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Background and objective: Despite its critical role in individual and societal 
health, food hygiene remains underexplored. Antibiotic-resistant pathogenic 
bacteria in ready-to-eat (RTE) food threaten public health. This scoping review 
collected data on the epidemiological prevalence of RTE food-contaminated 
pathogens resistant to antimicrobial drugs and resistance genes in Africa.

Method: Using electronic databases, such as PubMed, Scopus, and Web of 
Science (WoS), handpicked from references, pre-reviewed published articles 
were retrieved and analyzed according to the PRISMA-ScR guidelines.

Results: The findings indicate 40 previewed published articles qualified for meta-
synthesis in the scoping review with a population/case ratio of 11,653/5,338 
(45.80%). The most frequently reported RTE foods were meat or beef/beef-
soup, chicken or poultry products, salads, vegetable salads, and sandwiches, 
which harboured pathogens such as E. coli, Salmonella, and Staphylococcus. 
Antibiotic susceptibility tests revealed the use of 48 antibiotics to manage 
infections, following CLSI (Clinical and Laboratory Standards Institute) protocols. 
Moreover, 10 authors reported 54 resistance genes associated with pathogenic 
resistant bacteria. In addition, only 15 studies received funding or financial 
support.

Conclusion: These findings from several researchers indicate that RTE street 
foods in African and resource-limited nations harbour enteric pathogens and are 
a significant concern to the public health system and reservoir of the spread of 
antibiotic resistance. This underscores the necessity of implementing effective 
control strategies to address challenges and limit the spread of resistant bacteria 
in RTE foods. The antimicrobial resistance surveillance system in the region 
is a significant concern. Notably, Africa needs to strengthen the national and 
international regulatory bodies and a health surveillance system on antimicrobial 
resistance, particularly among developing nations.
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Introduction

Ready-to-eat (RTE) foods are foods prepared for consumption, 
and they may be raw or cooked, served hot or chilled, and often eaten 
without any additional treatment or processing (Lund, 2019; Valiati 
et al., 2023). Most RTE foods in Africa include hamburgers, salads, 
macaroni salad, cooked/roasted meats, smoked fish, sandwiches, 
cheese, mushroom pasta, deli-style cheese, burritos, fajitas, freshly 
made sushi, desserts, and ice-creams such as doughnuts etc. (Lund, 
2019; Valiati et al., 2023). The consumption of diverse RTE foods in 
public spaces has become prevalent globally. RTE foods are widely 
consumed in low- and middle-income countries (LMICs) because of 
their convenience, affordability, and palatability (Makinde et al., 2020). 
Given the essential significance of food in human life, it is imperative 
to uphold food safety to protect individuals from foodborne illnesses 
and other associated health risks (Mengistu and Tolera, 2020). At the 
same time, it could be a reservoir of antibiotic resistance (Igere et al., 
2022b, 2024; Onohuean and Igere, 2022). Mainstream research has 
extensively focused on environmental sources (such as water and soil) 
and clinical surveillance as major reservoirs of bacteria antibiotic 
resistance (Igere et al., 2022a; Onohuean and Nwodo, 2023b; Regassa 
et al., 2023; Satán et al., 2023). There is sparse data on the distribution 
and prevalence of antibiotic resistance from RTE foods.

Furthermore, food safety involves preventing chemical, biological, 
pathogens, and other health hazards from contaminating food. 
However, improper handling and serving of RTE street food can cause 
contamination with pathogens such as Salmonella, Vibrio spp., 
Campylobacter, E. coli, Listeria monocytogenes, Toxoplasma gondii, 
Clostridium botulinum, Moulds and other foodborne pathogens 
including Cyclospora, Hepatitis A, and Cronobacter sakazakii (Beshiru 
et al., 2019; Igere et al., 2022a; Onohuean and Igere, 2022, 2023). The 
use of contaminated water, inadequate hygiene, and environmental 
sanitation also impacts the contamination of RTE food, resulting in 
typhoid fever and diarrhoea infections (Igere et al., 2023; Onohuean 
and Nwodo, 2023a). Therefore, RTE foods prepared with contaminated 
ingredients, water, and in an unsanitary setting can contain these 
bacteria, which significantly impacts public health.

Food contaminated with antibiotic-resistant pathogenic 
microorganisms poses a significant risk to public health. In addition 
to infecting people, they serve as potential reservoirs of antimicrobial 
resistance, facilitating the transfer of antibiotic-resistant components 
to both related and unrelated bacterial species (Odu and Akano, 2012; 
Beshiru et al., 2020; Onohuean and Igere, 2022). This has contributed 
to the global increase in antibiotic resistance among foodborne 
bacteria and infections in recent years. Regrettably, in many 
low-income African nations, most food vendors lack significant 
monitoring or licences by appropriate agencies or organizations 
overseen or accredited by relevant bodies or organizations to validate 
these RTE food safety. Again, these RTE food vendors could have 
compromised their products due to the environment and methods 
employed, increasing the likelihood that some are infected with 
bacterial infections. Although critical to health and productivity, food 
hygiene has been significantly overlooked in African research.

Antimicrobials, including antibiotics, are medications used to treat 
or prevent bacterial infections in humans and animals. Globally, 
antimicrobial resistance (AMR) in RTE foods has impacted product 
safety and quality. Countries with rigorous food safety standards, such 
as the European Union and the United  States, impose stricter 
limitations on the use of antimicrobial agents in food production 
(Walia et al., 2019; Kättström et al., 2022; Taylor et al., 2022). In LMICs, 
where agricultural practices frequently lack control, the unrestrained 
use of antibiotics in animal production facilitates the emergence of 
resistant bacteria that may infiltrate the food chain (Samtiya et al., 
2022). Due to their limited processing and frequent consumption 
without additional cooking, RTE foods present an increased risk of the 
spread of antimicrobial-resistant bacteria among consumers. 
Furthermore, the use of antimicrobials is affected by AMR, which 
constitutes a significant global public health and developmental threat. 
Bacterial AMR is thought to have contributed to 4.95 million fatalities 
worldwide in 2019 and been directly responsible for 1.27 million 
deaths (Murray et  al., 2022; WHO, 2023).Resistance is a natural 
occurrence intensified by excessive or improper use (WHO, 2018; 
Onohuean et al., 2022a; Somda et al., 2023). Followed by mutations, 
gene transfer, and target modification, antimicrobial-sensitive 
organisms can develop microbial resistance to antimicrobials (Muteeb 
et al., 2023; Onohuean and Igere, 2023). Bacteria can increase antibiotic 
resistance through many processes, which differ according to species 
and origin. Thought resistance was common among clinical strains, it 
has become a widespread environmental and food bacterial isolate 
(Somda et al., 2021); one of the biggest public health issues is global.

Research has revealed a troubling degree of antibiotic resistance in 
the bacterial pathogens present in these foods, potentially resulting in 
profound health implications for consumers. The 11 AMR genes 
included tetracycline (tetA, tetB, tetM), aminoglycoside (aadA, aphA-1), 
sulphonamide (sulI, sulII), chloramphenicol (cmlA, floR), erythromycin 
(ermB), and disinfection resistance genes (qacE). TetA has been 
reported as the most prevalently identified gene in food samples, with 
a frequency of 100% across all samples (Xiong et al., 2019). Also, the 
study by Somda et al. (2023) identified tet(A), tet(B), tet(C), tet(K), 
blaTEM, catA1, catA2, cmlA, blaCTXM, qnrA, qnrB, qnrS, parC, and 
qepA4 genes as typical in foodborne pathogenic bacteria in West Africa.

The widespread prevalence of antibiotic-resistant pathogenic 
bacteria in RTE foods significantly contributes to human multidrug 
resistance. The food chain acts as a transmission route for resistant 
strains, facilitating the acquisition and of transfer resistance genes, 
which pose significant health risks. Evidence has shown that 
multidrug-resistant bacteria in food correlate with the growth of 
antibiotic-resistant illnesses in humans, thereby complicating 
treatment (Himanshu et al., 2022; Choy et al., 2024). This underscores 
the critical need for surveillance data to inform policymakers and 
stockholders about enhanced food safety protocols. The goal of this 
scoping review is to create a database for RTE food resistance to 
antimicrobial drugs in Africa. To identify the most incriminated 
pathogens, we  assessed the evolution of antibiotic resistance in 
bacteria isolated from RTE food samples and determined the 
prevalence of antibiotic resistance genes in RTE food.
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Methodology

Study design and article search strategies

This study adopted the protocol of Systematic Reviews and Meta-
Analyses extension for Scoping Reviews (PRISMA-ScR) (Tricco et al., 
2018) for the study selection process of pre-review published articles 
from African countries. Using specific keywords and wildcard* 
procedural details in Supplementary file. Research articles from 
PubMed, Scopus, and Web of Science (WoS), published in English 
between 2000 and 2024, were retrieved on 25 September 2024, and 
updated plus handpicked from references on 29 October 2024 at 
11:05 p.m. The dataset was merged and normalized using the 
ScientoPy and fBasics R packages, duplicates were eliminated, and the 
final compilation was saved in CSV or Excel format (Rstudio Team, 
2020; Onohuean et al., 2022b, 2022c).

Eligibility criteria

Articles that satisfied the specified inclusion criteria were included 
in the systematic review. Research articles conducted within the African 
nations between 2000 and 2024, a defined research methodology such 
as cross-sectional, survey, experimental or bacteriological research, 
conventional phenotypic method or genotypic primary Polymerase 
chain reaction (PCR) methods or molecular methods for antibiotic 
resistance genes or whole genome sequencing and MALDI-TOF mass 
spectrometry to identify the prevalence of antibiotic-resistant pathogenic 
bacteria of public health-relevant bacteria, such as Salmonella, 
Staphylococcus aureus, Vibrio spp., and E. coli, and resistance genes in 
RTE foods, articles published in English in language, studies conducted 
on various types of RTE foods in Africa nations qualified for inclusion. 
The excluded articles were review articles, studies on antibiotic resistance 
genes in artificially contaminated bacteria or machine learning studies, 
research theses, opinion pieces, book chapters, non-peer-reviewed 
works, clinical or environmental sample sources that are not RTE foods, 
and conference abstracts for which full articles were not readily available.

Outcome of interest

The outcome of interest based on the objective of this systematic 
review is to determine the prevalence of RTE food-contaminated 
pathogens (E. coli, Salmonella, Staphylococcus aureus, etc.), their 
resistance to antimicrobial drugs, and resistance genera within 
African nations.

Assessment of data quality

The Newcastle-Ottawa Scale (NOS), approved by the Agency for 
Healthcare Research and Quality (AHRQ), was used to evaluate the 
quality of the data included in this scoping review and analysis 
(Onohuean et al., 2022c). Using a star rating system, the quality of the 
studies was evaluated based on three categories: the selection of 
research groups received a maximum of 4 stars, variables include 
articles source or type of RTE foods, representativeness sample of 
community or population bacteria or contaminated pathogens, 

antimicrobial drugs, and/or resistance-genes. The comparability of 
groups received a maximum of 2 stars, variables assessed include 
methods and period, and the assessment of outcomes received a 
maximum of 3 stars, variables that clearly defined and reliably 
measured outcomes such as the present of RTE food-contaminated 
pathogens, antimicrobial drugs, and resistance-genes.

Data extraction

The two authors (HO and OH) independently analyzed the titles 
and abstracts of the retrieved datasets for potentially appropriate 
studies. Studies not conducted in Africa, as well as literature reviews, 
systematic reviews, conference papers, and opinion pieces, were 
excluded. The complete texts of the selected papers were meticulously 
analyzed, and the results aligned with the objectives of the scoping 
review, which was a meta-synthesis using a data extraction tool. The 
information, including title of articles, authors/year, countries, source 
(RTE foods), method, types of bacterial isolates, sample population, 
antibiotic/antimicrobial used, antibiotic susceptibility pattern, 
resistant genes, and funders, was obtained in the data extraction form.

Data analysis

The retrieved data were used for descriptive statistics. Subsequent 
analysis was conducted at several stages in Excel 2013 R version 4.1.0 
software, and findings are presented in figures, graphical heatmaps, etc.

Results

Summary findings from the literature 
search

From the total of 668 articles identified in the searched different 
databases, 455 passed the initial screening, 198 were retrieved, 149 
were eligible, and 40 published articles qualified for inclusion in the 
meta-synthesis in the scoping review (Figure 1). In the African region, 
the nation’s Nigeria (n = 18 articles), Ethiopia (n = 3 articles), and 
South  Africa (n = 3 articles) were the countries most frequently 
reported on the national distribution of antibiotics recovered from 
RTE foods (Figure 2). However, only one study has been reported on 
mixed West African countries (Ghana, Nigeria, Benin, and Togo).

Quality assessment

In Supplementary Table 1, we present the particular information 
on the evaluation questions listed according to a domain for each 
article and the quality evaluation ratings of the research that were 
included. On the other hand, the comparability of the NOS variables 
did not reward any of the research papers that were evaluated with any 
stars because no comparative data/studies were found in the included 
articles. However, the quality ratings of the included studies ranged 
from 8 to 10. A total of 12 studies were awarded 10 points out of the 
potential 10 points, 18 were awarded 9 points, and 10 were awarded 
8 points.
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Articles included

The articles used in this scoping review were Oladipo and 
Adejumobi (2010); Nyenje et al. (2012); Akinyem et al. (2013); Zige 

(2013); Aminu and Umeh (2014); Akinnibosun and Ojo (2015); 
Owoseni and Onilude (2016); Tesfaye et al. (2016); Yaici et al. (2017); 
Ananias and Roland (2017); Ebakota et al. (2018); Morshdy et al. 
(2018); Okoli et al. (2018); Tshipamba et al. (2018); Blessed (2018); 

Data identified from databases
Scopus (n=167) 
Web of Science (WoS) (n= 207)
PubMed (n= 287)
Hand search (n = 7)
Total (n = 668)

Records removed before screening:
(n=213); 
Scopus: Review 68, systematic review 
and meta-analysis 51, Conference 
Paper 13, Note 18, Letter 12 Editorial 
7, Book Chapter 24, Erratum 1, Short 
Survey 6.  
Languages: French 8, German 5 

Records screened
(n = 455) Duplicate records removed (n =161)

Records marked as ineligible by title 
screened (n=96) 

Reports sought for retrieval
(n =198) 

Reports not relevant abstracts 
(n =57) 

Eligibility Studies included in 
review (n=149) 

Articles excluded (n=109)
Studies without bacteria study (n=5)
Studies of both clinical, environment and RTE 
food data (n=7)
Studies on antimicrobial residues (n=26)
Studies animal feces (n=8)
Studies outside of Africa countries (n=50)
No antimicrobials-resistance reported data (n=10)
No methodology laboratory procedure of 
confirmation of bacteria and antibiotics resistance 
or gene (n=8) Studies included scoping review 

(n= 40) 
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FIGURE 1

PRISMA study selection flowchart on antibiotic-resistant pathogenic bacteria, prevalence rates, and resistance genes in RTE foods in Africa.

2 
2 

1 
1 

3 
1 

2 
2 

18 
3 

1 
2 

1 

0 2 4 6 8 10 12 14 16 18 20

Algeria
Burkinafaso

Cameroon
Chad

Ethiopia
Eygpt

Ghana
Kenya

Nigeria
South Africa

Tanzania
Uganda

Zimbabwe

Number of Ar�cles

Co
un

tr
ie

/N
a�

on
s 

FIGURE 2

Study localities on antibiotic-resistant pathogenic bacteria, prevalence rates, and resistance genes in RTE foods in Africa.
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Ndunguru and Ndossi (2020); Okafor-Elenwo and Imade (2020a, 
2020b); Okubo et al. (2020); Asiegbu et al. (2020); Claudious et al. 
(2020); Fayemi et al. (2021); Izevbuwa and Okhuebor (2021); Makinde 
et al. (2021); Mayoré et al. (2021); Mekhloufi et al. (2021); Nikiema 
et al. (2021); Setsoafia Saba et al. (2021); Karikari et al. (2022); Mwove 
et al. (2022); Soubeiga et al. (2022); Esemu et al. (2023); Alelign et al. 
(2023); Ronald et al. (2023); Beshiru and Igbinosa (2023); Akinyele 
et al. (2024); Isic et al. (2024); Moges et al. (2024); Umar et al. (2024).

Population/cases of antibiotic-resistant 
pathogenic bacteria in RTE foods in African 
countries

In Africa, antibiotic-resistant pathogenic bacteria were found in 
5,338 out of 11,653 (45.80%) samples of RTE foods. However, the 
sample size and cases by nations were Nigeria (59.05%, 128.9% cases), 
Ethiopia (6.87%, 14.99% cases), and South Africa (4.91%, 10.72% 
cases) were the countries most frequently reporting antibiotic-
resistant bacteria from RTE foods (Table 1 and Figure 3). The, one 
study involving a combination of West African countries (Ghana, 
Nigeria, Benin, and Togo) reported fewer occurrences, accounting for 
only 0.37% of the total samples and 0.81% of the cases.

Food types/pattern, period, and study 
method of antibiotic-resistant pathogenic 
bacteria in RTE foods

The primary authors reported different RTE foods; however, the 
most reported RTE foods were meat or beef/beef-soup, chicken or 
poultry products, salads, vegetable salads, sandwiches (Table 1). A 
total of 32 authors reported a study period ranging from 1 month to 
2 years. All the included studies reported that the method applied 
comprised whole-genome sequencing, conventional PCR, serotyping, 
bacteriological analysis, or other standard microbiological laboratory 
techniques (Table 1).

Isolated antibiotic-resistant pathogenic 
bacteria in RTE foods

All the authors reported the isolated bacteria. Interestingly, 11 authors 
reported more than three bacterial isolates in their studies such as Yaici 
et al. (2017) (E. coli, K. pneumoniae, K. oxytoca), Alelign et al. (2023) 
(Staphylococcus aureus, Salmonella species, and E. coli), Oladipo and 
Adejumobi (2010) (Bacillus licheniformis, Aeromonas hydrophila, 
Enterobacter aerogenes, Bacillus cereus, Proteus mirabilis, Pseudomonas 
putida, Proteus vulgaris, Pseudomonas cholororaphi and Proteus morganii), 
Okafor-Elenwo and Imade (2020b) (Serratia, Citrobacter, Proteus, 
Staphylococcus and Bacillus, with Proteus), Blessed (2018) (C. freundii, 
E. coli, P. mirabilis, P. vulgaris), Akinnibosun and Ojo (2015) (E. coli, 
Pseudomonas aeroginosa, Staphylococcus aureus), Izevbuwa and 
Okhuebor (2021) (E. coli, Streptococcus spp., Staphylococcus aureus, 
Pseudomonas aeroginosa, Salmonella spp., Enterobacterspp), Asiegbu et al. 
(2020) (Enterobacteriaceae, L. monocytogenes, S. aureus), Tshipamba et al. 
(2018) (Staphylococcus aureus S. aureus, Enterococcus faecalis, 
Planomicrobium glaciei), Owoseni and Onilude (2016) (Citrobacter, 

Edwardsiella, Enterobacter, Escherichia coli, Klebsiella, Proteus, Salmonella, 
Serratia, and Shigella). Of all these different bacteria in any study, more 
than three were classified as mixed antibiotic-resistant pathogenic bacteria 
of public health significance. All other authors reported one or two 
antibiotic-resistant pathogenic bacteria in their studies, which are 
included in the scoping review in Figure 4 and Table 1.

Antibiotic susceptibility patterns and 
resistance genes against 
antibiotic-resistant pathogenic bacteria in 
RTE foods

A total of 30 authors of the included studies reported the antibiotic 
susceptibility patterns of 48 antibiotics used to manage pathogenic 
bacterial infections following the CLSI protocols. The antibiotics 
reported are amoxicillin, amoxicillin-clavulanic acid, ampicillin, 
Augmentin, azithromycin, benzylpenicillin, carbenicillin, cefepime, 
cefotaxime, cefoxitin, cefpodoxime, ceftaroline, ceftazidime, cefixime, 
ceftriaxone, cephalothin, cefuroxime, chloramphenicol, ciprofloxacin, 
clindamycin, cloxacillin, cotrimoxazole, doxycycline, enrofloxacin, 
erythromycin, fusidic acid, gentamycin, imipenem, kanamycin, 
levofloxacin, linezolid, nalidixic acid, nitrofurantoin, norfloxacin, 
ofloxacin, oxacillin, pefloxacin, penicillin G., sparfloxacin, 
streptomycin, sulphamethoxazole, tedizolid, teicoplanin, tetracycline, 
trimethoprim, trimethoprim-sulfamethoxazole, typhimurium and 
vancomycin. A heatmap cluster analysis highlighted the antibiotics 
used for bacterial isolates in each study. The two colours in the 
heatmap denote susceptibility patterns, such as intermediate/dose-
dependent and resistance, represented with black, whereas those 
studies that did not report any pattern were denoted with yellow of 
isolates (Figure 5A). The countries’ distribution of resistance bacteria 
isolates to the antibiotics recovered from the RTE food among the 
reported studies showed Nigeria samples to have high resistance to 
ampicillin (4,159), cefuroxime (4,150), chloramphenicol (2,108), 
cotrimoxazole (2,241), gentamycin (2,302), and branded amoxicillin/
clavulanic acid (1,346). Studies in Ghana showed resistance to 
ceftazidime (85), ceftriaxone (78), and sulphametoxazole 
trimethoprim (73), and ampicillin (58) isolates. Studies in Ethiopia 
have reported isolates resistant to erythromycin (162), ampicillin (91) 
and amoxicillin (68), as shown in Figure 5B.

Similarly, 10 authors reported resistance genes in seven nations in 
their studies, such as aac3II, aac3IV, aac6Ibcr, aad7, aadA, blaCTXM, 
blaSHV, blaTEM, catA1, cmlA, dfrA, ermC, ermT, intI1, intI2, IpaH, 
mecA, mecC, mphC, oxqAB, qnrA, qnrS, strA, strB, sul1, sul2, temB, 
tetA, tetB, tetK and tetM (Figure 5C). The majority of the resistance 
genes (blaCTX-M-1, blaCTX-M-15, blaCTX-M-14, blaCTX-M-2, 
blaSHV-2, blaSHV12, blaCTX-M-1, blaCMY-2, aac(6′)-Ib-cr, oqxA, 
oqxB, qnrB, qnrS) were reported in Algeria samples in Figure 5D and 
code for resistance to antibiotics such as beta-lactams (penicillins, 
cephalosporins, carbapenems), quinolones and glycopeptides 
(Table 2). In Nigeria, samples were observed to have several genes, 
namely, qnrA, qnrS, temB, blaTEM, tet(A), tet(B), tetM, cmlA, dfrA, 
Sul1, Sul2, aac(3)-IV, aac(3)-II, aadA, nuc, mecA, tsst-1, intI2, intI1, 
tetK, mphC, ermT, and ermC (Figure 5D) that are responsible for 
quinolones, penicillins, tetracyclines, chloramphenicol, 
aminoglycosides, sulphonamides, glycopeptides, nitrofurantoin, and 
macrolides (Table 2). In Burkina Faso, the studies show about seven 
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TABLE 1 Overall characteristics of the included studies on antibiotic-resistant pathogenic bacteria, prevalence rates, and resistance genes in RTE foods in Africa.

Authors Countries Source 
(RTE 
foods)

Period Method Types of 
bacterial 
isolates

Total 
samples

Positive 
cases

% 
prevalence

Antibiotic 
susceptibility 
(resistance)

Resistant genes Funders Score

Mekhloufi et al. 

(2021)

Algeria Salads 2018 to 2019 (ISR)-PCR, (SEg)-

typing

Staphylococcus 207 99 47.83 Benzylpenicillin mecA, tst No external funding 9

Yaici et al. (2017) Algeria Sandwich February 2013 to 

March 2014

PCR E. coli, Klebsiella 100 14 14.00 Tetracyclines, nalidixic acid, 

kanamycin, chloramphenicol, 

gentamycin, enrofloxacin, and 

streptomycin

blaCTX-M-1, blaCTX-M-15, 

blaCTX-M-14, blaCTX-M-2, blaSHV-2, 

blaSHV12, blaCTX-M-1, blaCMY-2, 

aac(6′)-Ib-cr, oqxA, oqxB, qnrA, qnrB, 

qnrS, mecA, tsst-1

French agency for food, environmental and 

occupational health safety (ANSES)

10

Nikiema et al. 

(2021)

Burkina Faso Sandwich June 2017 to July 

2018

Whole-genome 

sequencing, 

Serotyping

Salmonella. 201 36 17.91 Ampicillin, ampicillin/sulbactam, 

amikacin, amoxicillin, amoxicillin/

clavulanic acid, augumentin, 

azithromycin, tetracyclines, nalidixic 

acid, norfloxacin, mupirocin, 

kanamycin, ceporex, carbenicilin, 

chloramphenicol, gentam ycin, 

cefotaxime, clindamycin, and 

ceftazidine

blaTEM-1B, tet(A), Sul1, Sul2, aac(3)-IV, 

aac(3)-II, strA, strB, qacE∆1, gyrA or parC

Cooperation and Cultural Action Service of the 

French Embassy of France, Burkina Faso, and Institute 

Pasteur and the French government’s Investissement 

d’Avenir Programme, Laboratoire d’Excellence 

‘Integrative Biology of Emerging Infectious Diseases

10

Soubeiga et al. 

(2022)

Burkina Faso Sesame, Salads-

lettuce, mango-

juice.

2018 to 2020 PCR Salmonella. 1,052 148 14.07 Ampicillin, amoxicillin-clavulanate, 

cefoxitin, tetracycline, gentamicin, 

amikacin, chloramphenicol, 

trimethoprim-sulphamethoxazole 

and nalidixic acid

tetA, tetB, blaTEM, temB, sul1, sul2, and 

aadA

No external funding 10

Esemu et al. 

(2023)

Cameroon Cake, bread, fruit 

salad, meat hot 

pot, suya, and 

boiled rice.

February to 

August 2020

PCR S. aureus 420 161 38.33 Ciprofloxacin, amoxicillin, 

penicillin, oxacillin, erythromycin, 

azithromycin, clindamycin, 

gentamicin, and chloramphenicol

nuc, mecA No external funding 9

Mayoré et al. 

(2021)

Chad Minced beef 

sandwich

October 2014 and 

January 2018.

Disc diffusion Salmonella. 447 5 1.12 Amoxicillin, Cefotaxime, Nalidixic 

acid.

NR Research Project and Support for Street Food Safety 

(“PRASAR”)

10

Alelign et al. 

(2023)

Ethiopia Sambusa, Potato 

Chips, Bonbolino, 

Koker, Ambasha

September 5th, 

2022, to December 

31st, 2022

Biochemical tests. Mixed 330 113 34.24 Ampicillin, amoxicillin-clavulanate, 

cefepime, ceftriaxone, meropenem, 

gentamicin, azithromycin, 

tetracycline, doxycycline, 

ciprofloxacin, cotrimoxazole and 

chloramphenicol

NR Arba Minch University Research Directorate 9

Tesfaye et al. 

(2016)

Ethiopia Kikil, mahberawi March to October, 

2015

Bacteriological 

evaluation

Salmonella. 120 25 20.83 Ampicillin, nalidixic acid, 

norfloxacin, gentamicin, 

ciprofloxacin, streptomycin, 

tetracycline, kanamycin, and 

chloramphenicol

NR No external funding 9

Moges et al. 

(2024)

Ethiopia Samosas, eggs, 

and salads.

December 2022 to 

February 2023

Standard 

microbiological 

methods

Staphylococcus 350 186 53.14 Erythromycin, amoxicillin, 

streptomycin, ciprofloxacin, 

sulphamethoxazole-trimethoprim, 

and chloramphenicol

NR Jimma University 9

Morshdy et al. 

(2018)

Egypt Meat sandwiches May 2017–April 

2018

PCR, antibiotic 

susceptibility testing

S. aureus 140 102 72.86 Ciprofloxacin, enrofloxacin, 

ampicillin

mecA No external funding 10

(Continued)
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TABLE 1 (Continued)

Authors Countries Source 
(RTE 
foods)

Period Method Types of 
bacterial 
isolates

Total 
samples

Positive 
cases

% 
prevalence

Antibiotic 
susceptibility 
(resistance)

Resistant genes Funders Score

Setsoafia Saba 

et al. (2021)

Ghana Fufu November 2016 to 

January 2017

Kirby–Bauer disc 

diffusion

E. coli and Salmonella. 60 41 68.33 Ciprofloxacin, gentamicin, 

ceftriaxone, erythromycin, and 

ceftazidime

NR Salary of CKSS with contribution from TP and EY 9

Karikari et al. 

(2022)

Ghana Salad, fufu July 2015 to 

January 2016.

Kirby–Bauer disc 

diffusion

E. coli, Salmonella 113 113 100.00 Cefotaxime, ceftriaxone, 

ceftazidime, gentamicin, 

trimethoprim/sulfamethoxazole, 

ampicillin, Augmentin, 

ciprofloxacillin, tetracycline, 

erythromycin, cefoxitin, cefepime, 

and chloramphenicol.

NR No external funding 9

Mwove et al. 

(2022)

Kenya Cereals, fruits, 

salads, and 

sausages.

September 2020 to 

February 2021

Standard 

microbiological 

methods

Salmonella & 

Staphylococcus

199 93 46.73 NR NR Germany Academic Exchange Service (DAAD) 8

Ronald et al. 

(2023)

Kenya Meat 3 months PCR E. coli 105 105 100.00 Ampicillin, streptomycin amikacin, 

ciprofloxacin, nitrofurantoin, 

co-trimoxazole, tetracycline

tetA, sul1, blaTEM, strA Centre of Excellence in Sustainable Agriculture and 

Agribusiness Management (CESAAM)

10

Oladipo and 

Adejumobi (2010)

Nigeria Spaghetti, bean 

cake

January to 

December

Biochemical tests Mixed 11 9 81.82 Amoxyllin, streptomycin, 

chloramphenicol, tetracycline, 

gentamycin, ofloxacin, augmentin, 

ciprofloxacin, cotrimoxazole, 

nitrofurantoin, ampiclox, cefroxine, 

and erythromycin.

NR No external funding 8

Akinyem et al. 

(2013)

Nigeria Salad, jollof rice, 

fried rice, beans, 

moimoi, dodo, 

white rice

NR Bacteriological 

analysis

Alcaligenes spp. & E. coli 76 12 15.79 Cotrimoxazole, nalidixic acid, 

amoxicillin, nitrofurantoin, 

typhimurium, ceftazidime, 

cefpodoxime, and levofloxacin

NR Faculty of Science, Lagos State University 8

Ebakota et al. 

(2018)

Nigeria Salads February to 

September 2015.

Disc diffusion, serial 

dilution, and pour 

plate techniques.

L. monocytogenes 411 90 21.90 Nitrofurantoin, gentamicin, 

streptomycin, ofloxacin, 

ciprofloxacin, pefloxacin, 

amoxicillin, cloxacillin, augumentin, 

tetracycline, erythromycin, 

cefuroxime, ceftazidine and 

ceftriazone

NR No external funding 9

Okafor-Elenwo 

and Imade 

(2020b)

Nigeria Vegetable salad March 2019 to 

October 2019

Bacteriological 

analysis

Mixed 3,840 2,264 58.96 Cefuroxime, ampicillin, amoxicillin/

clavulanic acid, ciprofloxacin, 

pefloxacin, ofloxacin, sparfloxacin, 

cotrimoxazole, gentamycin, 

erythromycin, and chloramphenicol

NR No external funding 9

Aminu and Umeh 

(2014)

Nigeria Meat 12 months Disc diffusion Enterobacter & E. coli. 212 115 54.25 Nitrofurantoin, ciprofloxacin, 

gentamicin

NR No external funding 9

Blessed (2018) Nigeria Kunun-zaki May and August, 

2016

Salmonella Shigella 

Agar (SSA), Kirby–

Bauer disc diffusion

Mixed 40 5 12.50 Ciprofloxacin, sparfloxacin, 

pefloxacin, tarivid, sparfloxacin.

NR Ahyuwanie E. Akanet for helping out with the funds 

for the publication

9

(Continued)
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TABLE 1 (Continued)

Authors Countries Source 
(RTE 
foods)

Period Method Types of 
bacterial 
isolates

Total 
samples

Positive 
cases

% 
prevalence

Antibiotic 
susceptibility 
(resistance)

Resistant genes Funders Score

Akinnibosun and 

Ojo (2015)

Nigeria Salads NR Serial dilution and 

pour plate

Mixed 18 8 44.44 NR NR No external funding 8

Izevbuwa and 

Okhuebor (2021)

Nigeria Rice, soup, beans. NR Spread plate, serial 

dilution

Mixed 30 9 30.00 NR NR No external funding 8

Okafor-Elenwo 

and Imade 

(2020a)

Nigeria Fufu, salad March 2019 to 

October 2019

Pour plate technique Coliform & Proteus, 

Bacillus

640 512 80.00 NR NR No external funding 8

Umar et al. (2024) Nigeria Vegetable salad NR Bacteriological 

analysis Antibiotic 

sensitivity 

assessment

Salmonella 100 36 36.00 Ofloxacin, chloramphenicol, 

ceftazidime, cotrimoxazole, 

ceftriaxone, and ampicillin.

NR No external funding 9

Akinyele et al. 

(2024)

Nigeria Fura, nunu, and 

tuwo

NR Antibiotic sensitivity 

test

Salmonella 3 3 100.00 Pefloxacine, ciprofloxacine, 

augentin, gentamycin, streptomycin, 

ceporex, nalidixic acid, septrin, 

norfloxacin

NR No external funding 9

Isic et al. (2024) Nigeria Pounded yam 

puff-puff, okro 

soup

April 2021 PCR Staphylococcus 400 57 14.25 Oxacillin, erythromycin, 

chloramphenicol, clindamycin, 

ceftaroline, tetracycline, gentamicin, 

trimethoprim-sulfamethoxazole, 

ciprofloxacin, vancomycin, linezolid, 

gentamicin, rifampin, quinupristin-

dalfopristin, oxazolidinones and 

tedizolid

aac(6′)-Ib-cr, qnrA, qnrS, tet(A), tetC, 

tetM, vanA, vanC, nuc, mecA, mecC, tsst-1, 

ermC, ermA

The Alexander von Humboldt Foundation 10

Ohunayo et al. 

(2024)

Nigeria Meat NR Biochemical tests, 

antibiotic sensitivity 

tests

E. coli 100 68 68.00 Augmentin, cefuroxime, 

nitrofurantoin, ceftazidime, 

cefixime, gentamicin, ciprofloxacin 

and ofloxacin.

NR No external funding 9

Zige (2013) Nigeria Beans porridge NR Biochemical 

differentiation

Proteus spp. 36 16 44.44 Ciprofloxacin, ceftazidine, 

cefuroxime, gentamycin, cefixime, 

nitrofuratoin, augmentin

NR No external funding 8

Makinde et al. 

(2021)

Nigeria Fufu, eko NR 16S rRNA gene 

phylogeny, disc 

diffusion.

Klebsiella and 

Staphylococcus

149 99 66.44 Ampicillin cephalothin aztreonam, 

amoxicillin/clavulanic acid, 

gentamicin, tetracycline, and 

imipenem

NR National Research Foundation South Africa 8

Okoli et al. (2018) Nigeria Roasted meat 6 months Disc diffusion, PCR Staphylococcus 255 24 9.41 Fusidic acid, cefoxitin, oxacillin, 

tetracycline, erythromycin, 

lincomycin, vancomycin mupirocin, 

sulfamethoxazole/trimethoprim, 

gentamicin, kanamycin, 

streptomycin, tobramycin

tetK, mecA, tetK, mphC, ermCT, ermC No external funding 10

Fayemi et al. 

(2021)

Nigeria Minced meat, 

suya, kilishi, 

roasted beef and 

tsire

June–August 2019 Kirby–Bauer Disc 

diffusion technique, 

PCR.

E. coli 180 60 33.33 Ampicillin, ciprofloxacin, 

enrofloxacin, nalidixic acid, 

norfloxacin, streptomycin, 

tetracycline

stx1, stx2, eaeA No external funding 10

(Continued)
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TABLE 1 (Continued)

Authors Countries Source 
(RTE 
foods)

Period Method Types of 
bacterial 
isolates

Total 
samples

Positive 
cases

% 
prevalence

Antibiotic 
susceptibility 
(resistance)

Resistant genes Funders Score

Beshiru and 

Igbinosa (2023)

Nigeria Jollof rice, fish 

pepper soup, 

egusi soup

July 2021 to 

February 2022

PCR, Kirby–Bauer 

disc diffusion.

Vibrio parahaemolyticus 380 42 11.05 Imipenem, gentamicin, 

azithromycin, ampicillin/sulbactam, 

streptomycin, nalidixic acid, 

cefotaxime, ceftazidime, tetracycline, 

chloramphenicol, trimethoprim-

sulfamethoxazole, ciprofloxacin,

qnrB, qnrS, blaTEM, tet(A), tet(B), tetM, 

cmlA, dfrA, Sul1, Sul2, aac(3)-IV, aac(3)-

II, aadA, intI2, intI1

No external funding 10

Asiegbu et al. 

(2020)

South Africa Sandwiches 

salads

February 2016 to 

August 2017

Microbiological 

analyses

Mixed 205 175 85.37 NR NR Research and Innovation of the University of 

South Africa

9

Nyenje et al. 

(2012)

South Africa Vegetables, 

potatoes, rice, 

pies, beef, 

chicken stew.

August and 

November 2011

Biochemical tests, 

API kits.

Mixed 252 181 71.83 NR NR Govan Mbeki Research and Development Centre, 

University of Fort Hare

9

Tshipamba et al. 

(2018)

South Africa Chicken gizzard, 

beef intestines

December 2015 to 

April 2016

Molecular and disc 

diffusion methods

Mixed 115 49 42.61 Streptomycin, ciprofloxacin, 

chloramphenicol, ampicillin 

tetracycline, and erythromycin.

NR National Research Foundation (NRF), South Africa 9

Ndunguru and 

Ndossi (2020)

Tanzania Beef soup, stiff 

porridge, raw 

vegetable salads

March and May 

2019

Standard 

microbiological 

methods

Escherichia coli 70 47 67.14 Chloramphenicol, cefoxitin and 

penicillin G, carbenicillin, 

ciprofloxacin, clindamycin, 

erythromycin, gentamicin, 

tetracycline

NR No external funding 9

Okubo et al. 

(2020)

Uganda Meat February and 

October 2018

PCR E. coli 103 89 86.41 Ampicillin, cefazolin, cefotaxime, 

gentamicin, kanamycin, tetracycline, 

minocycline, nalidixic acid, 

ciprofloxacin, colistin, 

chloramphenicol, and 

sulfamethoxazole-trimethoprim.

tetA, tetB, tetE, tetG, Sul1, Sul2 Japan Society for the Promotion of Science KAKENHI 10

Ananias and 

Roland (2017)

Uganda Chicken, beef, 

goat, and meat.

February 2014 to 

March

Laboratory analyses Staphylococcus & E. coli 20 14 70.00 NR NR No external funding 8

Owoseni and 

Onilude (2016)

Mixed West 

Africa countries

Puff-puff (fried 

dough), egg rolls, 

buns, fried 

chicken, fish and 

meat pie, dried 

fish and cake

2 years Plasmid DNA 

isolation, antibiotic 

sensitivity testing

Mixed 43 Ghana n = 4, 

Nigeria n = 29, 

Benin n = 5 and 

Togo n = 5.

43 100.00 Nitrofurantoin, augmentin, 

norfloxacin, tetracycline, 

gentamycin, ciprofloxacin, 

chloramphenicol, ampicillin, 

nalidixic acid and cefuroxime

NR No external funding 8

Claudious et al. 

(2020)

Zimbabwe Meat pies November 2018 to 

April 2019

Kirby–Bauer disc 

diffusion

E. coli & coliforms 120 70 58.33 Sulphamethoxazole and gentamicin NR No external funding 9
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resistance genes, temB, blaTEM, tet(A), tet(B), Sul1, Sul2 and aadA 
(Figure 5D) and that engenders resistance to beta-lactams (penicillins, 
cephalosporins, and carbapenems) and sulphonamides. In Cameroon, 
the included studies show two prevalence resistance genes: nuc and 
mecA, which implies resistance to oxacillin. In Kenya, blaTEM, tet(A), 
Sul1, and strA are the prevalent genes accountable for resistance to 

beta-lactams (penicillins, cephalosporins, and carbapenems) and 
sulphonamides. In Uganda, studies have shown the occurrence of 
tet(A), tet(B), tetE, tetG, Sul1, and Sul2 responsible for the resistance 
we find in tetracycline and sulphonamides. Egypt’s study shows sea 
and sec resistance genes for glycopeptides, as shown in Figure 5D and 
Table 2.
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FIGURE 3

Country distribution of antibiotic-resistant pathogenic bacteria, prevalence rates in RTE foods in Africa.

FIGURE 4

The heatmap analysis of the RTE foods samples on antibiotic-resistant pathogenic bacteria, prevalence rates, and resistance genes in RTE-foods. 
Black = author and antibiotic-resistant pathogenic bacteria reported. Yellow = not present. S_MJ = Salads, mango-juice. C_B_FS_MHP_S_BR = Cake, 
bread, fruit-salad, meat-hot-pot, suya, boiled-rice. M_B_S = Minced beef sandwich. S_PC_B_K_A = Sambusa, Potato-Chips, Bonbolino, Koker, 
Ambasha. C_F_S_S = Cereals, fruits, salads, sausages. S_JR_FR_B_M_D_WR = salad, jollof-rice, fried-rice, beans, moimoi, dodo, white-rice. PY_PP_
OS = Pounded-Yam Puff-Puff, Okro-soup. MM_S_K_RB_T = Minced-meat, suya, kilishi, roasted-beef and tsire. JR_FPS_ES = Jollof-rice, fish-pepper-
soup, Egusi-soup V_P_R_P_B_CS = Vegetables, potatoes, rice, pies, beef, chicken-stew. C_G_BI = Chicken gizzard, beef-intestines. B-S_S-P_
RVS = Beef-soup, stiff-porridge, raw-vegetable-salads. C_B_G_M = chicken, beef, goat, meat. P-P_E_R = Puff-puff, egg rolls.
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FIGURE 5

(A) The heatmap analysis of the susceptibility pattern on antibiotic-resistant pathogenic bacteria, prevalence rates, and resistance genes in RTE-foods. 
Black = intermediate/dose-dependent, and yellow = do not report any susceptibility pattern of isolates. (B) The countries distribution of resistance 
antibiotics on antibiotic-resistant pathogenic bacteria, prevalence rates, and resistance genes in RTE-foods. ampicillin/ST = ampicillin/sulbactam, 
amoxicillinCA = amoxicillin/clavulanic acid, QuinupristinD = Quinupristin-dalfopristin SulphametoxazoleT = Sulphametoxazole–trimethoprim. (C) The 
heatmap analysis of the resistant genes on antibiotic-resistant pathogenic bacteria, prevalence rates, and resistance genes in RTE-foods. 
Black = Present of the tested resistant genes, yellow = not Present. (D) The countries’ distribution of resistance genes on antibiotic-resistant 
pathogenic bacteria, prevalence rates, and resistance genes in RTE-foods.
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Funders of antibiotic-resistant pathogenic 
bacteria in RTE foods

Only 15 authors in the included studies received funding and support 
for research on antibiotic-resistant pathogenic bacteria in RTE foods. Yaici 
et  al. (2017) by the French Agency for food, environmental and 
Occupational Health Safety (ANSES), Nikiema et  al. (2021) by 
Cooperation and Cultural Action Service of the French Embassy of 
France, Burkina Faso and Institute Pasteur and the French government’s 
Investissement d’Avenir Programme, Laboratoire d’Excellence ‘Integrative 
Biology of Emerging Infectious Diseases, Mayoré et al. (2021) by Research 
Project and Support for Street Food Safety (“PRASAR”), Alelign et al. 
(2023) by Arba Minch University Research Directorate, Moges et al. 
(2024) by Jimma University, Setsoafia Saba et al. (2021) by Salary of CKSS 
with contribution from TP and EY, Mwove et al. (2022) by Germany 
Academic Exchange Service (DAAD), Ronald et al. (2023) by Centre of 
Excellence in Sustainable Agriculture and Agribusiness Management 
(CESAAM), Akinyem et al. (2013) by Faculty of Science, Lagos State 
University, Blessed (2018) by Ahyuwanie. E. Akanet for the publication 
funds, Isic et al. (2024) by The Alexander von Humboldt Foundation, 
Makinde et al. (2021) by National Research Foundation South Africa, 
Asiegbu et al. (2020) by Research and Innovation of the University of 
South  Africa, Nyenje et  al. (2012) by Govan Mbeki Research and 
Development Centre, University of Fort Hare, Tshipamba et al. (2018) by 
National Research Foundation (NRF), South Africa.

Discussion

Microbial contamination is a metric for the efficacy of food 
safety practices, recognized worldwide as a conduit for pathogen 
transmission. This scoping review indicated that all the included 

articles were presented with high population cases of antibiotic-
resistant pathogenic bacteria in RTE food at varied degrees of 
contamination and are classified as unsatisfactory regarding 
microbiological quality. This findings from several researchers 
indicate that RTE street foods in the African and resource-limited 
nations harbour enteric pathogens and is a significant concern to 
public health system as well reservoir of spread of antibiotic 
resistance (Oladipo and Adejumobi, 2010; Nyenje et al., 2012; 
Akinyem et  al., 2013; Zige, 2013; Aminu and Umeh, 2014; 
Akinnibosun and Ojo, 2015; Owoseni and Onilude, 2016; Tesfaye 
et al., 2016; Yaici et al., 2017; Ananias and Roland, 2017; Ebakota 
et al., 2018; Morshdy et al., 2018; Okoli et al., 2018; Tshipamba 
et al., 2018; Blessed, 2018; Ndunguru and Ndossi, 2020; Okafor-
Elenwo and Imade, 2020a, 2020b; Okubo et al., 2020; Asiegbu 
et al., 2020; Claudious et al., 2020; Fayemi et al., 2021; Izevbuwa 
and Okhuebor, 2021; Makinde et al., 2021; Mayoré et al., 2021; 
Mekhloufi et al., 2021; Nikiema et al., 2021; Setsoafia Saba et al., 
2021; Karikari et al., 2022; Mwove et al., 2022; Soubeiga et al., 
2022; Esemu et al., 2023; Alelign et al., 2023; Ronald et al., 2023; 
Beshiru and Igbinosa, 2023; Akinyele et al., 2024; Isic et al., 2024; 
Moges et al., 2024; Umar et al., 2024). The notable progress in 
research concerning antibiotic-resistant pathogenic bacteria in 
RTE food could be influenced by the significance of the global 
threat of bacterial resistance and the emergence of infectious 
pathogens and outbreaks. The greater number of publication 
funds in Nigeria may be due to the greater number of universities 
and research institutions in Nigeria compared to other nations. 
Moreover, the level of educational attainment by the population 
surpasses that of other countries (Tanko et  al., 2020). Other 
nations have very low research output on antibiotic-resistant 
pathogenic bacteria in RTE food, which could be elucidated by 
the fact that most African nations disseminate their research 

TABLE 2 The summary of resistance genes based on antibiotic classes in antibiotic-resistant pathogenic bacteria, prevalence rates, and resistance 
genes in RTE foods.

Antibiotic classes Resistance genes

Beta-Lactams (Penicillins, Cephalosporins, Carbapenems) blaCTX-M-1, blaCTX-M-15, blaCTX-M-14, blaCTX-M-2, blaSHV-2, blaSHV12, blaTEM, temB

Macrolides ermT, ermC, mphC

Tetracyclines tet(A), tet(B), tetE, tetG, tetM, tetK

Quinolones aac(6′)-Ib-cr, oqxA, oqxB, qnrA, qnrB, qnrS, gyrA and parC

Aminoglycosides aac(3)-IV, aac(3)-II, aadA, strA

Chloramphenicol cmlA

Sulphonamides dfrA, Sul1, Sul2

Glycopeptides sed, see

Rifampin mecA

Fusidic acid fsa

Lincosamides ermT, ermC

Miscellaneous antibiotics

Linezolid, tedizolid selJ, selY, selD

Nitrofurantoin intI2, intI1

Quinupristin-dalfopristin selX

Quaternary ammonium compounds (QACs) qacE∆1

gyrA and parC are target mutations.
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articles in  local journals that are not listed or indexed in 
international databases.

This review underscores the public health risks posed by antibiotic-
resistant bacteria in RTE foods, which contribute to foodborne illnesses 
in Africa. This specific focus on foodborne bacteria is associated with the 
emergence of resistance reported in environmental domains in recent 
years by various investigations. The bacteria present in these regions are 
identical to those associated with food linked to human activity, which 
may facilitate the development of multidrug-resistant bacteria. Different 
categories of food commodities have been recognized as highly 
consumed, as evidenced by the volume of publications concerning RTE 
food contamination. It can be asserted that food safety information in 
Africa is inadequate and disjointed, stemming from insufficient 
surveillance, documentation, and reporting. Furthermore, it reflects and 
agrees with the report of Paudyal et  al. (2017) of poor or inefficient 
resource utilization, activity duplication, and a lack of synergy among 
countries in the African region. Our scoping review identified several 
primary categories of RTE food: chicken or poultry products, meat or 
beef/beef soup, and animal products and vegetables, including salads, 
sandwiches, and others. However, animal-derived food, such as poultry 
and meat products, has been widely identified as a source of illness and 
infections (Shange et  al., 2019; Somda et  al., 2023). The presence of 
enterobacteria in raw vegetable salads is due to their extensive distribution 
in soil, water, animal and human intestines, and plants. Some 
enterobacteria are naturally found in vegetable flora (Sagoo et al., 2003; 
Toe et al., 2017; Somda et al., 2023). At the same time, there are no EU or 
US criteria for Enterobacteriaceae in salad vegetables, as they naturally 
present in high quantities.

Epidemiological studies indicate that RTE foods are the primary 
sources of infectious diseases caused by Campylobacter, Yersinia, 
E. coli, Salmonella nontyphoidal, and several other pathogens, 
particularly in low-income nations in Africa. This scoping review 
indicated that E. coli, Salmonella spp., and Staphylococcus spp. were 
predominantly responsible for African food contamination during 
the study period. Most of the articles evaluated indicated that food 
contamination by microorganisms is associated with inadequate or 
violations of hygienic regulations in either handling or preparation. 
Moreover, pathogen-induced food contamination may be associated 
with the quality of raw materials, water, environment, and the 
existence of reservoirs and vectors in or next to food production or 
service locations (Igbinosa et al., 2017; Igere et al., 2022a; Onohuean 
and Igere, 2022; Onohuean and Nwodo, 2023a).

The public health system in the study region is generally 
threatened by the consumption of pathogens that contaminate 
RTE foods. This has been impacted by the increased use of 
antibiotics, particularly in populations at high risk of illness and 
life-threatening conditions. Aggravated by the impoverished 
settings of many African nations, antibiotics are indiscriminately 
used and sold in public spaces. All these variables significantly 
contribute to the proliferation of bacterial resistance to 
antibiotics. Furthermore, adverse economic conditions correlate 
with malnutrition, lack of access to safe drinking water, and poor 
hygiene; these are prevalent factors among populations in 
resource-limited countries that face an increased risk of infection 
and the transmission of resistant bacteria. In addition, antibiotic-
resistant bacteria can infect humans through various situations: 
indirectly via the food chain through the ingestion of 
contaminated RTE foods or through direct contact with colonized 

or infected animals or biological materials such as blood, urine, 
faeces, saliva, semen, etc. (Cassini et al., 2019).

In this scoping review, E. coli, Salmonella, and Staphylococcus were 
frequently isolated resistance bacteria and were more implicated in 
foodborne infectious diseases, in agreement with previous findings 
(Adefisoye and Okoh, 2016; Igbinosa et al., 2017; Beshiru et al., 2020; 
Onohuean and Igere, 2022; Beshiru and Igbinosa, 2023). Several 
antibiotics are engaged in the management of related illnesses, thereby 
impacting the use of antibiotics and developing resistance to these 
bacteria. This indicates the overuse of antibiotics in agriculture, 
veterinary care, and humans. The various analyzed articles indicate the 
occurrence of genes including tetA, tetB, tetC, and tetK, which confer 
resistance to tetracycline, as well as blaTEM, catA1, cmlA, blaCTXM, 
and genes associated with quinolone resistance (qnrA, qnrB, qnrS, 
parC, and qep), similar to the findings by Igbinosa et al. (2017) and 
Kimera et al. (2020). However, few studies have reported resistance 
signatures or gene coding in isolated bacteria. This implies that 
analytical laboratories in many nations that were examined in this 
study lack sufficient technology, rendering them unable to identify 
specific genes associated with antibiotic resistance. Some experts assert 
that employing sophisticated techniques like whole genome sequencing 
may enhance the comprehension of the quantity, dissemination, and 
development of multidrug-resistant organisms.

The proliferation of resistance CTX-M in RTE foods is 
primarily attributed to human activities, as the majority of E. coli 
CTX-M, particularly the producer of the enzyme CTX-M-15, 
circulates clonally, which dominate the dominant faecal E. coli 
clones in humans, such as ST131, ST95, ST69, ST393, ST405, and 
ST10 (Sharma et al., 2020; Aworh et al., 2021). Another potential 
cause of increased antibiotic resistance in RTE food may be linked 
to resistance genes present in sewage, water or wastewater, soil 
and environmental indices (Igere et al., 2020, 2024; Onohuean 
et al., 2021), especially genes such as [aadA, blaOXA, blaOXA, 
erm (B), erm (F), mef (A), mph (E), sul1, sul3, clust, tet (39), tet 
(Q), tet (W)]. Interestingly, these wastewater or sewage systems 
are used for the direct irrigation of crops, particularly in the 
urban centres of numerous African cities, and are occasionally 
discharged into streams and rivers that humans and animals 
ingest in Africa. Studies from different African nations have 
indicated that Staphylococcus isolated from various sources (pigs, 
pig carcasses, chicken and handler’s carcasses) carry the mecA 
gene (Igbinosa et al., 2016; Okoli et al., 2018; Ouoba et al., 2019; 
Mamfe et al., 2021; Somda et al., 2023). Igbinosa et al. (2016) 
provided a comprehensive identification of Staphylococci in meat, 
which is frequently associated with inadequate hygienic measures 
during slaughtering, shipping, processing, storage, and retail by 
those engaged in the production process. However, the mecA 
gene encodes a penicillin-binding protein (PBP2a) that is linked 
to a markedly reduced affinity for beta-lactams. Its presence 
induces methicillin resistance in Staphylococcus (Igbinosa et al., 
2016; Somda et  al., 2023). qacEΔ1 is prevalent for the QAC 
resistance gene in Gram-negative bacteria and a deletion 
mutation of qacE (Hrovat et al., 2023).

Furthermore, the selection of antibiotics and patterns of antimicrobial 
consumption in some geographical locations in Africa are influenced by 
food, animal species, regional production patterns, types of farming 
systems (intensive or extensive), farming purposes (commercial, 
industrial, or domestic), coupled with the absence of a definitive legislative 
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framework or policies regarding antibiotic use, as well as the size and 
socioeconomic status of the population, particularly among farmers, 
depicts the finding of the resistance genes. Resistance genes originating 
from agricultural environments are transferred to human diseases 
through lateral gene transfer.

In many African nations, antibiotics are readily available, like other 
over-the-counter drugs (OTC), coupled with self-prescription, resulting 
in overuse and abuse. Moreover, poverty compels most individuals in 
low-come settings to purchase cheap antibiotics to treat their ailments 
rather than incurring expenses from hospitals for proper diagnosis prior 
to antibiotic treatment. This scoping review indicates that only a limited 
number of antibiotics remain effective against various infections caused 
by pathogens. A multitude of reasons may elucidate these findings. 
Improper regulations for antibiotics, lack of antimicrobial awareness 
among the population, poor public health facilities in limited resources 
settings, inadequate and efficient health professionals, poor diagnostics 
and technological advances, self-health management, etc. The high cost 
of restricted antibiotics, which are typically regarded as a last resort, is 
used for critical cases of bacterial infections. Implementing measures to 
monitor the residual antibiotics that remain effective against these 
bacterial infections is imperative. As discussed above, the significant 
factors influencing AMR in Africa include the socioeconomic fallout, 
such as poverty, inadequate healthcare infrastructure, lack of education 
and awareness, availability of OTC antibiotics, urbanization, 
and population.

Our scoping analysis indicated that antibiotic-resistant pathogenic 
bacteria in RTE food research have not gained comprehensive financing 
and support from government entities, non-profit organizations, agencies, 
institutions, universities, commercial corporations, and pharmaceutical 
businesses. This has also impacted the progress in research and antibiotic 
epidemiological surveillance in poorly reported African nations. However, 
interrelationships among donors, funders, policymakers, and support 
teams are essential for progress, refining strategies, implementing 
initiatives, promoting stakeholder consultations, as advised by the African 
community, and ensuring accountability. Furthermore, it is essential to 
implement a proactive engagement strategy for stakeholders to mitigate 
the potential threat of bacterial resistance to antibiotics. The lessons from 
this contribution of this scoping review to the delinquency of multidrug 
resistance imply that the presence of antibiotic-resistant pathogenic 
bacteria in RTE foods considerably worsens the problem of multidrug 
resistance (MDR). The existence of these bacteria not only presents a 
direct health hazard but also enables the transmission of resistance genes 
to human infections, thereby complicating therapeutic alternatives. For 
instance, 43.5% of coagulase-negative staphylococci (CoNS) strains 
remained identified as multidrug-resistant (Chajęcka-Wierzchowska 
et al., 2023), and more than 95% of E. coli bacteria from RTE foods 
exhibited multidrug resistance, demonstrating elevated resistance levels 
to prevalent medicines such as tetracycline and ampicillin (Zhang et al., 
2021; Onohuean and Igere, 2022). Of significant importance, the mobile 
genetic elements (MGEs) essential for the horizontal transfer of antibiotic 
resistance genes have been identified in Enterococcus faecium UC7251, 
which is isolated from RTE food and contains plasmids that enable the 
transfer of resistance genes (Belloso Daza et al., 2022). The existence of 
plasmid-mediated colistin resistance in E. coli underscores the capacity of 
these genes to disseminate swiftly from bacterial to human populations 
(Zhang et al., 2021).

AMR is associated with increased morbidity and mortality, with 
forecasts indicating up to 10 million fatalities per year by 2050 if current 

trends persist (Tang et al., 2023). Globally, AMR has become a critical 
global health issue, with increasing resistance to commonly used 
antibiotics threatening to undermine advances in medicine. Global trends 
in AMR reflect a rise in infections caused by resistant bacteria, driven by 
factors such as the overuse and misuse of antibiotics in healthcare and 
agriculture, poor sanitation, and inadequate infection control measures 
(WHO, 2023). Studies have shown that resistance is not confined to any 
region but is a global phenomenon affecting both high-income countries 
(e.g., the US and Europe) and low- and middle-income countries (LMICs) 
(Samtiya et al., 2022; Salam et al., 2023). In LMICs, the situation is often 
exacerbated by limited access to effective antibiotics, weak regulatory 
frameworks, and insufficient public health infrastructure (Salam et al., 
2023). The RTE food industry has emerged as a significant pathway for 
the transmission of resistant pathogens, with studies suggesting that 
foodborne bacteria, particularly from animal products, can contribute to 
the spread of AMR (Conceição et al., 2023; Grudlewska-Buda et al., 2023; 
Ronald et al., 2023). Global surveillance data from WHO and the Centers 
for Disease Control and Prevention (CDC) indicate widespread 
resistance, especially to common pathogens like E. coli, Salmonella, and 
Staphylococcus aureus (WHO, 2020; Murray et  al., 2022). This is 
compounded by the slow development of new antibiotics, creating an 
urgent need for more substantial prevention, monitoring, and treatment 
strategies across the food, healthcare, and environmental sectors. In 
addition, the financial ramifications of AMR are significant, with potential 
losses reaching trillions of dollars attributable to healthcare expenditures 
and diminished productivity (Ahmed et al., 2024), with a more significant 
consequence in low-income nations in their already poor and over-
stressed medical health systems.

Going forward, a single health approach that involving an integrated 
interdisciplinary approach encompassing human, animal, and 
environmental health is crucial for efficient antimicrobial resistance 
management. Lessons learned from the four successful nations of 
Denmark, the United Kingdom (UK), the Netherlands, and Sweden on 
AMR mitigation strategies could strengthen and impact positive African 
outcomes. For instance, Denmark and Sweden’s strategy for AMR 
emphasized stringent rules governing antibiotic use in humans and 
animals (Levy, 2014; Wierup et al., 2021; Regeringskansliet, 2024; Wu, 
2024). Denmark implemented policies to limit the use of antibiotics for 
growth promotion in animals, combined with surveillance programs to 
monitor antibiotic consumption and resistance patterns. The UK has an 
AMR policy that covers healthcare, agriculture, and the environment. The 
“UK Five-Year Action Plan for AMR” promotes antibiotic alternatives in 
agriculture, stewardship, and public awareness. This method has greatly 
reduced the number of human antibiotic prescriptions and associated 
resistance (Blake et al., 2022). Whereas, the Netherlands leverage on “One 
Health” approach to AMR by integrating human, animal, and 
environmental health sectors. By reducing antibiotic use in both human 
medicine and livestock, and by promoting alternative therapies, the 
country has reduced AMR, particularly in farm animals (Ooms et al., 
2023). Therefore, stockholders in the African region must develop and 
implement short-, medium-, and long-term strategies that encompass one 
health approach. Furthermore, improving public awareness and education 
about AMR determinants and advocating for regulations on ethical 
antibiotic use are essential for addressing this problem. Other actionable 
recommendations for policymakers include establishing or improving 
national and global AMR surveillance networks to monitor AMR trends 
in humans, animals, and food products. Moreover, given the global nature 
of AMR, international cooperation is essential. Policymakers should 
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collaborate through frameworks like the WHO’s Global Action Plan on 
AMR to ensure consistent policies and shared resources. Policymakers 
should incentivize public-private partnerships to accelerate innovation in 
combating resistant pathogens. Increased funding for developing 
vaccines, new antibiotics, alternative treatments (e.g., bacteriophages), 
and diagnostic tools is crucial.

Limitations of the study

The keywords for data collection may have constrained the research 
focus and omitted grey literatures that does not index the databases used, 
which may provide unique insights or contain emerging trends, novel 
findings, and data that could influence the interpretation of antibiotic 
resistance patterns. Again, grey literature often includes unpublished 
studies, government reports, conference proceedings, theses, and other 
non-peer-reviewed sources, which may contain valuable data not indexed 
in traditional databases. However, we are confident that the evidence 
synthesized from Scopus, WoS, PubMed, and Handpicked based on a 
literature reference search could provide an insightful picture of the 
research landscape on antimicrobial-resistance pathogens and resistance 
genes in RTE foods in Africa.

Also, the NOS rating system is subjective, leading to different 
reviewers having varied interpretations of the criteria. It fails to account 
for all aspects of bias, such as publication bias or bias due to selective 
reporting. However, the NOS is a simple, transparent, and reproducible 
method for assessing study quality and allows for flexibility across 
different study designs (case–control and cohort studies).

Conclusion

In this scoping review, some African nations were poorly 
represented in the antibiotic-resistant pathogenic bacteria survey 
following the article’s inclusion criteria and used databases. 
However, it increased the pathogens primarily responsible for 
foodborne infections, namely E. coli, Salmonella, and 
Staphylococcus. Educating food vendors and operators about 
proper hygiene practices can be  a practical and cost-effective 
solution. The scoping analysis revealed that various forms of 
antibiotic resistance have been documented in food commodities 
across multiple African countries, with significant levels of 
resistance observed in infectious pathogens in diverse RTE foods. 
The regional antibiotic resistance surveillance system is a 
significant concern. Therefore, the use of antibiotics in agriculture, 
the food industry, and human health requires stringent regulations 
in Africa, particularly in resource-limited settings. This highlights 
the urgent need for effective control strategies to reduce the 
spread of resistant bacteria in RTE foods.
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