials (da Silva et al., 2021). However, there 
has been a significant increase in carbapenem-resistant 
Enterobacterales (CRE) worldwide, particularly in recent years. This 
rise has been especially noted during the COVID-19 pandemic 
period, when an overall increase in CRE incidence was documented 
(Hamers et al., 2022; Pintado et al., 2022).

The first report of a plasmid-encoded carbapenem-hydrolyzing 
enzyme (KPC-2) in S. marcescens was documented in Hangzhou, 
China. The three isolates obtained from patients at a hospital in China 
exhibited identical plasmid profiles, indicating that the same plasmid 
had been transmitted among these S. marcescens isolates (Zhang et al., 
2007). Currently, nosocomial infections caused by carbapenem-
resistant Serratia spp. have become increasingly common worldwide, 
including in Brazil, and are typically attributed to carbapenemase 
production (Cayô et al., 2017; Barberino et al., 2018; Streling et al., 
2018; NOTA TÉCNICA No. 74/2022-CGLAB/DAEVS/SVS/
MS-Agência Nacional de Vigilância Sanitária-Anvisa, 2025).

Prompt and accurate identification of sources and transmission 
routes is crucial for implementing infection control measures and 
preventing the further nosocomial spread of bacteria. DNA-based 
typing methods, such as multi-locus sequence typing (MLST), have 
been developed for key human pathogens. For Serratia marcescens, an 
established MLST scheme is available on PubMLST, which currently 
includes 1832 sequence types (STs).1 This scheme has proven to 
be valuable for the molecular characterization of S. marcescens strains 
and serves as an important tool for epidemiological surveillance 
(Martineau et  al., 2018). Currently, whole-genome sequencing 
(WGS)-based typing is employed for the majority of bacterial species, 
including S. marcescens (Zingg et al., 2017; Muyldermans et al., 2021). 
However, both MLST and WGS are considered time-consuming, 
labor-intensive, and expensive methods. In contrast, techniques 
utilizing single- or double-locus sequence typing have been 
successfully employed for the rapid assignment of clonal lineages in 
various bacterial species (Weissman et al., 2012; Pournaras et al., 2014; 
Fernández-Huerta et al., 2020; Magalhães et al., 2020).

During the 2-year period of the COVID-19 pandemic, 
we  observed an increase in infections caused by carbapenem-
resistant S. marcescens (outbreak) at our institution, which is a 
tertiary care hospital in southern Brazil. Therefore, we evaluated a 
novel approach using the flagellin gene as a single-locus sequence 
typing (SLST) method for the molecular characterization of 
S. marcescens isolates. In addition, we  investigated the genetic 

1 https://pubmlst.org/bigsdb?db=pubmlst_serratia_seqdef

environment of the carbapenemase genes present in the 
outbreak isolates.

2 Materials and methods

2.1 Isolate collection and identification

The study was conducted at Hospital de Clínicas de Porto Alegre, 
Porto Alegre, Brazil, which is an 860-bed tertiary care university 
hospital. During a surveillance study focused on carbapenem-
resistant Enterobacterales, a total of 170  S. marcescens isolates 
non-susceptible to meropenem—according to the European 
Committee on Antimicrobial Susceptibility Testing (EUCAST) 
criteria, (Eucast: MIC Determination, 2025)—were obtained from 
January 2020 to January 2022. The incidence rates of meropenem-
non-susceptible S. marcescens (MNSSm) per 1,000 patient-days were 
evaluated for each month to monitor the increase in the 
case numbers.

Only one isolate from each patient was included. The isolates were 
identified by mass spectrometry using the VITEK® MALDI-TOF MS 
system (bioMérieux, France) and MYLA® (version 3.0) for 
clinical use.

2.2 Antimicrobial susceptibility profile

Antimicrobial susceptibility was evaluated for all isolates using the 
disc diffusion method following the EUCAST guidelines (EUCAST, 
2024). The antibiotics tested included amikacin, cefepime, 
ciprofloxacin, norfloxacin, ceftazidime, gentamicin, meropenem, 
piperacillin/tazobactam, and sulfamethoxazole/trimethoprim. The 
susceptibility profile of tigecycline was determined through broth 
microdilution following the EUCAST guidelines (EUCAST, 2024), 
and quality control of this test was performed in parallel using E. coli 
ATCC 25922.

Minimum inhibitory concentrations (MICs) of meropenem, 
ceftazidime-avibactam, and meropenem-vaborbactam were 
determined for a subset of 69 isolates using concentration gradient 
strips (MTS, Liofilchem, Inc., Waltham, MA) according to the 
EUCAST guidelines. The isolates were selected based on recovery data 
(during the outbreak period). One isolate per patient was included, 
sourced from different care units, with at least one isolate collected 
each month.

2.3 Molecular detection of carbapenemase 
genes

Total genomic DNA was extracted from the isolates by thermal 
lysis (Dashti et al., 2009), and DNA concentration and purity were 
evaluated using a NanoDrop  2000 spectrophotometer (Thermo 
Scientific, Wilmington, DE, United States), with DNA concentrations 
ranging from 20 to 50 ng/μL. For the qPCR reactions, 1 μL of DNA 
template was used. The presence of carbapenemase genes was detected 
using multiplex high-resolution melting real-time PCR (qPCR-HRM) 
with primers previously described by Monteiro et al. (2012) for blaIMP, 
blaVIM, blaNDM-1, blaKPC, blaGES, and blaOXA-48-like.
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2.4 Single-locus sequence typing

Reference sequences of the flagellin (fliC) gene from S. marcescens 
(Jimenez et al., 2020; Moradigaravand et al., 2016; Iguchi et al., 2014; 
Nodari et al., 2017; Supplementary Table S1) were extracted, aligned, 
and trimmed to identify the polymorphic region. A phylogenetic tree 
was reconstructed to compare the relationship between these 
sequences, and the best region was selected to design the primers 
using Geneious 9.0 (Kearse et  al., 2012). The primers fliC_F 
(5′-CGCTTCTCAGTCCCGTATCC-3′) and fliC_R (5′-AATAGCC 
CGATTCCCCCG-3′) were designed to be  complementary to the 
positions 701–1,150 of the fliC gene, resulting in a product length 
of 450 bp.

Total genomic DNA from the 69 isolates was extracted and 
evaluated according to the protocol cited above (Dashti et al., 2009). 
In addition, we also sequenced a meropenem-susceptible isolate using 
Sanger sequencing to serve as an outgroup in the phylogenetic tree. 
PCR amplification of the fliC gene was carried out using 10 ng of DNA 
template and Platinum® Taq DNA Polymerase (Invitrogen 
Corporation, United States). The PCR conditions were as follows: 
94°C for 5 min, followed by 35 cycles of 94°C for 30 s, 64°C for 45 s, 
and 72°C for 30 s, with a final extension at 72°C for 5 min. The 
amplified products were analyzed using 1.5% agarose gel 
electrophoresis (40 min at 110 v) and purified using ExoSAP-IT PCR 
Product Cleanup (Afymetrix, Santa Clara, CA, United States).

For Sanger sequencing, the PCR products were labeled using the 
BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, 
Foster City, CA, United  States) and purified using the BigDye 
XTerminator Purification Kit (Applied Biosystems, Foster City, 
California, United  States). The samples were sequenced in both 
forward and reverse directions using the ABI 3500 Genetic Analyzer 
(Applied Biosystems, Foster City, CA, United States).

Phylogeny was reconstructed using IQTree (Nguyen et al., 2015) 
from consensus sequences generated by aligning a fliC gene fragment 
with MAFFT v7.475 (Katoh and Standley, 2013), using 20 reference 
sequences (Supplementary Table S1). This fragment was created by 
systematically removing nucleotides from both ends to identify a 
DNA sequence that can resolve all phylogenetic clades, aligning with 
the previously published phylogeny inference (Jimenez et al., 2020). 
Subsequently, the sequences of this fragment obtained from the 
isolates in this study were aligned (using MAFFT v7.475) and 
subjected to maximum likelihood (ML) analysis under the K80 
nucleotide substitution model, as selected by the ModelFinder 
application (Kalyaanamoorthy et  al., 2017). Branch support was 
assessed using the approximate likelihood-ratio test based on the 
Shimodaira–Hasegawa procedure (SHaLRT) with 1,000 replicates. 
The phylogenetic tree was visualized using MEGA X (v.10.2.3) (Kumar 
et al., 2018).

2.5 Sequencing and plasmid 
characterization

One isolate recovered during the outbreak was sequenced using 
both Illumina MiSeq (2 × 250 bp; average coverage ∼100×) and 
MinION (R9.4 flow cell) for plasmid characterization. Genomic DNA 
was extracted from colonies grown in BHI broth (KASVI®) using the 
QIAamp DNA Mini Extraction Kit (QIAGEN®). DNA concentration 

was determined using the Qubit dsDNA HS Assay Kit with a Qubit 4 
fluorometer (Thermo Fisher Scientific), and fragment lengths were 
assessed using TapeStation 2,200 (Agilent, United Kingdom). The 
quality of the DNA was determined using NanoDrop™, and the 
260/280 ratio was considered.

The paired-end library was constructed using the Nextera XT 
DNA Library Prep Kit (Illumina), while for long reads (MinION; fast 
model base-calling; Q ≥8; Guppy v6.3.9; MinKNOW 22.10.10), the 
library was prepared using the Rapid Barcoding Sequencing Kit 
(SQK-RBK004; Oxford Nanopore), following the 
manufacturer’s protocols.

Raw short reads were quality-trimmed (Q > 30) and assembled 
using CLC Genomics Workbench 23. Antimicrobial resistance genes 
were identified (contigs >200 bp; >10x average coverage) in silico using 
the QIAGEN Microbial Insight-Antimicrobial Resistance database 
(QMI-AR). Plasmid replicon typing and IS typing were performed 
using the PlasmidFinder (2.0.1) and MobileElementFinder (v1.0.3) 
databases, respectively.

CLC Genomics Workbench (v. 23.0) was used to extract reads 
from base-called MinION sequencing data and to generate de novo 
assemblies, which were error-corrected using short-read Illumina data 
and the assembly polisher tool. Alignments of the fully reconstructed 
plasmid sequences were visualized and annotated using Geneious 
Prime (v. 2023.0.4).

For plasmid characterization, a hybrid assembly was generated 
using QIAGEN CLC Genomics Workbench (version 23.0). 
Comparison analyses were performed using Geneious Prime (v. 
2023.0.4) and BLAST Ring Generator (BRIG v. 0.95) to compare the 
circularized plasmids from this study with similar plasmids deposited 
in the NCBI database. Prokka (v. 1.14.6) and reference sequences were 
used for preliminary annotation, and the coding sequences (CDS) 
were manually curated.

3 Results

During the 2-year study period (January 2020 to January 2022), the 
incidence rates of MNSSm ranged from 0 to 1.39 cases/1,000 patient-
days, with a median of 1.14 cases/1,000 patient-days. The highest rates 
were observed in December 2020, January 2021, February 2021, and 
March 2021 with 0.24, 0.19, 0.35, and 1.39 cases/1000 patient-days, 
respectively. The incidence curve (Supplementary Figure S1) revealed 
that the outbreak began in December 2020 and concluded in November 
2021. Clinical data indicated that 77.65% (132/170) of the isolates were 
recovered from COVID-19-positive patients. Among these patients, the 
majority (83%; 109/132) were admitted to the intensive care unit (ICU).

The MNSSm isolates were predominantly obtained from tracheal 
aspirate samples (77%; 131/170). High resistance rates were observed 
for cefepime (100%), ceftazidime (98.2%), gentamicin (94.4%), 
ciprofloxacin (93.6%), sulfamethoxazole-trimethoprim (73.8%), and 
tigecycline (73.8%) (Supplementary Table S2). Susceptibility to 
amikacin was observed in 51.2% of the isolates. The MICs for 
meropenem (4.0–250.0 μg/mL), ceftazidime-avibactam (0.5–256 μg/
mL), and meropenem-vaborbactam (0.06–8 μg/mL) are presented in 
Table  1. The MIC₅₀/MIC₉₀ values for meropenem, ceftazidime-
avibactam, and meropenem-vaborbactam were 8.0/256, 0.5/8, and 
0.125/4 μg/mL, respectively. We successfully recovered 166 out of 170 
MNSSm isolates for carbapenemase gene detection. The blaKPC gene 
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TABLE 1 Clinical characteristics of the isolates for phylogenetic analysis.

Isolate 
number

Date Material Admission 
unit

Age COVID-19 Death within 
30 days

TYG MIC 
(μg/mL)

MPM MIC 
(μg/mL)

CZA MIC 
(μg/mL)

MRV MIC 
(μg/mL)

Gene 
carbapenemase

Clade

8 03/12/2020 Catheter tip Surgical unit 53 Yes No 2 8 0.5 1 KPC A

9 06/12/2020 Tracheal aspirate ICU 7B 61 Yes No 0.5 256 8 2 KPC A

12 29/12/2020 Tracheal aspirate ICU 7C 66 Yes Yes 1 16 0.25 0.06 KPC A

13 02-01-2021 Tracheal aspirate ICU 7B 61 Yes Yes 1 64 1 0.25 KPC A

15 07-01-2021 Tracheal aspirate ICU A COVID 81 Yes Yes 1 4 0.5 0.06 KPC A

17 01-02-2021 Tracheal aspirate ICU 7C 60 Yes Yes 1 256 8 1 KPC A

18 03-02-2021 Blood culture ICU 7B 30 No Yes 1 8 0.5 0.125 KPC A

29 06-03-2021 Tracheal aspirate ICU 7B 52 Yes No 2 256 1 4 KPC A

31 10-03-2021 Tracheal aspirate ICU 2 66 Yes Yes 0.5 256 8 4 KPC A

37 16-03-2021 Tracheal aspirate ICU 6A 27 Yes Yes 1 8 0.5 0.06 KPC A

38 16-03-2021 Tracheal aspirate ICU 2 60 Yes No 0.5 256 4 4 KPC A

41 18-03-2021 Tracheal aspirate ICU 1 62 Yes Yes 1 16 0.5 0.125 KPC A

44 24-03-2021 Tracheal aspirate ICU 2 62 No Yes 1 4 0.25 0.06 KPC A

52 30-03-2021 Tracheal aspirate ICU 7E 52 Yes No 1 256 8 2 KPC A

53 30-03-2021 Tracheal aspirate ICU 7E 55 Yes No 1 256 0.5 0.125 KPC A

66 05-04-2021 Tracheal aspirate Cardiovascular ICU 69 Yes Yes 1 8 256 2 KPC A

67 05-04-2021 Tracheal aspirate ICU 6A 40 Yes No 1 8 0.5 0.06 KPC A

68 06-04-2021 Tracheal aspirate ICU 2 66 Yes No 1 16 0.5 0.06 KPC A

69 06-04-2021 Blood culture ICU 7D 74 Yes Yes 2 16 256 4 KPC A

73 06-04-2021 Tracheal aspirate ICU 2 71 Yes Yes 2 8 0.25 NA KPC A

75 11-04-2021 Tracheal aspirate ICU 6B 38 Yes No 0.5 256 8 4 KPC A

54 10-05-2021 Tracheal aspirate ICU 2 59 Yes No 1 8 0.25 NA KPC A

55 11-05-2021 Tracheal aspirate ICU 7A 61 Yes Yes 1 8 0.5 0.125 KPC A

57 21-05-2021 Bronchoalveolar 

lavage

ICU 7D 52 Yes No 0.5 256 32 1 KPC A

103 25-05-2021 Tracheal aspirate ICU 7A 71 Yes Yes 1 8 0.5 0.06 KPC A

102 28-05-2021 Blood culture ICU 6C 56 Yes No 0.5 8 0.25 0.06 KPC A

108 05-06-2021 Bronchoalveolar 

lavage

ICU 6B 40 Yes Yes 0.5 4 1 0.06 KPC A

(Continued)
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TABLE 1 (Continued)

Isolate 
number

Date Material Admission 
unit

Age COVID-19 Death within 
30 days

TYG MIC 
(μg/mL)

MPM MIC 
(μg/mL)

CZA MIC 
(μg/mL)

MRV MIC 
(μg/mL)

Gene 
carbapenemase

Clade

111 08-06-2021 Tracheal aspirate ICU 7B 60 Yes No 1 8 0.5 0.06 KPC A

114 14-06-2021 Sputum ICU 6B 61 Yes Yes 1 16 NA NA KPC A

115 16-06-2021 Tracheal aspirate ICU 7C 48 Yes Yes 0.5 8 NA NA KPC A

120 19-06-2021 Tracheal aspirate ICU 7A 53 Yes No 2 16 NA NA KPC A

119 21-06-2021 Tracheal aspirate ICU 6 E 44 Yes No 1 8 1 0.06 KPC A

128 05-07-2021 Sputum Surgical unit 64 Yes No 4 32 NA NA KPC A

129 10-07-2021 Tracheal aspirate ICU 7C 73 Yes Yes 1 8 0.5 0.06 KPC A

133 15-07-2021 Tracheal aspirate ICU 6D 50 Yes Yes 1 4 0.5 0.125 KPC A

131 16-07-2021 Blood culture ICU 7C 29 Yes Yes 1 256 1 4 KPC A

134 18-07-2021 Tracheal aspirate ICU 6B 35 Yes Yes 0.5 8 0.5 0.125 KPC A

136 18-07-2021 Tracheal aspirate ICU 6D 52 Yes Yes 0.5 4 0.5 0.5 KPC A

139 26-07-2021 Bronchoalveolar 

lavage

ICU 6D 28 Yes No 0.5 16 NA NA KPC A

140 27-07-2021 Lung secretion ICU 7B 43 Yes No 0.5 32 NA NA KPC A

146 19-08-2021 Tracheal aspirate ICU 6D 71 Yes No 0.5 16 NA NA KPC A

149 08-09-2021 Sputum ICU 2 21 Yes Yes 8 16 NA NA KPC A

151 26-09-2021 Tracheal aspirate ICU 6E 71 Yes Yes 1 4 0.5 0.125 KPC A

153 08-10-2021 Tracheal aspirate ICU 6D 35 Yes No 1 8 NA NA KPC A

154 16-10-2021 Tracheal aspirate ICU 2 50 No No 0.5 256 1 1 KPC A

159 06-11-2021 Tracheal aspirate ICU 6C 40 Yes Yes 1 8 NA NA KPC A

160 06-11-2021 Tracheal aspirate ICU 1 68 No Yes 1 8 0.5 0.06 KPC A

163 08-11-2021 Tracheal aspirate ICU 1 68 No Yes 1 16 NA NA KPC A

169 30-11-2021 Bronchoalveolar 

lavage

ICU 3 66 No Yes 0.5 16 NA NA KPC A

167 17-11-2021 Sputum ICU 6C 65 Yes Yes 1 4 256 1.5 NDM B

s17 28//09/2021 Bronchoalveolar 

lavage

ICU 1 42 No No NA NA NA NA None B

ICU, Intensive Care Unit; S, susceptible; I,intermediary; R, resistant; NA, not available; AK, amikacin; SMZ+TMP, sulfamethoxazole-thyrotropin; FEP, cefepime; CIP, ciprofloxacin; NOR, norfloxacin; CN, gentamicin; TZP, piperacillin-tazobactam; MPM, meropenem; 
CZA, ceftazidime-avibactam; MRV, meropenem-vaborbactam; NA, not realized. MIC50/MIC90 of MPM, CZA and MRV were 8.0/256, 0.5/8, and 0.125/4 μg/mL, respectively.
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FIGURE 1

Phylogenetic analysis of the Serratia marcescens isolates. The phylogenetic tree was inferred using the maximum likelihood (ML) method. The 
bootstrap test was based on 1,000 replicates. Branches in red represent clade A, and branches in blue represent clade B. Branch lengths are shown 
above the branches in black. S17 is the meropenem-susceptible isolate obtained during the outbreak period.

was the most prevalent carbapenemase gene (92.2%, 153/166), 
followed by blaNDM-1 (3.6%; 6/166).

For the SLST method using the flagellin gene, eight 
polymorphic sites were identified in the reference sequences, and 
a 353 bp DNA sequence was sufficient to resolve all previously 
reported phylogenetic clades (Table  1). This sequence was 
designated as the fliC gene typing region. Of the 69 isolates 
amplified by PCR for Sanger sequencing, high-quality sequence 
data were obtained for 50 isolates (Supplementary Figure S2). 
Phylogenetic analysis grouped these isolates into two distinct 
clades: Clade B comprised all blaKPC-2-positive isolates (49/50), 
while Clade A contained the single meropenem-susceptible 
isolate, which was closely related to a blaNDM-1-positive isolate 
(Figure  1). WGS revealed that the Serratia marcescens isolate 
GSMA0007 belongs to sequence type 807 (ST807).

The blaKPC-2 gene was located on a plasmid with 99.93% identity and 
83% coverage to pWP8-S18-CRE-01_2 (GenBank accession number 
AP022243.1). PlasmidFinder identified the incompatibility group as 
IncP6, with 99.8% identity and 100% coverage. The complete circularized 

IncP6 plasmid exhibited a GC content of 58.3% and measured 51,220 kb 
in size; it was designated pLB_GSMA0007 (accession number CP130614 
and CP130615). A graphical comparison of the IncP6 plasmids harboring 
blaKPC-2 is presented in Figure 2. The blaKPC-2 gene was inserted within 
a classical Tn3-family transposon alongside other antibiotic resistance 
genes, including blaTEM-1, mph(A), qacE, sul1, and aac(6′)-lb-cr, which 
confer resistance to cephalosporins, macrolides, chlorhexidine and 
benzalkonium chloride, sulfamethoxazole, fluoroquinolones, and 
aminoglycosides, respectively. Complete information regarding the whole 
genome analysis is provided in Supplementary Table S3.

4 Discussion

The COVID-19 pandemic significantly disrupted hospital settings 
worldwide, increasing the demand for ICU beds, medical supplies, and 
healthcare workers. This surge severely impacted hospital healthcare 
systems. The prolonged and complex course of SARS-CoV-2 infections 
weakened surveillance measures for multi-drug resistant (MDR) 
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organisms, creating favorable conditions for hospital-acquired 
infections (HAIs) (Falcone et  al., 2022; Kozłowski et  al., 2022). 
Extensive antimicrobial exposure, prolonged hospitalization, use of 
invasive devices, and compromised host immunity are considered the 
primary factors associated with antimicrobial resistance development 
(De Waele et al., 2020). According to data from our institution, the 
highest number of hospitalized COVID-19 patients was recorded 
between 19 February 2021 and 17 March 2021 (Martins et al., 2021) 
Notably, the highest incidence density of MNSSm was observed in 
March 2021. During the outbreak in our institution, meropenem was 
the fourth most commonly used antimicrobial among COVID-19 
patients (Silva et al., 2020). Its consumption, measured in days of 
therapy (DOT) per 1,000 patient-days, was higher in 2021 than in 
2020 (101.4 vs. 90.9, respectively) (data not shown).

S. marcescens has long been recognized as a cause of nosocomial 
outbreaks. During the pandemic, several hospital outbreaks of 
carbapenem-resistant S. marcescens were linked to COVID-19 dedicated 

units (Vera-Leiva et  al., 2017; World Health Organization, 2017; 
Nedeljković et al., 2021). These outbreaks were due to S. marcescens 
carrying the blaKPC-2 gene, primarily located on plasmid groups IncA/C 
and IncN (Prado et  al., 2022). The transmission of S. marcescens in 
healthcare settings is often associated with direct patient contact, 
contaminated medical equipment, and healthcare personnel. In our 
outbreak, the predominance of cases among ICU inpatients suggests a 
likely role of invasive procedures, such as mechanical ventilation and 
central venous catheters, as potential facilitators of bacterial spread. In 
addition, environmental reservoirs, including sinks and disinfectant 
solutions, have been previously implicated in S. marcescens outbreaks. 
Upon identifying the outbreak, immediate infection control measures 
were implemented, including cohorting of infected patients, enhanced 
hand hygiene reinforcement among healthcare workers, and 
decontamination of high-touch surfaces.

Treatment of infections caused by carbapenem-resistant 
S. marcescens is challenging due to this bacterium’s intrinsic resistance to 

FIGURE 2

Comparisons among the plasmids belonging to the IncP6 group harboring blaKPC-2. (A) Circular alignment of pLB_GSMA0007 (51,220 kb) with other 
sequences previously deposited in Genbank (AP022243, CP093216, CP109826, MH909348, LT992437), generated using BLAST Ring Image Generator 
(BRIG). The inner circles represent the assembly of pLB_GSMA0007, GC content (black), and GC skew (dark green and purple). (B) Genetic 
environment of blaKPC-2 in pLB_GSMA0007, generated using IBS 2.0. Resistance genes are represented in pink (for details regarding the isolates, see 
Supplementary Table S3).
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polymyxins. Newer beta-lactam/beta-lactamase inhibitor combinations 
may be effective against carbapenem-resistant S. marcescens but only 
when resistance is mediated by serine carbapenemases rather than 
metallo-carbapenemases. Therefore, identification of bacterial resistance 
mechanisms plays a crucial role in determining appropriate clinical 
treatment for patients with carbapenem-resistant infections. Our 
findings demonstrated that the S. marcescens isolates carrying blaKPC 
were susceptible to ceftazidime-avibactam and meropenem-
vaborbactam, consistent with previous reports (Prado et al., 2022).

Evaluating clonal relatedness of isolates during an outbreak is 
essential, with PFGE and cgMLST schemes being the most common 
typing methods. However, developing faster, reliable, and cost-
effective methods remains necessary. Recently, various typing 
approaches using single- or double-locus sequence typing have been 
proposed (Weissman et al., 2012; Pournaras et al., 2014; Fernández-
Huerta et al., 2020; Magalhães et al., 2020) to enable rapid evaluation 
of outbreak isolates. In this study, we evaluated a rapid approach to 
characterize an S. marcescens outbreak using a 353 bp region of the 
fliC gene. This gene encodes flagellin, the primary protein constituting 
the flagellar structure in various bacterial species. The flagellin 
sequence contains highly conserved regions across species, as well as 
a hypervariable central region (Nedeljković et al., 2021), making the 
fliC gene an interesting molecular marker for typing. Using this gene, 
our phylogenetic analysis clustered all blaKPC-2-positive isolates into 
the same clade while distinguishing both blaNDM-1-positive and 
meropenem-susceptible isolates. Although this molecular marker 
produced promising results, it is important to emphasize that 
confirmation of isolate clonality should utilize more robust methods.

In this study, the blaKPC-2 gene was carried on an IncP6 
incompatibility plasmid of 51,220 kb (pLB_GSMA0007). The genetic 
environment of the carbapenemase gene harbored a Tn3 transposon 
formed by ISKpn6/blaKPC-2/ΔblaTEM-1/ISKpn27, identical to the 
structure previously reported by Yao et al. (2017). While the genetic 
context of blaKPC-2 varies across different plasmids, the most common 
transposon in Brazil is Tn4401, which has been responsible for the 
widespread dissemination of this gene in the country (Vera-Leiva 
et  al., 2017). IncP6 plasmids carrying blaKPC-2 have rarely been 
reported, and to the best of our knowledge, this is the first report of an 
IncP6 plasmid from a clinical isolate in Brazil.

Our findings demonstrate that an outbreak of clonal-related 
carbapenem-resistant S. marcescens occurred during the COVID-19 
pandemic, primarily affecting ICU inpatients. The spread of the 
resistance gene was facilitated by an IncP6 plasmid containing blaKPC-2, 
reported here for the first time from a clinical isolate in Brazil. In 
addition, our approach using the fliC gene for SLST successfully 
enabled molecular characterization of the S. marcescens outbreak. This 
method is particularly valuable given that whole-genome sequencing, 
while considered the gold standard, is not always feasible. The SLST 
method represents a promising tool for genomic surveillance due to 
its lower cost and faster turnaround time.
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SUPPLEMENTARY FIGURE 1

Incidence rate of the 170 MNSSm isolates from January 2020 to January 
2022. Incidence rate was calculated as MNSSm isolates per 1000 
Patient Days.

SUPPLEMENTARY FIGURE 2

Alignment of fliC gene (350 bp fragment). This MAFFT alignment shows the 
identity of the fliC gene fragment among outbreak isolates and an outgroup 
isolate, used to build the phylogenetic tree (Figure 1). The colours yellow (G), 
green (T), red (A) and blue (C) represent the SNPs in each position.
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