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Genomic and phenotypic 
characterisation of Pseudomonas 
aeruginosa isolates from canine 
otitis externa reveals high-risk 
sequence types identical to those 
found in human nosocomial 
infections
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Introduction: Canine otitis externa (OE) is a frequently-diagnosed condition 
in veterinary practices worldwide. Pseudomonas aeruginosa is commonly 
associated with chronic and recalcitrant canine OE, but studies with detailed 
genomic and phenotypic characterisation of clinical isolates are lacking.

Methods: Pseudomonas aeruginosa canine OE isolates (n = 253) were collected 
from different geographical locations in Europe and characterised with respect 
to antimicrobial resistance and biofilm formation. A subset (n = 35) were genome 
sequenced then characterised with respect to diversity, and complement of 
virulence, antimicrobial resistance, and biofilm-associated genes.

Results: Genome-sequenced P. aeruginosa strains were distributed among 
phylogroups, showing no obvious clonality. However, two isolates belonged 
to ST111 and ST244 respectively,—MLST sequence types associated with AMR 
nosocomial infections in humans. Resistance to fluoroquinolones was detected 
in 25% of isolates, and multidrug resistance detected in 1.6%, though this did 
not always correlate with the presence of antimicrobial resistance genes. 
Additionally, 82% of isolates were characterised as forming strong biofilms.

Discussion: For the first time, this study has characterised a large multinational 
collection of P. aeruginosa isolates from canine otitis with a combination of 
whole genome sequencing, phenotypic screening and bioinformatic analysis. 
These strains did not cluster together based on genomic diversity or virulence 
gene complement, supporting their likely environmental origin. However, the 
identification of ST111 and ST244, important ‘high-risk’ sequence types, could 
suggest potential spread between humans and dogs. Furthermore, we  found 
that most strains were formed strong biofilms, and exhibited a significant level 
of resistance towards critically important antimicrobials. These findings could 
assist in the selection of appropriate treatments for canine OE as well as possibly 
identifying one health risks of these infections for cohabiting pets and humans.
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Introduction

Canine otitis externa (OE) is recognised as inflammation of the 
ear canal and is one of the most common diagnoses affecting between 
7.3–10.2% of dogs attending UK primary care practices (O’Neill et al., 
2014; O’Neill et al., 2021). A similar prevalence ranging from 6.3–13%, 
has been reported worldwide (Lund et al., 1999; Kim et al., 2018). OE 
is thought to result from secondary infection following a multifactorial 
primary inflammation (Paterson and Matyskiewicz, 2018). 
Pseudomonas aeruginosa is the most common pathogen isolated from 
chronic and recalcitrant canine OE; associated with up to 35% of cases 
(Nuttall and Cole, 2007). Pseudomonas aeruginosa is a Gram-negative, 
opportunistic pathogen of humans and animals. In humans, it is 
closely associated with cystic fibrosis patients, where in the UK 13.1% 
of adults suffer from chronic P. aeruginosa infections and 18.8% from 
intermittent infections (Naito et al., 2023). A similar prevalence can 
be seen globally in the US, Canada and Germany (Cystic Fibrosis 
Canada, 2023; Cystic Fibrosis Foundation, 2023; Nährlich et al., 2023).

Treatment of P. aeruginosa canine OE usually requires the use of 
antimicrobials as part of combined steroid, antimicrobial, antifungal 
products. Three classes of antimicrobials are often used; 
fluoroquinolones such as marbofloxacin; aminoglycosides 
(particularly gentamicin); and polymyxin B (Secker et  al., 2023). 
Treatment is challenging because of tissue swelling, hyperplasia and 
antimicrobial resistance (AMR). Pseudomonas aeruginosa has 
intrinsic AMR mechanisms such as limited outer membrane 
permeability, efflux pumps and a chromosomally encoded β-lactamase 
(Cox and Wright, 2013). It can also rapidly accrue mutations 
conferring resistance to most antimicrobials used in clinical therapy 
for OE (López-Causapé et  al., 2018) or acquire antimicrobial 
resistance genes (ARG) through horizontal gene transfer (Pang 
et al., 2019).

The majority (>90%) of P. aeruginosa isolates from clinical cases 
of OE in both humans and dogs have been shown to produce 
biofilms (Fusconi et al., 2011; Robinson et al., 2019). This reduces 
treatment success as P. aeruginosa cells within a biofilm can be many 
times more resistant to antimicrobials than planktonic cells 
(Thöming and Häussler, 2022). Consequently, this can result in 
incurable chronic infections which—in extreme cases—require 
surgery (Pye, 2018).

Whole genome sequencing has not been used to evaluate 
P. aeruginosa isolates from clinical cases of canine OE to our 
knowledge. As such, little is known about the full genetic diversity of 
these isolates. Likewise, few studies have investigated the presence and 
role of virulence genes in P. aeruginosa isolates from canine OE. One 
study found a high prevalence of five virulence genes from canine 
P. aeruginosa isolates, though these were not exclusively from OE 
infections (Hattab et al., 2021). Multilocus Sequence Typing (MLST) 
studies have found a range of sequence types (ST) linked to 
P. aeruginosa from canine otitis and pyoderma which hinted at the 
underlying genetic diversity amongst these isolates (Hyun et al., 2018; 
Elfadadny et al., 2023).

In the present study, antimicrobial resistance and biofilm formation 
was assessed for 253 European isolates of P. aeruginosa from clinical cases 
of canine OE. Subsequently, a subset of 35 isolates representing different 
phenotypes were selected for whole genome sequencing to determine 
their complement of virulence and antimicrobial resistance genes (ARG) 
and to gain a fuller understanding of their genomic diversity.

Materials and methods

Bacterial strain isolation and laboratory 
maintenance

A collection (n = 253) of geographically diverse Pseudomonas 
aeruginosa isolates from dogs with otitis externa were collected from 
the UK Royal Veterinary College (RVC; n = 48), CAPL Nationwide 
Laboratories, UK (n = 99), and an EU collection from the University 
of Copenhagen (n = 106). Confirmation of P. aeruginosa identity was 
performed as described by the UK Health Security Agency standards 
for microbiology investigations (UKHSA, 2024) using cetrimide agar 
and the oxidase test, followed by 16S PCR. Pseudomonas aeruginosa 
PAO1 was used as a positive control for all assays in this study.

Prior to each experiment, agar plates were prepared [Lysogeny 
Broth (LB), Miller, 25 g/L, Sigma-Aldrich; supplemented with agar, 
15 g/L, Fisher Scientific], and were inoculated with the required 
P. aeruginosa strain and streaked to obtain single colonies. Plates were 
inverted and incubated statically at 37° C for 16 h. Following 
incubation, 10 mL of LB was inoculated with a single colony using a 
sterile inoculating loop and incubated at 37° C with shaking at 
200 rpm for 16 h.

Antimicrobial sensitivity testing

Antimicrobial sensitivity testing (AST) was performed as described 
by the Clinical & Laboratory Standards Institute (CLSI) using the disk 
diffusion method (CLSI, 2012). A suspension of bacterial cells was 
prepared by inoculating 8 mL of Mueller-Hinton broth (MH; Sigma-
Aldrich) with bacterial colonies selected from an LB plate until a 
turbidity equivalent to a 0.5 McFarland standard had been reached, as 
determined by visual comparison using a Wickerham card. A swab was 
then used to inoculate the surface of a MH agar 2 plate (Sigma-Aldrich) 
ensuring the entire plate is covered evenly by rotating the plate 90° 
between swabbing the first time with a final diagonal swab. The plates 
were then incubated at 37°C for 16 h, and the results recorded by 
measuring the inhibition zone diameter using a digital calliper.

AST was performed using an antimicrobial panel comprising six 
antimicrobial classes (Supplementary Table 1). All antimicrobials were 
tested against all strains except for Ticarcillin + Clavulanic acid which 
was discontinued part way through this study, and were acquired from 
two suppliers: ProLabs and Oxoid. E. coli ATCC 25922 and 
P. aeruginosa ATCC 27853 were the control strains used in this assay. 
Antimicrobial sensitivity was determined using breakpoints outlined 
by the CLSI, where available canine veterinary breakpoints were used 
(CLSI, 2018b) otherwise human breakpoints were used (CLSI, 2018a).

Submerged biofilm assay

The ability of clinical P. aeruginosa isolates to form biofilm was 
tested in  vitro as described previously with some modifications 
(Coffey and Anderson, 2014). Briefly, overnight cultures were diluted 
1 in 100 into LB and 100 μL aliquots were separately transferred to 
wells of the 96-well microtiter plates in triplicate in the same microtiter 
plate; two microtiter plates were used for each technical repeat. A 
negative control, comprising three wells containing sterile LB, was 

https://doi.org/10.3389/fmicb.2025.1526843
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Secker et al. 10.3389/fmicb.2025.1526843

Frontiers in Microbiology 03 frontiersin.org

included on each plate. The cultures were then grown statically at 37° 
C for 24 h. Following incubation, planktonic cells were removed, and 
the wells were washed using 125 μL of Ca/HEPES buffer; the wells 
were then stained using 0.1% (v/v) crystal violet solution. Excess 
crystal violet was removed, and the wells were then de-stained using 
ethanol (100%), and absorbance measured at 595 nm using a Tecan 
GENios Pro. The assay was repeated to achieve three biological 
repeats. Biofilm production was scored as either as either strong, 
moderate, weak, or non-biofilm producing as previously described 
(Stepanović et al., 2000).

Swarming motility assay

Swarming motility assays were modified according to (Ugurlu 
et al., 2016). Briefly, 1 μL of bacterial culture was spotted into the 
centre of swarming motility agar (8 g/L nutrient broth, Oxoid; 5 g/L 
agar select, Sigma-Aldrich; 0.5% v/v glucose, Fisher Scientific), and 
then incubated at 37° C for 16 h. The distance travelled from the point 
of inoculation was measured using a digital calliper, and swarming 
motility assessed by phenotype on the plates in combination with the 
distance travelled from the point of inoculation.

Pseudomonas aeruginosa genome 
sequencing

Whole genome sequencing of 35 isolates was performed using 
both short (Illumina MiSeq) and long (Oxford Nanopore) read 
technologies by MicrobesNG (Birmingham, United  Kingdom). 
Isolates were selected for sequencing to ensure isolates from the CALP 
nationwide laboratories (n = 13), Denmark (n = 7) and the RVC 
(n = 9) were represented (PRJNA1180571) and included some 
sequences from previous work (n = 6; Gigante et  al., 2024; 
PRJNA107813).

Illumina paired-end reads were quality-assessed and trimmed 
using FastQC v0.11.8 (Andrews, 2010) and FastP v0.12.4 (Chen et al., 
2018) respectively. Subsequently, contigs were assembled de novo 
using Flye v2.9.2-b1786 (Kolmogorov et al., 2019), followed by post-
processing with Circlator v.1.5.5 (Hunt et  al., 2015) and Bandage 
v0.8.1 (Wick et al., 2015). This was followed by one round of long read 
polishing and two rounds of short read polishing using Medaka 
v1.11.1 (ONT, 2023), Polypolish v0.5.0 (Wick and Holt, 2022) and 
POLCA from the MaSuRCA toolkit v4.0.9 (Zimin and Salzberg, 2020) 
respectively. Finally, genomes were reoriented to begin with dnaA 
using dnaapler v0.4.0 (Bouras et al., 2024) and annotated using Bakta 
v1.8.2 (Schwengers et al., 2021).

Bioinformatic analysis

To aid in the comparison of isolates from the present study to a 
wider population of P. aeruginosa isolates, PanACoTA v1.4.0 (Perrin 
and Rocha, 2021) was used to download and filter P. aeruginosa 
genomes from the RefSeq database as previously described (Botelho 
et al., 2023). Briefly, P. aeruginosa sequences were selected using taxid 
(−T 287) and filtered so that genomes with more than 100 contigs 
were removed (--nbcont 100). Subsequently, redundant and 

misclassified genomes were removed using Mash distances (--min_
dist 0.0001; --max_dist 0.05). Metadata for the RefSeq genomes was 
downloaded using NCBI Datasets v16.40.1 (O’Leary et al., 2024).

Whole genome average nucleotide identity (ANI) was calculated 
using FastANI v1.34 (Jain et al., 2018). This was used in combination 
with hierarchical clustering using Euclidean distance and complete 
linkage to assign isolates to a phylogroup (Botelho et  al., 2023; 
Supplementary Figure 1). A neighbour joining phylogenetic tree was 
constructed using Mashtree v1.4.6 (Katz et  al., 2019) using 
bootstrapping with 100 replicates and mindepth 0. Trees were then 
visualised using iTOL (Letunic and Bork, 2024).

Multilocus sequence typing (MLST) was performed in silico using 
the PubMLST database (Jolley et al., 2018). Where an unknown ST 
was identified, genome sequences were uploaded to the PubMLST 
database, and a new ST was assigned.

Screening of virulence genes was performed using ABRicate 
(Seemann, 2015) using the VFDB (Liu et  al., 2021). Acquired 
antimicrobial resistance genes were identified using AMRFinderPlus 
v4.0.3 using assembled nucleotide sequences (−n), this included 
searching for point mutations (−O; Feldgarden et al., 2021).

Biofilm associated genes were identified using a custom database, 
created as described by (Seemann, 2015). Genes located within the psl, 
pel and alginate (alg) operons (Franklin et al., 2011) in addition to 
other associated biofilm genes (Liu et al., 2021; Kiel et al., 2022) were 
downloaded from NCBI using P. aeruginosa PAO1 (NC_002516.2). A 
complete list of the genes is shown in Supplementary Table 2.

Results

Genomic diversity of Pseudomonas 
aeruginosa from canine otitis infections

A total of 10,300 genomes were downloaded from the RefSeq 
database and filtered for quality and genetic distance. The resulting set of 
3,721 genomes was then randomly subsampled to yield a subset of 1,000 
genomes. This included P. aeruginosa PAO1 (GCF_000006765.1) and 
PA14 (GCF_000014625.1) but PA7 (GCF_000017205.1) was removed 
based on Mash genetic distance which is in line with previous reports 
proposing that this strain be reclassified to a novel species Pseudomonas 
paraeruginosa (Rudra et al., 2022). These genomes in addition to 35 from 
the present study were compared using Mashtree. The distances 
calculated were then used to construct a phylogenetic tree (Figure 1). The 
strains were ascribed to three phylogroups; A (n = 765), containing 
P. aeruginosa PAO1; B (n = 244), containing P. aeruginosa PA14, and a 
third minor group, C (n = 26). The classification of P. aeruginosa into 
three phylogroups has been described previously (Stewart et al., 2014; 
Ozer et al., 2019); with one study suggesting that phylogroup C should 
be  split into three groups (Freschi et  al., 2019). However, with the 
exclusion of PA7, the results in the present study are in line with a recent 
study of P. aeruginosa phylogeny (Botelho et al., 2023).

Canine strains from the present study were distributed across all 
three phylogroups indicating that they were not closely related and did 
not cluster according to host source or geographical origin. This was 
supported by MLST analysis which identified 30 different STs among 
the clinical isolates. One isolate, 488613, was assigned a novel ST 
(5180). The most common ST was 788 which was identified in 9% 
(3/35) of clinical isolates.
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Antimicrobial sensitivity testing revealed 
resistance to up to six antimicrobials

Antimicrobial resistance (AMR) in P. aeruginosa from cases of 
canine otitis externa was determined using the disk diffusion method 
with 14 antimicrobials from 6 antimicrobial classes (Figure 2). Isolate 
29130 failed to grow under the tested conditions and was excluded 
from this assay. The highest level of resistance was recorded for 

enrofloxacin (25.4%; 64/252) while tobramycin showed the highest 
sensitivity (99.6%; 251/252). Intermediate resistance was mainly seen 
against ticarcillin + clavulanic acid (60.7%; 127/252). Finally, 8.3% 
(21/252) and 0.79% (2/252) of isolates were resistant to imipenem and 
meropenem, respectively.

Of the 252 isolates tested, 65% (164/252) were susceptible to all of 
the tested antimicrobials. The remaining 35% (88/252) were resistant 
to at least one antimicrobial. Moreover, 1.6% (4/252) were classified as 

FIGURE 1

Phylogenetic tree of Pseudomonas aeruginosa strains. Mashtree with bootstrapping (100 replicates) was used to calculate the phylogenetic distances 
of the P. aeruginosa isolates from this study in addition to 1,000 isolates from other sources to create a neighbour joining tree which was visualised 
using iTOL. The scale represents 1 base difference per 100 bases. The outer ring represents the phylogroups while the inner ring shows the source of 
the isolates (where available). Strains from the present study, in addition to PAO1 and PA14, are labelled on the tree, coloured according to their 
phylogroup.

https://doi.org/10.3389/fmicb.2025.1526843
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Secker et al. 10.3389/fmicb.2025.1526843

Frontiers in Microbiology 05 frontiersin.org

multidrug resistant—defined as resistant to three or more different 
classes of antimicrobials (Sweeney et al., 2018; Figure 3).

Comparison of genotypic and phenotypic 
antimicrobial resistance

The 35 genome sequences of clinical P. aeruginosa isolates from 
canine OE were screened for the presence of ARG (Figure  4). 
Despite the variation in phenotypic susceptibility to antimicrobials 
between the strains, their complement of antimicrobial resistance 
genes remained remarkably consistent. Five genes, aph(3′)-IIb, fosA, 
catB7, blaOXA and blaPDC were detected in almost all of the 
isolates. Some notable exceptions are the presence of sul1, aadA7 
and qacEΔ1 in 25181 and the absence of a blaOXA gene in 84269. 
The genes aadA7 and sul1 are linked to integrons and encode for a 
aminoglycoside nucleotidyltransferase that confers resistance to 
streptomycin and spectinomycin (Ahmed et  al., 2004) and a 
sulfonamide resistant dihydropteroate synthase, respectively, 
(Sköld, 2000).

Development of resistance through the acquisition of mutations 
is one of the main drivers of resistance in P. aeruginosa (López-
Causapé et al., 2018). Twelve different mutations were identified in the 
present study (Supplementary Table 3); the most common occurring 
in oprD. Other common mutations included those in the quinolone 
resistance-determining region (QRDR), which are the primary way in 
which P. aeruginosa can become resistant to fluoroquinolones 
(Piddock, 1999). In E. coli these mutations occur between amino acid 
residues 67–107 for GyrA, and 63–102 for ParC (Egorov et al., 2018). 

Studies with P. aeruginosa have reported the QRDR regions in GyrB 
as 429–585 and ParE as 357–503 (Bruchmann et al., 2013).

QRDR mutations were identified in almost all of the isolates that 
were resistant to at least one fluoroquinolone antimicrobial—with the 
exception of 84269 that was resistant to enrofloxacin but did not 
contain a QRDR mutation. When examining ARG individually, gyrA 
mutations were the most common, occurring in 20% (7/35) of isolates. 
The mutation T83I in GyrA was the most common among strains 
resistant to at least one fluoroquinolone. S466F, S87L/S331T and 
D533E were the most common mutations in GyrB, ParC and ParE 
respectively. These are within the QRDR regions, and have been 
previously associated with resistance (Akasaka et al., 2001; Bruchmann 
et al., 2013). Furthermore, some of the isolates contained more than 
one QRDR mutation which is known to further increase the MIC of 
ciprofloxacin (Bruchmann et al., 2013).

Two of the sequenced strains were resistant to gentamycin. 
Resistance to aminoglycosides can be due to inactivation by enzymes 
but also though reduced permeability or increased efflux (Poole, 2005). 
More recently, mutations to fusA1 in P. aeruginosa have been shown to 
confer resistance to aminoglycosides (Bolard et  al., 2018). One 
chromosomal aminoglycoside resistance gene, 3′-phosphotransferase 
(aph(3′)-IIb), was identified which conferred resistance to kanamycin 
A and B, neomycin B and C, butirosin and seldomycin F5 in all the 
sequenced isolates (Zeng and Jin, 2003). However, aph(3′)-IIb does not 
provide resistance to the clinically relevant aminoglycosides tested in 
the present study (Atassi et al., 2023).

Only a small number of sequenced isolates (2/35) harboured a 
mutation in fusA1. Strain 488958, which was resistant to all of the 
tested aminoglycosides, contained T671A. Mutations in domains II, 

FIGURE 2

Antimicrobial susceptibility of P. aeruginosa isolates. The antimicrobial susceptibility of 252 P. aeruginosa isolates from clinical cases of canine otitis 
externa was determined using the disk diffusion method (CLSI, 2012). The percentage of sensitive, intermediate and resistant isolates are shown with 
red, amber and green bars, respectively.
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IV and V have been reported to increase the MIC of aminoglycosides 
up to 16-fold. T671A has been shown to significantly decrease the 
susceptibility of P. aeruginosa to aminoglycosides including 
gentamicin, amikacin and tobramycin (Bolard et  al., 2018). 
Conversely, strain 87895 contained a Q678L mutation in the fusA1 
gene which is known to result in a four-fold increase in the minimum 
inhibitory concentration (MIC) of tobramycin, however this strain 
was sensitive to tobramycin, and other tested aminoglycosides, in the 
present study (Scribner et al., 2020).

Other mutations identified in the present study include the 
introduction of a premature stop codon in mexZ in 8.6% (3/35) of the 
isolates. Inactivation of mexZ results in the overproduction of the 
MexXY-OprM efflux pump which can result in decreased susceptibility 
to fluoroquinolones, aminoglycosides and cefepime (López-Causapé 
et  al., 2018). Finally, 14% (5/35) of the isolates harboured a V15I 
mutation in the pmrB gene, previously identified in clinical strains 
with an increased MIC of colistin (Lee and Ko, 2014) although this 
antibiotic was not included in the present study.

FIGURE 3

Percentage of P. aeruginosa isolates from canine otitis externa resistant to multiple antimicrobials. Bar chart representing the percentage of isolates 
resistant to a different number of antimicrobials as determined by the disk diffusion method. *Multidrug resistance is reported for resistance to three or 
more classes of antimicrobials.

FIGURE 4

Presence and absence of antimicrobial resistance genes. Screening of 35 P. aeruginosa isolates from canine otitis infections for the presence of 
antimicrobial resistance genes. Bars at the base of the figure indicate the antibiotic class: Green—aminoglycoside, Black—Fosfomycin, Purple—
chloramphenicol, Pink—sulfonamide, Light blue—Quaternary ammonium, Red—β-lactam.
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Biofilm-forming ability of Pseudomonas 
aeruginosa isolates

Clinical isolates of P. aeruginosa were tested for their ability to 
form a biofilm in vitro (Figure 5; Supplementary Figure 2). In total, 
82% (207/253) of strains produced strong levels of biofilm, 9% 
(23/253) produced moderate biofilm, 5% (13/253) produced weak 
biofilm and 4% (10/253) made no quantifiable biofilm under the 
tested conditions.

Detection of biofilm associated genes

To further understand the differences between levels of biofilm 
formation, the genomes of 35 P. aeruginosa isolates were screened 
for the presence of 53 genes known to be associated with biofilm 
formation (Supplementary Figure 3). All of the genes were highly 
conserved when compared to PAO1, with the exception of algP—a 
histone-like regulatory protein whose function in alginate synthesis 
is disputed and may be strain-dependent (Cross et al., 2020). All but 
one of the isolates contained all 53 genes, with the exception of 
464429 which did not contain pslABCD. These genes encode the psl 
polysaccharide, which contributes to submerged biofilm (Friedman 
and Kolter, 2004), which may explain the poor biofilm forming 
ability of this strain.

Swarming motility

Most strains (71%, 179/253) tested positive for swarming 
motility (Figure 6). The positive control strain (PAO1) consistently 

migrated to the perimeter of the agar plate within 16 h of 
incubation, and 16% (41/253) of the clinical isolates showed a 
similar swarming ability. Of the 205 isolates that produced strong 
levels of biofilm, 72% (147) also tested positive for swarming. 
Interestingly, strain 29051—the strongest biofilm producer—tested 
negative for swarming. When the relationship between biofilm 
formation and swarming motility was investigated no correlation 
was identified (r2 = 0.002; Supplementary Figure 4).

Presence of virulence genes in clinical 
isolates

The presence and absence of virulence genes was investigated 
using ABRicate with VFDB. Comparison of the canine OE 
isolates from this study to other P. aeruginosa isolates from 
human, animal and environmental sources using hierarchical 
clustering highlighted that there is no specific virulence profile 
associated with canine OE infection (Figure 7). Additionally, this 
highlighted that the strains did not cluster within phylogroups 
based on virulence factors. However, one notable exception is a 
cluster of 12 strains– including some from canines—which lacked 
numerous virulence factors, namely a series of genes involved in 
type III secretion systems. The majority (92%; 11/12), of these 
isolates belonged to phylogroup C, specifically, the section of the 
tree identified as group 5 by Freschi et al., 2019. These results are 
in line with the aforementioned study as they also identified that 
isolates in this group were missing 36 genes that encode for a 
Type III secretion system. The remaining isolate belonged to 
phylogroup A and was missing 32/36 of the type three 
secretion genes.

FIGURE 5

Biofilm formation of P. aeruginosa from canine otitis externa. The biofilm forming ability of 253 P. aeruginosa strains was tested in a crystal violet, 96 
well plate assay, a representative subset of 35 strains is shown here. Green—Strong biofilm producing, Purple—Moderate biofilm producing, Amber—
Weak biofilm producing, Red—No quantifiable biofilm. The values here are from three biological and six technical repeats represented by the mean 
with 95% confidence interval.

https://doi.org/10.3389/fmicb.2025.1526843
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Secker et al. 10.3389/fmicb.2025.1526843

Frontiers in Microbiology 08 frontiersin.org

Discussion

Canine otitis caused by P. aeruginosa is a very common infection 
seen in veterinary practices worldwide which is frequently resistant 
to antimicrobial treatment. To our knowledge, this is the first study 
to use a combination of whole genome sequencing, phenotypic 
screening and bioinformatic analysis to characterise a large collection 
of clinical OE isolates of P. aeruginosa from diverse geographical 
origins. This revealed extensive genomic diversity across strains, as 
well as high levels of resistance to antimicrobials—particularly 
fluoroquinolones which are often used in the treatment of canine 
otitis. Furthermore, the MLST sequence type of two isolates (ST111, 
ST244) were identical to STs known to be  associated with AMR 
nosocomial infections in people (Oliver et al., 2024), which may pose 
a risk of zoonotic spread, particularly to immunocompromised 
individuals. Interestingly, ST111 has been shown to have a low affinity 
to cystic fibrosis cases while ST244 has an intermediate affinity 
(Weimann et al., 2024).

MLST has been used previously to show that canine P. aeruginosa 
isolates are diverse (Hyun et al., 2018; Elfadadny et al., 2023). This is 
consistent with research on Pseudomonas infections in people, which 
also revealed a predominantly non-clonal population structure 
interspersed with highly successful epidemic clones and clonal 
complexes (Maatallah et al., 2011). These ‘high-risk’ clones include 
STs such as ST235, ST111, ST233 and ST244 (Oliver et al., 2024). 
Transmission of Pseudomonas between dogs and people has been 
reported in both directions (Fernandes et al., 2018; Santaniello et al., 
2020). The identification of high-risk clones in dogs is particularly 
concerning considering the level of AMR detected, many of which 
are important in human medicine. Should this occur, the associated 
risks may increase over time given the ageing population in many 

countries, and higher dog ownership levels following the 
Covid-19 pandemic.

Antimicrobial resistance of isolates in this study was highest for 
fluoroquinolones. The levels of resistance reported here are similar to 
previous studies (Arais et al., 2016; Petrov et al., 2019; KuKanich 
et al., 2022). Fluoroquinolones are defined by the WHO as Critically 
Important Antimicrobials for human medicine, to be used only when 
alternative antimicrobials were ineffective (EMA, 2019). All strains 
resistant to ciprofloxacin were also resistant to levofloxacin and 
enrofloxacin suggesting that it is the most effective fluoroquinolone 
against Pseudomonas in vitro. This is most likely due to its lower 
affinity to efflux pumps compared to other fluoroquinolones (Teresa 
Tejedor et al., 2003). This is supported by strain 26491, which was 
resistant to enrofloxacin and levofloxacin but not ciprofloxacin and 
contained a mutation that is known to result in the overexpression of 
the MexXY-OprM efflux pump. Similarly, continuous exposure 
studies using E. coli from canine infections shows that QRDR 
mutations occur after treatment with marbofloxacin that can provide 
protection against other fluoroquinolones (Gebru et al., 2011). This 
is important because marbofloxacin is a component of antimicrobial 
containing otic treatments used in the United Kingdom.

Antimicrobial resistance gene (ARG) profiles amongst the 
isolates, as determined using AMRFinderPlus, were very similar. 
However, two integron associated genes, aadA7 and sul1, were 
identified. Although these genes did not account for resistance to the 
antimicrobials tested in the present study, it does highlight that 
P. aeruginosa isolates in dogs can carry mobile genetic elements 
carrying antimicrobial resistance genes. This led to the investigation 
of mutations which identified five point mutations in the QRDR 
region that had previously been linked to a resistant phenotype. The 
presence of QRDR mutations has been studied in P. aeruginosa 
isolates from dog infections in Korea and Brazil where, similar to the 
present study, GyrA T83I was identified as a prevalent mutation 
(Arais et al., 2016; Park et al., 2020). This suggests that the high levels 
of fluoroquinolone resistance seen in the present study is likely due 
to QRDR mutations. Ultimately, this suggests that the use of 
antimicrobials in veterinary medicine can select for the development 
of mutations to clinically important human antimicrobials.

QRDR mutations do not account for all of the resistance seen 
in this study. Pseudomonas aeruginosa 84269 and 26491 were 
resistant to enrofloxacin/enrofloxacin and levofloxacin, respectively, 
but did not contain any mutations in the genes investigated. 
However, other well-characterised fluoroquinolone resistance 
mechanisms such as efflux pump overexpression and decreased 
outer membrane permeability could be  responsible for the 
resistance observed as a mutation that introduced a premature stop 
codon into mexZ, which is known to result in efflux pump 
overexpression, was identified in 26491, suggesting that increased 
efflux might be the cause of this resistance (Hooper and Jacoby, 
2016; López-Causapé et al., 2018). Moreover, 88812, which also had 
a mexZ mutation, was resistant to all the tested fluoroquinolones, 
in addition to amikacin and gentamicin. Although this isolate did 
have mutations in the QRDR, no resistance mechanisms for 
aminoglycosides were identified, again highlighting efflux as a 
potential resistance mechanism. However, it is thought that up to 
200 genes could be involved in resistance to ciprofloxacin so it is 
possible that there are unknown mechanisms contributing to 
fluoroquinolone resistance (Bruchmann et al., 2013).

FIGURE 6

Canine OE isolates exhibit a range of swarming motility levels. 
Overnight cultures grown in LB were spotted onto swarming motility 
agar and incubated at 37° C for 16 h before imaging. Above shows 
selection of P. aeruginosa clinical canine otitis externa isolates with 
varying levels of swarming motility. (A–C) Shows strains PAO1, 83240 
and C3524. (D) Shows strain 29775 which is swarming negative 
under the tested conditions. Images shown are representative of 
three biological repeats.
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Worryingly, resistance to two carbapenem antimicrobials, 
meropenem and imipenem, was identified, with the latter present in 
8.33% of isolates. This is significant as the World Health Organisation 
(WHO) recognises a critical need for new antimicrobials for the 
treatment of carbapenem resistant P. aeruginosa (WHO, 2017). Of the 
sequenced isolates in the present study, only one showed resistance 
to imipenem although no carbapenemase genes were identified. 
Carbapenemases have been found previously in a P. aeruginosa 
isolate from a case of canine otitis externa in Korea (Hyun et al., 2018).

Biofilm formation has been found in 40–100% of clinical 
P. aeruginosa from canine OE (Pye et al., 2013; Chan et al., 2019; 
Robinson et al., 2019). In our study, 96% of strains produced biofilm 
in vitro, with 82% classified as strong biofilm formers. Of the 4% of 
strains producing no detectable biofilm, only one (464429) was 
missing any of the biofilm genes that were screened for 
(specifically pslABCD).

Deletion of pslD can eliminate the ability of P. aeruginosa PAO1 
to attach to a microtiter dish (Colvin et al., 2012). Some P. aeruginosa 
isolates have been shown to be  deficient in psl production; most 
notably PA14, which is also missing pslABCD (Friedman and Kolter, 
2004). As a result, PA14 uses pel as its primary biofilm matrix 

polysaccharide. Despite this, P. aeruginosa PA14 is still able to adhere 
to a microtiter dish and form a biofilm after 24 h (Colvin et al., 2012). 
This could mean that the strains that produce no quantifiable biofilm 
in the present study have an attachment deficiency. The presence of 
non-biofilm producing clinical strains is not yet fully understood, 
particularly given most of these have a full complement of biofilm-
related genes. This might be explained by divergent expression in 
different environments, or deficiencies in transcriptional regulators 
such as LasR (Lima et al., 2018; Kamali et al., 2020).

Little is known about virulence factors specific to the 
development of canine OE. Investigation of five virulence genes in 
P. aeruginosa from canine sources, including the ear canal, found that 
three genes, lasB, aprA, and plcH, were present in all of the tested 
isolates, while exoS and toxA were present in 87.5 and 91.7%, 
respectively (Hattab et al., 2021). Similarly, in the present study lasB, 
aprA, and plcH were identified in all of the isolates and toxA in 91%.

Pseudomonas aeruginosa isolates usually harbour either exoU or 
exoS, although the reason for this is unclear. The distinction is 
important because exoU+ strains are associated with more severe 
infections, and chronic OM infections in people (Park et al., 2017; 
Ozer et al., 2019). In the present study, exoS+ strains constituted 69% 

FIGURE 7

Presence and absence of virulence genes in the genomes of P. aeruginosa isolates. Hierarchical clustering using Jaccard distance and average linkage 
is shown on the left. Phylogroups A (blue), B (orange) and C (green) for each strain are shown in the outer band, with the source of the strains indicated 
in the inner band.

https://doi.org/10.3389/fmicb.2025.1526843
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Secker et al. 10.3389/fmicb.2025.1526843

Frontiers in Microbiology 10 frontiersin.org

(24/35) of the population with 14% (5/35) exoU+. Interesting, one 
isolate 3% (1/35) carried both genes and 14% (5/35) had neither. All 
the exoU+ isolates in addition to the isolate containing both genes 
were located on the same branch of the phylogenetic tree as PA14 as 
previously described (Ozer et al., 2019). Although, other groups have 
reported isolates with both genes in phylogroup A (Botelho et al., 
2023). None of the virulence genes identified in the canine isolates 
could be implicated in specifically having a role in this disease, as 
similar genes were also identified in environmental and human 
disease isolates.

In conclusion, our study has applied genome sequencing, 
phenotypic and bioinformatic analysis to a large collection of 
P. aeruginosa isolates from canine otitis externa. Although two of the 
isolates shared an MLST sequence type with high-risk STs from 
nosocomial human infections, there was little overlap of STs with 
previous studies. This genetic diversity was further supported by 
phylogenetic analysis which revealed no specific clustering of canine 
isolates; supporting the hypothesis that infections are acquired from 
environmental sources. Antimicrobial resistance was common, 
particularly towards the fluoroquinolones, which has implications for 
veterinary and human therapeutic failure. Although strains in this 
study did harbour known virulence and biofilm-associated genes, 
none of these were specifically associated with canine OE. These 
findings may help stimulate further research into the fundamental 
mechanisms of canine OE, and the optimising of therapy.
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