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The global crisis of antimicrobial resistance (AMR) is escalating due to the misuse 
and overuse of antibiotics, the slow development of new therapies, and the rise 
of multidrug-resistant (MDR) infections. Traditional antibiotic treatments face 
limitations, including the development of resistance, disruption of the microbiota, 
adverse side effects, and environmental impact, emphasizing the urgent need for 
innovative alternative antibacterial strategies. This review critically examines naturally 
derived biopolymers with intrinsic (essential feature) antibacterial properties as a 
sustainable, next-generation alternative to traditional antibiotics. These biopolymers 
may address bacterial resistance uniquely by disrupting bacterial membranes rather 
than cellular functions, potentially reducing microbiota interference. Through 
a comparative analysis of the mechanisms and applications of antibiotics and 
antibacterial naturally derived biopolymers, this review highlights the potential of 
such biopolymers to address AMR while supporting human and environmental 
health.
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1 Introduction

The World Health Organization (WHO) estimates that antimicrobial resistance (AMR) 
could cause up to 10 million deaths annually by 2050, with a severe impact on global healthcare 
costs and economic stability. Bacterial infections are among the most life-threatening 
healthcare challenges, accounting for approximately 13.6% of global mortality and affecting 
1 in 8 individuals worldwide (Appanna, 2018). The rise of multidrug-resistant (MDR) bacteria 
further highlights an urgent need for alternative, next-generation antibacterial treatments. 
While antibiotics have historically revolutionized healthcare, their widespread use has led to 
substantial challenges, including disrupting human microbiota and the rise of antibiotic-
resistant bacterial strains.

Beyond their pathogenic roles, bacteria are integral to human health, especially in the 
gut, contributing to immune modulation and digestion (Bull and Plummer, 2014; Yin et al., 
2019; Arciola et  al., 2018). Consequently, the modern healthcare system cannot fully 
eliminate infection risk, particularly in post-surgical settings (Oliva et al., 2021; Hedrick 
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et  al., 2006; van Seventer and Hochberg, 2017) and procedures 
involving biomaterials or medical devices (Arciola et  al., 2018; 
Oliva et  al., 2021; Hedrick et  al., 2006). Infections occur when 
infectious agents enter human body tissues, multiply, and trigger 
host immune responses (van Seventer and Hochberg, 2017). 
Although infections cannot be entirely prevented due to inevitable 
interactions with environmental microbes, targeted measures can 
mitigate bacterial invasion and inhibit replication at potential 
infection sites.

The human microbiome, especially the gut microbiota, comprises 
numerous symbiotic bacterial species (e.g., Lactobacillus, Bacillus, 
Clostridium, Enterococcus, and Ruminococcus) that collectively 
represent approximately 90% of the gut flora (Rinninella et al., 2019; 
Martín et al., 2013; Eloe-Fadrosh and Rasko, 2013). These beneficial 
microorganisms are crucial in digestion, nutrient absorption, and 
immune defense. Importantly, they maintain a delicate balance, 
contributing to immune regulation and protecting against pathogens 
without causing harm to the host (Rinninella et al., 2019; Bogitsh 
et al., 2019; Hemarajata and Versalovic, 2013; Isolauri et al., 2001; 
Wieërs et al., 2020; Hills et al., 2019; Ding et al., 2019). However, the 
broad-spectrum use of antibiotics has disrupted this balance, 
weakening the microbiota’s natural protective functions and impairing 
the immune response, leading to gut dysbiosis—an environment 
conducive to antibiotic-resistant strains (Patangia et al., 2022).

While antibiotics effectively eliminate harmful pathogens, their 
indiscriminate targeting also affects beneficial bacteria, reducing 
microbial diversity and increasing the likelihood of antibiotic 
resistance (Lathakumari et  al., 2024). Inappropriate antibiotic use 
across sectors, including clinical and animal health, has further 
escalated the global antibiotic resistance crisis, contributing to the 
emergence of MDR pathogens that resist multiple antibiotic classes 
(Yang et al., 2024).

The decreasing efficacy of antibiotics and the limited availability 
of alternative treatments underscore the urgent need for new classes 
of antibacterial therapeutics. Ideal alternatives would incorporate 
mechanisms of action that lower the risk of resistance. In this 
context, naturally derived biopolymers (NDBs) have attracted 
significant attention due to their unique antibacterial properties. 
Although long used in biomedical applications, interest in 
biopolymers as antibacterial agents has surged, with publications on 
their use rising by approximately 400% since 2015 (Web of 
Science, n.d.).

Approximately two decades ago, antibacterial biopolymers, e.g., 
those with intrinsic antibacterial activity, were first proposed as 
alternatives to antibiotics for treating bacterial infections (Muñoz-
Bonilla and Fernández-García, 2012). Today, biopolymer-based 
strategies show potential for localized, non-antibiotic antibacterial 
applications that support the immune system and minimize impact 
on the natural microbiota. Such approaches could represent a 
sustainable innovation within modern healthcare.

Notably, NDBs disrupt bacterial membranes instead of targeting 
specific metabolic pathways, a mechanism less prone to resistance 
development (Bustamante-Torres et al., 2022; Kamaruzzaman et al., 
2019). Numerous studies have documented the use of NDBs in 
biomedical devices, including drug delivery systems, contact lenses, 
and injectable cement, where they exhibit potent antibacterial activity 
and biocompatibility (Pahlevanzadeh et al., 2022; Sam et al., 2023; 
Coma, 2013). This review provides a comprehensive examination of 
the potential of antibacterial NDBs, analyzing recent literature to 
compare their effectiveness and applications with those of 
conventional antibiotics. By exploring the mechanisms, advantages, 
and limitations of NDBs, this review assesses whether these 
biopolymers could serve as reliable, antibiotic-free therapeutics 
capable of complementing or partially replacing traditional antibiotics 
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in treating bacterial infections—or whether their promise remains 
largely theoretical.

2 Antibiotics and antibiotic resistance

In the pre-antibiotic era, more than half of deaths were attributable 
to infections (Aminov, 2010). Since the 20th century, antibiotics have 
revolutionized antibacterial therapeutics in the history of medicine, 
drastically changing modern medicine and extending the average 
human lifespan (Johnston and Badran, 2022; Cook and Wright, 2022; 
Sikdar et al., 2021). Several groups and generations of antibiotics have 
been discovered and developed with specific target mechanisms of 
action on bacterial cells (Kapoor et  al., 2017; Coates et  al., 2011) 
(Table  1). Conventionally, antibiotics are classified as cell wall 
inhibitors, protein synthesis inhibitors, nucleic acid synthesis 
inhibitors, antimetabolites, and cytoplasmic membrane inhibitors 
(Pancu et al., 2021; Ullah and Ali, 2017) (Figure 1).

Other classification principles of antibiotics rely on their origin, 
spectrum of action, administration strategies, chemical structure, and 
mechanism of action (Figure  1). Antibiotics can be  administered 
through various routes, including oral, intravenous, intramuscular, 
and topical applications (Buonavoglia et al., 2021; Enenkel and Stille, 
1988). The topical application is particularly relevant for localized 
infections, such as skin wounds or mucosal infections, where direct 
delivery to the affected area can enhance efficacy and minimize 
systemic side effects. The effectiveness of these administration 
strategies depends on various factors, including bioavailability, drug 
formulation, gastrointestinal conditions, and systemic distribution, 
which, if not optimized, could compromise therapeutic outcomes and 
limit the antibiotic’s efficacy against targeted infections (McCarthy 
and Avent, 2020; Vinarov et al., 2021). Moreover, antibiotics exhibit 
specific behavioral characteristics, including whether they are 
bactericidal or bacteriostatic, as well as their spectrum, which can 
be broad or narrow. Antibiotics with a wide spectrum and bactericidal 
action may impact the microbiota within organisms’ niches (Dubourg 
et al., 2014; Blaser, 2011; Yang et al., 2021), resulting in dysbacteriosis 
conditions post-therapy and an increasing risk of secondary disease. 
In addition, the systemic use of antibiotics has been documented to 
affect various organ systems, leading to heightened organism toxicity 
(Berry et al., 1995; Grill and Maganti, 2011) (Table 1).

Currently, bacteriophage therapy is the only alternative as 
effective as antibiotics. Phage therapy relies on using naturally 
occurring bacteriophages (viruses) to infect and lyse bacteria at the 
site of infection (Lin et al., 2017). However, phage therapy must still 
be licensed in the majority of countries or used under exceptional 
situations (Yang et al., 2023). Thus, antibiotics remain the primary 
treatment option in clinics to combat bacterial infections. However, 
the development of antibiotics has begun an endless race against 
pathogenic microorganisms. As a side problem, the overuse and 
misuse of these lifesaving drugs have developed the top global 
public health crisis named antibiotic resistance occurring 
worldwide (Akram et al., 2023). Antibiotic resistance arose from 
the evolutionary development of primary (antibiotic target site is 
not presented in bacteria strain) and secondary (genome-related 
and plasmid-related) resistance mechanisms in bacteria (Urban-
Chmiel et  al., 2022; Nilsson, 2019; Zhang and Cheng, 2022) 
(Table 1). The dramatic report by the WHO has shown that by 2050, 

drug resistance could catch up to cancer and sufficiently damage 
the economy if actions are not taken (World Health Organization, 
2019). The uncontrolled use of antibiotics in agriculture and 
inappropriate therapeutic practices has provided an evolutionary 
advantage to bacteria, such as methicillin-resistant Staphylococcus 
aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and 
others that have become resistant to one or multiple types of 
antibiotics, contributing to the dramatic situation in healthcare 
(Figure 2).

The global threat of antimicrobial resistance (AMR) necessitates 
collaborative action to develop and implement effective strategies 
(Uchil et  al., 2014). Several preventative measures have been 
established and continue to evolve, addressing AMR at international, 
national, community, hospital, and individual levels (Uchil et  al., 
2014). At the international level, efforts focus on enhancing 
collaboration among governments, non-governmental organizations, 
professional groups, and international agencies. Key initiatives include 
global networks for antimicrobial use and resistance surveillance, 
strategies to combat counterfeit antimicrobials, and programs to foster 
innovation in new drugs and vaccines. Strengthening global AMR 
control programs remains a priority. Nationally, dedicated committees 
and AMR policies have been introduced to monitor and manage 
AMR. These policies integrate geographical, social, and economic 
factors to provide tailored solutions. Educational initiatives, including 
training programs and certification courses, aim to equip healthcare 
professionals and the private sector with knowledge for the rational 
use of antibiotics. Regulatory controls to limit over-the-counter 
antibiotic sales further address misuse, a key driver of resistance. For 
example, a review revealed that non-prescription antibiotic use varies 
widely, from 3% in Northern Europe to 100% in some African regions 
(Uchil et al., 2014; Morgan et al., 2011). In addition, efforts are directed 
at improving standards in healthcare systems, microbiology 
laboratories, and pharmaceutical companies. Protecting existing 
antibiotic therapies remains critical, with ongoing research focused on 
developing new drugs to replace outdated ones and prolonging the 
effectiveness of current treatments. It has already been proven that 
synergy and drug combinations are a winning strategy in fighting 
multidrug-resistant bacteria and might help protect the existing drugs 
through antibiotic adjuvants. For instance, β-lactamase inhibitors have 
been used as adjuvants for penicillin group antibiotics as they block 
the resistance mechanism of bacteria against these antibiotics (see 
Table 1). Other examples include efflux pump inhibitors and outer 
membrane permeabilizers (Annunziato, 2019).

3 Naturally derived biopolymers with 
intrinsic antibacterial properties

Naturally derived biopolymers (NDBs) are large macromolecules 
from living organisms such as plants and microorganisms. These 
polymers are formed through enzyme-catalyzed chain-growth 
polymerization processes of activated monomers (Sun et al., 2022). 
The molecular size of NDBs varies significantly based on their type 
and source, ranging from a few kilodaltons (kDa), as seen in 
polysaccharides such as chitosan (~10–50 kDa), to several 
megadaltons (MDa), such as cellulose and other structural 
polysaccharides (>1 MDa) (Moradali and Rehm, 2020; Yadav et al., 
2015). This broad size range supports their diverse physicochemical 
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properties and wide-ranging applications (Troy et al., 2021; Reddy 
et al., 2021).

The reason is that the source of these compounds is derived from 
living organisms through enzymatic polymerization, forming high 

molecular weight macromolecules. As a result, covalently bonded 
repetitive monomeric units form biodegradable compounds such as 
polysaccharides, polyamino acids, hydroxy fatty acids, polypeptides, 
and glycolipids (Moradali and Rehm, 2020; Yadav et al., 2015; Troy 

TABLE 1 Classification of antibiotics based on the mechanism of action and chemical structure with characterization: action mechanisms, reported side 
effects, and bacterial resistance mechanisms.

Classification 
group

Chemical 
structure

Group 
example/−s

Action 
mechanism

Side effects Bacterial 
resistance 
mechanism

Reference

Cell wall inhibitors

β-Lactams

Penicillins 

Cephalosporins 

Carbapenems 

Monobactams
Disrupt 

peptidoglycan 

synthesis in the 

bacterial cell wall by 

binding to a 

transpeptidase 

enzyme

Allergic reaction

Production of the 

β-lactamase enzyme. 

Consequently, 

β-lactam antibiotic 

therapies also include 

additional drugs 

called β-lactamase 

inhibitors 

(clavulanate, 

sulbactam, and 

tazobactam) to block 

this enzyme action

Majiduddin et al. 

(2002), Waley 

(1992), Castle 

(2007), Arer and 

Kar (2023), Tehrani 

and Martin (2018), 

Bush and Bradford 

(2016), Romano 

et al. (2003), Iuliano 

et al. (2022), 

Solensky (2003)

Glycopeptides Vancomycin

Bacitracin Bacitracin

Fosfomycin Fosfomycin

Protein synthesis 

inhibitors (50S 

ribosomes)

Macrolides

Erythromycin

Azithromycin

Clarithromycin

Bind to 50S/30S 

ribosomal subunits, 

inhibiting their 

function and 

preventing the 

synthesis of new 

proteins. The 

bacteriostatic or 

bactericidal effects of 

protein synthesis 

inhibitors depend on 

the dosage.

Dysbiosis, 

nephrotic 

syndrome, aplastic 

anemia, and others

Transcription 

modification, efflux 

pumps, and gene 

mutation

Dunn and 

Zambraski (1980), 

Antibiotics Review 

(2010), Protein 

Synthesis 

Inhibitors-

Definition (2023)

Chloramphenicol
Chloramphenicol

Levomycetin

Linezolid Linezolid

Clindamycin Clindamycin

Protein synthesis 

inhibitors (30S 

ribosomes)

Aminoglycosides

Amikacin

Tobramycin

Neomycin

Gentamicin

Streptomycin

Tetracyclines

Tetracycline

Doxycycline

Minocycline

Nucleic acid synthesis 

inhibitors

Quinolones

Ciprofloxacin

Norfloxacin

Moxifloxacin

Levofloxacin

Stabilizing the 

enzyme–DNA 

complex and thus 

interrupting the 

relegation step
Aortic dissection, 

tendinitis, and 

hepatotoxicity

Modification of two 

enzymes: DNA gyrase 

and topoisomerase IV
Kapoor et al. (2017), 

Bhattacharjee 

(2016), Collin et al. 

(2011), Ramappa 

and Aithal (2013)
Rifamycin Rifampicin

Bind to RNA 

polymerases, thus 

blocking RNA 

synthesis

RNA polymerase 

mutation

Antimetabolites

Sulfanilamides Sulfamethoxazole Inhibits folic acid 

synthesis in bacteria, 

a crucial element for 

DNA synthesis

Weight loss, 

weakness, and 

mouth 

inflammation

Efflux pumps and 

enzymatic 

inactivation

Chortkoff and 

Stenehjem (2019), 

McGee et al. (2018), 

Hanlon et al. (2019)

Dihydrofolate 

reductase inhibitors
Trimethoprim

Cell membrane 

inhibitors

Polymyxins Colistin Target phospholipids 

in the cell membrane, 

thus altering 

membranes’ physical 

properties

No reported data, 

as minimal clinical 

applications

Increase in drug 

efflux, mutation, and 

alteration of the porin 

pathway

Cell Membrane 

Inhibitors (2023)Daptomycin Daptomycin
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et al., 2021) (see Table 2). These compounds are classified as NDBs 
and have unique physical, chemical, and mechanical properties, 
which are exploited in biomedical applications. NDBs are commonly 
used in the development of drug delivery systems (Baranwal et al., 
2022; Murali and Jayakumar, 2023; Atanase, 2021). In addition, 
NDBs such as collagen, gelatin, dextran, agarose/alginate, hyaluronic 
acid, cellulose, and fibrin are also being explored in various other 
biomedical applications, including open incision/wound suturing, 
fixing, adhesion, covering, occlusion, isolation, contact inhibition, 
cell proliferation, tissue guiding, and controlled drug administration 
(Baranwal et al., 2022). NDBs are of broad interest because of their 
potential to be used for developing environmentally friendly medical 
devices that perform high biocompatibility and serve as highly 
accurate biosensors, drug delivery systems, etc. (Manoukian et al., 
2019). In addition to biocompatibility, biodegradation, 
bioadhesiveness, and biofunctionality of the NDBs, several 
drawbacks must be  addressed, such as low stability, low melting 
point, high surface tension, structural complexity, and well-known 
immunological response from organisms (Ige et al., 2012; Jenkins 
et al., 1996; Reddy et al., 2021). Various NDBs such as chitosan, 
pectin, κ-carrageenan, alginate, ε-polylysine, and others have also 
been identified for their antibacterial activity (Muñoz-Bonilla et al., 
2019; Li et al., 2021; Habeeb and Abdulkadhim, 2024; Hamidi et al., 
2023) (see Table  2). Numerous studies have demonstrated the 

comparative effectiveness and potential advantages of NDBs over 
conventional antibiotics. For instance, Tin et al. (2009) reported that 
chitosan molecules with different molecular weights consistently 
exhibited a minimum inhibitory concentration (MIC) of 32 μg/mL 
against various strains of P. aeruginosa. In contrast, the MIC range 
for sulfamethoxazole was significantly broader, ranging from 64 to 
2048 μg/mL (Tin et al., 2009). Similarly, Si et al. (2021) found that a 
chitosan derivative effectively inhibited Gram-negative and Gram-
positive bacteria, with MIC values ranging from 8 to 32 μg/
mL. Specifically, against A. baumannii, the chitosan derivative 
achieved an MIC of 32 μg/mL, compared to higher MIC values of 
128 μg/mL for amikacin and tobramycin and 64 μg/mL for 
tazobactam. However, certain antibiotics outperformed NDBs in 
specific cases; for example, novobiocin demonstrated an MIC of 
8 μg/mL, and carbenicillin and tobramycin were more effective 
against MRSA (Si et  al., 2021). Another noteworthy example is 
ε-polylysine, which exhibited MIC values of 500, 800, 800, and 
1,000 μg/mL against P. aeruginosa, K. pneumoniae, MSSA, and 
MRSA, respectively. Traditional antibiotics such as ampicillin, 
gentamicin, and tetracycline showed MIC values ranging from 35 to 
250 μg/mL against the same bacterial strains (Sundaran et al., 2022). 
Importantly, combining NDBs with antibiotics has synergistic 
effects, significantly enhancing antibacterial activity and reducing 
the required antibiotic dosage (Si et al., 2021; Taheri-Araghi, 2024; 

FIGURE 1

Classification of antibiotics (created by Biorender).
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FIGURE 2

(A) Antibiotic discovery (title of antibiotics and relative point within timeline decade) and resistance reports timeline (resistance report against specific 
antibiotic with a title and relative point within timeline decade) (Dahal and Chaudhary, 2018). (B) Case map on three priority levels (I priority stands for 
critically high level; II priority – high level, and III – average level of resistance cases) resistant strains (carbapenem-resistant P. aeruginosa; methicillin-
resistant S. aureus, and penicillin-resistant S. pneumoniae) in Europe, 2022, as well as a supporting table on resistant isolates’ case percentage and 
colorful indicator for priority, with green indicating low level and dark red indicating critically high level (Surveillance Atlas of Infectious Diseases, 2022). 
(C) Comparative graphs of the same three priority resistant strains with color indication in the top three most populated world countries: China, India, 
and the United States of America (USA) (ResistanceMap, n.d.) (created by Biorender).
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TABLE 2 Examples of naturally derived biopolymers (NDBs) and their antibacterial performance.

Class of 
biomolecule

Examples Source Intrinsic antibacterial activity 
(modification examples for 
improvement)

Antibacterial mechanism 
(bacteriostatic/bactericidal effect)

Reference

Polysaccharides

Chitin Invertebrate animals (crustaceans)
+

(modified into chitosan form)

Makes the bacteria flocculate and thus kill it, 

presumably through lack of nutrients and oxygen (i.e., 

mass transfer limitation)

Kucharska et al. (2019), Benhabiles et al. 

(2012)

Chitosan
Invertebrate animals (crustaceans) 

and certain fungi

+

(modified with quaternary ammonium)
Membrane disruption by electrostatic interaction

Muñoz-Bonilla et al. (2019), Razak and 

Mohamed (2021)

Cellulose Plants

−

(modified with essential oils, metal nanoparticles, 

quaternary amino groups, etc.)

–
Muñoz-Bonilla et al. (2019), Nemeş 

et al. (2022)

Starch Plants

−

(modified with metal oxides, antimicrobial peptides, 

essential oils, etc.)

– Hou et al. (2023)

Alginate Macroalgae

+

(modified with essential oils, peptides, and metal 

nanoparticles)

Membrane disruption by electrostatic interaction
Wathoni et al. (2024), Asadpoor et al. 

(2021), Hegde et al. (2022)

Pectin Plants

+

(modified with peptides, metal nanoparticles, 

antibiotics, and metal ions)

Still unclear, molecules cause double oxidative stress

Muñoz-Bonilla et al. (2019), Tripathi 

and Mishra (2021), Daoud et al. (2013), 

Hassan et al. (2021)

κ-Carrageenan Macroalgae

+

(modified with metal oxides, metal nanoparticles, 

essential oils, and clay)

Damages the bacterial cell wall and cytoplasmic 

membrane and suppresses the growth of both Gram-

positive and Gram-negative bacteria

Muñoz-Bonilla et al. (2019), Zhu et al. 

(2017), El-Fawal (2014)

Chondroitin sulfate
Humans, other mammals, 

invertebrates, and some bacteria

+

(modified with chitosan or zinc ions)
Membrane disruption by electrostatic interaction

Unver et al. (2023), Gómez et al. (2018), 

Wu et al. (2022)

β-glucans (laminaran, 

scleroglucan etc.)
Fungi, yeasts, and algae

+

(modified with zinc oxide, enzyme proteins, or 

carboxymethylated)

Penetrates bacterial cells, interfering with their 

metabolism and inducing cellular lysis

Chamidah and Hardoko (2017), 

Schwartz and Vetvicka (2021), Pino 

et al. (2023), Syaban et al. (2022), Song 

et al. (2020)

o-Pullulan Fungi
+

(modified with silver zinc oxide nanoparticles)
Membrane disruption by electrostatic interaction Rai et al. (2021), Roy et al. (2023)

Fucoidan Brown algae

+

(modified with other molecules, e.g., chitosan and 

collagen)

Binds with the bacterial DNA, cytoplasmic membrane, 

and compounds present in the cell wall of bacteria and 

leads to the leakage of protein and an increase of the 

cytoplasmic membrane permeability, which results in 

the antibacterial effect of fucoidans

Habibi et al. (2024), Chmit et al. (2014), 

Egle et al. (2024)

(Continued)
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Class of 
biomolecule

Examples Source Intrinsic antibacterial activity 
(modification examples for 
improvement)

Antibacterial mechanism 
(bacteriostatic/bactericidal effect)

Reference

Exo-

polysaccharides

Hyaluronan Bacteria

+

(modified with peptides, amino acids, and other 

polysaccharides, e.g., chitosan)

Neutralizes positive charge of the bacterial cell wall and 

so dramatically compromises bacteria adhesion ability

Zamboni et al. (2023), Hernandez-

Montelongo et al. (2021)

Xanthan Bacteria
−(biodegraded into xanthan-oligosaccharide, 

modified with metal oxides)
– Wang et al. (2020), Guo et al. (2022)

Curdlan Bacteria

−

(modified with polyphenols and quaternary 

ammonium)

– Suflet et al. (2024), Ding et al. (2024)

Proteins

Collagen Animals and marine organisms

−

(modified into oxidized form, carboxymethylated, 

with chitosan, alginate, antibiotics, herbal extracts, 

metal oxides, and peptides)

–
Valenzuela-Rojo et al. (2020), Ersanli 

et al. (2023)

Silk (silk fibroin) Silkworms

−

(modified with antibiotics, inorganic nanoparticles, 

plant extracts, nitric oxide, and peptides)

–
Kaur et al. (2014), González-Restrepo 

et al. (2024), Ghalei and Handa (2022)

Keratin Animals

−

(modified with metal nanoparticles, amides, and 

collagen)

–
Shanmugasundaram and Ramkumar 

(2018), Sun et al. (2023)

Lactoferrin Milk and colostrum
+

(modified with polyphenols, chitosan, and alginate)

Iron sequestering and further interaction with the 

bacterial surface lead to damaging the bacterial 

membrane, altering the outer membrane permeability

Jenssen and Hancock (2009), Wang et al. 

(2024)

Lysozyme
Majority of vertebrates, including 

mammals

+

(modified with silica)

Cell wall disruption by hydrolyzing of 1,4-beta-

linkages between N-acetylmuramic acid and N-

acetylglucosamine

Khorshidian et al. (2022), van den 

Heuvel et al. (2018)

Fibrin Blood plasma of animals

−

(used in combination with growth factors and other 

biological molecules in the form of platelet-or 

leukocyte-rich fibrin)

– Moraschini et al. (2024)

TABLE 2 (Continued)

(Continued)
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improvement)

Antibacterial mechanism 
(bacteriostatic/bactericidal effect)

Reference

Peptides (small 

amino acid-based 

biopolymers)

Magainin 2 Tailless amphibians
+

(modified with other cationic peptides)
Membrane disruption by electrostatic interaction

Kim et al. (2018), Syryamina et al. 

(2024)

Defensins Plants, insects, and mammals

+

(modified with chitosan and polylactic co-glycolic 

acid)

Membrane disruption by forming channels in lipid 

bilayer
Dong et al. (2020)

LL-37

(Cathelin-associated 

antimicrobial peptide)

Neutrophils and macrophages in 

mammals

+

(modified with polylactic co-glycolic acid)
Membrane disruption by electrostatic interaction

Ren et al. (2024), Ridyard and Overhage 

(2021)

Nisin Bacteria

+

(modified with polysaccharides, proteins, calcium 

phosphates, and metal oxides)

Pore formation in the membrane and inhibition of cell 

wall biosynthesis by binding to lipid II

Shin et al. (2016), Li et al. (2018), Yan 

et al. (2024)

Cecropin A Insects
+

(no data)

Aggregate and assume a transbilayer orientation in 

membranes
Silvestro et al. (2000)

ε-Polylysine Bacteria
+

(modified with natural and synthetic polymers)
Membrane disruption by electrostatic interaction

Ranjbar et al. (2023), Sceglovs et al. 

(2023)

Other biopolymers

Suberin Plants
+

(modified with essential oils)

Disruption of the bacterial membrane, prevention of 

biofilm formation, and inhibition of DNA and protein 

synthesis

Liakos et al. (2019), Dönmez and Önem 

(2024)

Tannin Plants

+

(used as a natural cross-linking agent for natural and 

synthetic polymers)

Iron chelation, inhibition of cell wall synthesis, and 

disruption of cell membrane

Farha et al. (2020), Baldwin and Booth 

(2022)

TABLE 2 (Continued)
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FIGURE 3

Overview of naturally derived biopolymers for local delivery applications (Biswas et al., 2022; Dimri et al., 2023; Ibrahim et al., 2019) (created by 
Biorender).

FIGURE 4

Biopolymer (aNDBs)—bacterial cell interaction (left) and bactericidal mechanisms (right) (created by Biorender).
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Fayed et al., 2023; Baltimore et al., 1987; Khan et al., 2012; Kaur 
et al., 2022).

Considering the advantageous functionalities such as 
biodegradability, low immunogenicity, and non-toxicity of naturally 
derived biopolymer-based drug delivery systems, the antibacterial 
feature opens new horizons for developing local targeted antibacterial 
therapeutics based on antibacterial biopolymers. Countless reviews 
and studies have demonstrated the ability of NDBs to inhibit a broad 
spectrum of Gram-positive and Gram-negative bacteria, including 
bacterial strains currently being classified as “under urgent attention” 
due to their resistance to various antibiotics (Bustamante-Torres et al., 
2022; Poznanski et  al., 2023; Rofeal et  al., 2022), as well as fungi 
(Poznanski et  al., 2023; Ntow-Boahene et  al., 2021) and viruses 
(Akbari et  al., 2022; Bianculli et  al., 2020). Several studies have 
highlighted that various naturally derived biopolymers (NDBs) exhibit 
notable antibiofilm activity (see Table  2). These antibiofilm 
mechanisms primarily involve disrupting biofilm exopolysaccharides 
(EPS), a critical component for biofilm stability. Such disruptions can 
lead to the detachment of bacterial cells or inhibit bacterial adhesion 
during the early stages of biofilm formation (Mishra et  al., 2020; 
Melander et al., 2020). In addition, certain NDBs, such as lactoferrin-
derived peptides, neutrophil peptides, and antimicrobial peptides 
(e.g., protegrin-1), have demonstrated antibacterial activity against 
intracellular pathogens, including Mycobacterium tuberculosis. These 
antibacterial effects are attributed to the disruption of the 
mycobacterial cell wall and enhanced membrane permeabilization 
(Khara et  al., 2020; Jacobo-Delgado et  al., 2023; Intorasoot et  al., 
2022). Despite these promising findings, significant challenges remain 
in translating NDBs into clinical applications. Key limitations include 
variability in their physicochemical and mechanical properties, which 
can impact reproducibility and reliability in therapeutic settings 
(Moradali and Rehm, 2020; Yadav et  al., 2015). The limited 
physicochemical stability and difficulty tuning their biodegradation 
profiles further complicate their development as viable therapeutic 
solutions (Muñoz-Bonilla and Fernández-García, 2012; 
Pahlevanzadeh et  al., 2022). In addition, the transition from 
laboratory-scale research to clinical application faces substantial 
barriers, including extensive preclinical testing to establish safety and 
efficacy, the complexities of large-scale manufacturing to ensure 
consistent quality, and the rigorous regulatory approval processes that 
demand considerable time and resources (Oliva et al., 2021; Murali 
and Jayakumar, 2023). Addressing these challenges will require 
interdisciplinary approaches and sustained efforts to optimize the 
properties of NDBs and streamline their development pipeline for 
clinical use (Arciola et al., 2018; Kong et al., 2023).

In further sections, the antibacterial potential of NDBs will 
be  discussed to understand biopolymer interaction with bacterial 
cells, inhibition/bactericidal mechanism, and application specifics, to 
compare all these aspects with currently used conventional antibiotics, 
and to address the question posed in the title of this review.

4 Mode of delivery of NDBs for 
antibacterial treatment

Based on R&D reports, the most common local modes of delivery 
of antibacterial naturally derived biopolymers (aNDBs) to treat 
desired sites for various biomedical applications are summarized in 

Figure 3. Local application options and antibacterial activity are the 
main advantages reported in numerous studies for such biopolymers 
(Wu et al., 2022; Jarosz et al., 2023; Kong et al., 2023). Local delivery 
is preferable as it achieves the target site at the same concentration as 
it was prepared directly without passing through all the body barriers 
via the bloodstream and without losing biopolymer molecules. Such 
local delivery types include creams, ointments, and gels that are 
applied on the skin, burn or opened wounds, and surgery sites to 
prevent and treat infection (Zhao et al., 2023); intraoperative coatings 
and fillers (Ilić-Stojanović et al., 2023) are used for deeper surgical 
sites or dental sockets post-tooth extraction to avoid or combat 
already infected site; implant and catheters coating that allows 
preventing implant-and catheter-associated infections (Veiga and 
Schneider, 2013); and controlled delivery systems that achieve and 
bind to targeted site via different stimuli or due to specific conditions 
(temperature and pH), followed by antibacterial activity while 
providing controlled cell/ion/growth factor release from the matrix 
(Jacob et al., 2018) (Figure 3). This local delivery feature gives an 
advantage compared to conventional administration of antibiotics 
orally (pills and suspensions) or intravenously (in particular cases). 
While oral administration is convenient and suitable for at-home 
antibiotic therapy, it is associated with a decline in the concentration 
of the active compound upon reaching the infection site (Homayun 
et  al., 2019; Kim and De Jesus, 2023). In addition, this strategy 
negatively impacts natural body microbiota, directly affecting the 
patient’s immune system response to continuous or new bacteria 
invasion (Konstantinidis et  al., 2020). Nevertheless, it is worth 
acknowledging the efficacy of oral drug administration in systemic or 
severe infections at multiple sites (Cunha, 2006). However, various 
studies have reported that combined device development where 
aNDBs served as a drug delivery system with encapsulated antibiotics 
might have a promising synergistic effect to achieve the exact infection 
site (Liu et al., 2022; Khan et al., 2021; Meng et al., 2014; Hwang et al., 
2023; Schrade et al., 2022).

5 Mechanism of antibacterial action

Regarding aNDBs, it is crucial to understand that these 
biopolymer molecules, unlike the previously described antibiotics, do 
not target specific synthesis pathways or molecules. First, it is worth 
mentioning that bacterial cell wall outer structures serve as adhesion 
and pathogenicity factors; for example, lipopolysaccharides and 
phospholipids of Gram-negative bacteria and teichoic and lipoteichoic 
acids of Gram-positive bacteria are negatively charged. Second, 
aNDBs consist of positively charged molecules (chondroitin sulfate, 
o-pullulan, alginate, ε-polylysine, chitosan, magainin-2, etc.), 
containing cationic groups such as quaternary ammonium, quaternary 
phosphonium, guanidinium, or tertiary sulfonium (Santos et  al., 
2016), which have a positive charge. As a result, the interaction 
between biopolymers and bacteria begins with mutual attachment 
caused by electrostatic forces (Haktaniyan and Bradley, 2022). As a 
result, if aNDB molecules and bacteria cells are close enough, 
oppositely charged molecules attract each other, leading to physical 
binding (Figure  4). Another essential fact is that not all cationic 
molecules are lethal to bacteria. The electrostatic interaction represents 
just the first step toward the bactericidal effect of aNDBs. Second, a 
specific concentration of the cationicity of aNDBs must be achieved 
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to reach a multivalence effect (Smola-Dmochowska et al., 2023) that 
results in the simultaneous binding of aNDB molecules to the bacterial 
cell structures and moving to the next step.

In the next step, aNDB mechanisms of action on bacterial cell 
walls are divided into pore-forming and micelle-forming mechanisms 
(Qiu et al., 2020; Zhou et al., 2023). The pore-forming mechanism can 
be further categorized into two models: barrel-stave pore and toroidal 
pore (Kumar et al., 2018; Pastore et al., 2020; Mihajlovic and Lazaridis, 
2010). Within the barrel-stave model, the aNDB molecules are initially 
oriented parallel to the membrane but eventually inserted 
perpendicularly in the lipid bilayer (Hegde et al., 2022) (Figure 4). This 
promotes lateral peptide–peptide interactions such as membrane 
protein ion channels. Hydrophobic regions interact with membrane 
lipids, and hydrophilic residues form the lumen of the channels 
(Brogden, 2005). On the other hand, in the toroidal pore model, 
peptides are also inserted perpendicularly in the lipid bilayer, but 
specific peptide–peptide interactions are not present (Wimley, 2010). 
Instead, the peptides induce a local curvature of the lipid bilayer, with 
the pores partly formed by peptides and partly by the phospholipid 
head group. The dynamic and transient lipid–peptide supramolecule 
is the “toroidal pore.” The key distinguishing feature of this model, 
compared to the barrel-stave pore, is the net arrangement of the 
bilayer. In the barrel-stave pore, the hydrophobic and hydrophilic 
arrangement of the lipids is maintained, whereas, in toroidal pores, the 
hydrophobic and hydrophilic arrangement of the bilayer is disrupted. 
This provides alternate surfaces for interacting with the lipid tail and 
head group. As the pores are transient upon disintegration, some 
peptides translocate to the inner cytoplasmic leaflet, entering the 
cytoplasm and potentially targeting intracellular components (Kumar 
et al., 2018). Other features of the toroidal pores include ion selectivity 
and discrete size (Yeaman and Yount, 2003). Due to pore formation, 
joint cell wall integrity and permeability are disrupted, resulting in 
bacterial cell lysis.

The micelle-forming mechanism is usually called the “Carpet-
like” model (Wimley, 2010; Huan et al., 2020; Shai, 2002). In this case, 
the aNDBs adsorb parallel to the lipid bilayer and reach a threshold 
concentration to cover the surface of the membrane, thereby forming 
a “carpet” (Figure 4). This leads to unfavorable interactions on the 
membrane surface. Consequently, membrane integrity is lost, 
producing a detergent-like effect, which eventually disintegrates the 
membrane by forming micelles, followed by bacterial cell death (Qiu 
et al., 2020; Zhou et al., 2023; Kumar et al., 2018).

6 Resistance development possibility

Another crucial consideration lies in the potential for bacteria to 
develop resistance to antibiotics. As previously highlighted, different 
bacterial strains develop resistance to commonly used antibiotics. 
Resistance mechanisms are unique and depend on the antibiotic 
group and mechanism of action specifics. Still, overall mechanisms 
involve specific enzyme production, loss of targeted molecules, efflux 
pumps, mutation of the target site, increased cell permeability, etc. 
(Reygaert, 2018; Munita and Arias, 2016; Peterson and Kaur, 2018; 
Abushaheen et al., 2020). It has been conventionally assumed that this 
propensity for resistance is exclusive to antibiotics, and theoretically, 
bacteria cannot develop resistance to aNDBs. On the one hand, 
electrostatic attraction between aNDBs and bacterial outer structures 

seems inevitable. In addition, the aNDB mechanism of action is not 
explicitly targeted. Even after entering the inner environment, aNDBs 
could enter many metabolic pathways. Based on that, it is more likely 
that bacteria encounter challenges in impeding electrostatic 
interaction and developing resistance, given the biological expense 
associated with such a complex process.

Although thought to be  improbable, alteration of bacterial 
membranes has been shown as a mechanism of resistance (Epand 
et  al., 1858; Nawrocki et  al., 2014). Such alterations include 
incorporating components with reduced anionic charge, which leads 
to the inability of peptides to aggregate on bacterial membranes and 
prevents them from entering the cell (Baltzer and Brown, 2011). For 
instance, studies have shown that Staphylococcus aureus modifies the 
anionic phospholipids in the cytoplasmic membrane with L-lysine, 
resulting in a reduction of the net negative charge of the bacterial 
membrane and leading to the repulsion and subsequent resistance to 
aNDBs (Peschel et al., 2001). Similarly, modification of Gram-negative 
bacteria’s lipopolysaccharides (LPS) is another bacterial mechanism 
contributing to resistance (Gunn, 2001; Guo et  al., 1998). These 
modifications include incorporating fatty acids, thereby reducing the 
permeability of the outer membrane and increasing membrane 
structural stability (Peschel, 2002). Furthermore, bacteria can change 
the permeability of the cell wall, as is widely reported in the case of 
tetracyclines (Chmit et  al., 2014); in addition, such non-specific 
structures as efflux pumps are also responsible for pumping out 
unfavorable molecules, and they are evidenced to work correctly 
against macrolides (Zhong and Shortridge, 2000).

7 Conclusion and future perspective

The highlighted findings in our review confirm that naturally 
occurring biopolymers with intrinsic antibacterial performance can 
be  considered high-performance, sustainable, next-generation 
materials for biomedical field applications. Various studies have 
shown that hydrogels, biosensors, drug delivery systems, and implant 
coatings based on natural antibacterial biopolymers have promising 
physicochemical features. They possess excellent biocompatibility and 
are naturally derived, thus making them environmentally friendly. 
However, the main focus of this review was to elucidate the potential 
of naturally derived antibacterial biopolymers toward a specific aim—
antibacterial therapy against bacterial infection in the human body—
and second, to understand whether aNDBs are a future or a failure in 
replacing antibiotics. Multiple studies have reported these biopolymers 
in vitro; their antibacterial potential revealed action mechanisms. In 
addition, aNDBs have demonstrated substantial inhibitory effects 
against antibiotic-resistant bacteria strains. Based on the results, 
aNDBs could emerge as a novel weapon against bacterial infections to 
replace currently used antibiotics and antibiotic use approaches. 
Unique antibacterial action and the possibility of loading directly to 
the infection site (locally) open new horizons for this type of material.

However, learning from the past must be taken properly; many 
years ago, antibiotics were in the same situation. What is known for 
sure is that antibacterial biopolymers exhibit remarkable potential for 
combating bacteria and possess unique qualities. This material class is 
confined to research studies and is exclusively utilized for scientific 
purposes under controlled conditions. At the same time, antibiotics 
have already deserved the trust of medical doctors and have been 
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proven effective antibacterial therapy in clinical care. Bacteria possess 
the biological mechanisms necessary for potential evolution, raising 
questions about the likelihood of encountering analogous issues. The 
problem associated with antibiotic resistance has emerged due to 
prolonged global exposure to antibiotics in the medical sector, 
inappropriate drug misuse or overuse, and the usage of antibiotics in 
agriculture. It is still being determined if antibacterial biopolymers 
will be opened to the world as much as antibiotics and undergo the 
same conditions. Will we face the same problem as now? Bacteria 
possess the biological mechanisms necessary for potential evolution, 
raising questions about the likelihood of encountering similar issues. 
In summary, antibacterial biopolymers are promising materials with 
many advantages, including their antibacterial potential. However, in 
light of various considerations and experiences, numerous questions 
must be  answered, particularly considering the development of 
bacterial resistance. It is not merely a matter of substituting one for the 
other but a nuanced exploration of the complexities involved.
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