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The gut microbiome plays a pivotal role in human health, influencing digestion, 
immunity, and disease prevention. Beneficial gut bacteria such as Akkermansia 
muciniphila, Adlercreutzia equolifaciens, and Christensenella minuta contribute 
to metabolic regulation and immune support through bioactive metabolites like 
short-chain fatty acids (SCFAs). Dietary patterns rich in prebiotics, fermented foods, 
and plant-based bioactive compounds, including polyphenols and flavonoids, 
promote microbiome diversity and stability. However, challenges such as individual 
variability, bioavailability, dietary adherence, and the dynamic nature of the gut 
microbiota remain significant. This review synthesizes current insights into gut 
bacteria’s role in health, emphasizing the mechanisms by which dietary interventions 
modulate microbiota. Additionally, it highlights advancements in microbiome-
targeted therapies and the transformative potential of personalized nutrition, 
leveraging microbiota profiling and artificial intelligence (AI) to develop tailored 
dietary strategies for optimizing gut health and mitigating chronic inflammatory 
disorders. Addressing these challenges requires a multidisciplinary approach that 
integrates scientific innovation, ethical frameworks, and practical implementation 
strategies.

KEYWORDS

healthy gut bacteria, phytochemicals, prebiotic foods and probiotic foods, probiotics, 
fatty acid

1 Introduction

The human gut is a fascinating ecosystem that harbors trillions of microorganisms 
collectively known as gut microbiota that play a crucial role in several physiological functions 
through their derived metabolites such as nutrient metabolism, immune system regulation, 
vitamin production, mental health, and brain function that contribute to overall maintaining 
of health. There is a wide distribution of microbes in the gut which is essential for better health 
(Figure 1). Some of the key gut bacteria, including Akkermansia muciniphila, Adlercreutzia 
equolifaciens, Barnesiella, Christensenella minuta, and Oxalobacter formigenes, Lactobacillus, 
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Bifidobacterium, Faecalibacterium prausnitzii, Roseburia spp. 
contribute to unusual health benefits such as improved gut barrier 
function, better glucose metabolism, reduced inflammation, weight 
management, and prevention of kidney stone formation (Anhê et al., 
2016; Maruo et al., 2008; Ubeda et al., 2013; Ang et al., 2023; Kaufman 
et al., 2008).

The dietary sources such as polyphenols, alkaloids, capsaicin, and 
polysaccharides are essential constituents that support the growth of 
these beneficial bacteria, leading to improved digestive health and 
overall well-being (Chenbo et al., 2022; Othman et al., 2019). The 
metabolites are small molecules that produced by the gut microbiota 
as byproducts can target directly as well as indirectly both the bacteria 
themselves and the host, regulating the composition and function of 
the gut microbiota (Liu et al., 2022; Jandhyala et al., 2015). In recent 
years, the significance of gut microbiota and their metabolites in 
influencing human health has garnered significant attention.

The role of gut microbiota in disease initiation is gaining 
significant attention. Dysbiosis, an imbalance in microbial 
composition, is strongly associated with the onset of conditions such 
as inflammatory bowel disease (IBD), metabolic syndrome, and 
neurodegenerative disorders. Altered microbial populations lead to 
reduced production of beneficial metabolites like SCFAs and increased 
levels of pro-inflammatory compounds such as lipopolysaccharides 
(LPS), disrupting gut barrier integrity and systemic homeostasis (Tan 
et  al., 2014). Additionally, microbial interactions with dietary 
components such as fibers, polyphenols, and omega-3 fatty acids 
further influence health outcomes by modulating inflammation, 
immune signaling, and metabolic pathways (Sultan et al., 2021).

Several studies have focused on elucidating the specific functions 
and mechanisms of these microorganisms in relation to various 
diseases (Lavelle and Sokol, 2020; Parada Venegas et al., 2019; Liu 
et  al., 2022). There is currently a lack of a comprehensive 
summarization regarding the most beneficial gut bacteria, their 

derived metabolites, and their dietary sources that contribute to 
maintaining overall health. In this review, we provide the potential 
role of microbiota in human health. We also discuss the essential gut 
bacteria and emphasize the derived metabolites of these gut bacteria 
especially the functions of regulating the local and systemic immune 
system, energy metabolism, and neural activity. Finally, we discuss 
how dietary approaches impacts the gut microbial ecology, and foods 
that promote healthier and more resilient intestinal gut bacteria.

2 Impact of microbiota on human 
health

The microbial balance in the intestine is closely related to human 
diseases and wellness. Extensive research has uncovered the crucial 
link between gut bacteria and fundamental human biological 
functions. Because of the varied metabolic genes encoding distinct 
enzymes and biochemical pathways, the microbiota plays critical roles 
in energy and nutrition extraction from food (Hou et  al., 2022). 
Furthermore, the creation of bioactive compounds, including 
vitamins, amino acids, and lipids, is heavily reliant on gut bacteria 
(Roberfroid et al., 2009). The human microbiota not only protects the 
host from external pathogens by creating antimicrobial compounds 
but also plays an essential role in the development of intestinal mucosa 
and the immune system.

One of the key mechanisms by which the gut microbiota 
influences health is through the production of short-chain fatty acids 
(SCFAs), primarily acetate, propionate, and butyrate, which are 
generated via the fermentation of dietary fibers. SCFAs play a 
multifaceted role in maintaining gut homeostasis. Butyrate serves as 
the primary energy source for colonocytes, promoting tight junction 
integrity and reducing gut permeability, thereby reinforcing the gut 
barrier. Propionate and acetate, on the other hand, influence systemic 

FIGURE 1

Distribution of gut microbiota.
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metabolism by modulating gluconeogenesis and lipid biosynthesis in 
the liver (Tan et al., 2014). Beyond metabolic regulation, SCFAs exert 
anti-inflammatory effects by interacting with G-protein-coupled 
receptors (GPCRs) and inhibiting histone deacetylases (HDACs), 
which regulate immune and inflammatory pathways (Yao et al., 2024; 
Liu et al., 2023).

The immune regulatory role of the microbiota is also mediated 
through the modulation of nuclear factor kappa B (NF-κB), a critical 
transcription factor that governs the expression of pro-inflammatory 
cytokines and antimicrobial peptides. Dysbiosis, or an imbalance in 
gut microbiota, can lead to overactivation of NF-κB, driving chronic 
inflammation and increasing susceptibility to inflammatory bowel 
disease and other gut-related disorders. SCFAs, particularly butyrate, 
have been shown to inhibit NF-κB activation by preventing the 
phosphorylation and degradation of inhibitor proteins (IκBs), thereby 
mitigating inflammatory responses and promoting gut homeostasis 
(Yao et al., 2024; Liu et al., 2023).

The gut microbiota demonstrates stability, resilience, and 
symbiotic relationships with the host in healthy environments. Its 
composition varies significantly across different anatomical sections 
of the gastrointestinal tract. For example, Akkermansia muciniphila 
resides in the mucus layer of the large intestine and is involved in 
maintaining intestinal integrity by stimulating mucin production and 
regulating gut permeability. Adlercreutzia equolifaciens is commonly 
found in the colon, where it metabolizes soy isoflavones into bioactive 
equol, a compound with antioxidant and estrogenic properties. 
Barnesiella has been discovered in multiple sections of the 
gastrointestinal tract, including the cecum, colon, and feces, where it 
contributes to the breakdown of complex carbohydrates and the 
modulation of immune responses (Afzaal et al., 2022).

Such discrepancies in microbial distribution are primarily 
attributable to differences in local conditions. The small intestine, for 
instance, has a rapid transit time and high bile content, while the colon 
exhibits slower flow rates, a gentler pH, and larger microbial 
communities dominated by anaerobic species (Afzaal et al., 2022). 
Aside from regional variation, gut microbiota composition also 
changes with age. Microbial diversity typically increases from 
childhood to adulthood and gradually declines after the age of 70, 
contributing to age-associated vulnerabilities in immune and 
metabolic health.

3 Optimal foods for nurturing gut 
bacteria

The composition and functionality of gut microbiota are 
profoundly influenced by specific dietary choices, with certain foods 
playing a pivotal role in promoting the growth of beneficial bacteria. 
Microbiota-accessible carbohydrates (MACs), including dietary 
fibers such as resistant starch, inulin, and pectin, serve as fermentable 
substrates for gut bacteria, particularly Bifidobacterium and 
Faecalibacterium prausnitzii. These fibers stimulate the production of 
short-chain fatty acids (SCFAs), which are essential for gut 
homeostasis. For example, resistant starch found in foods like 
legumes and whole grains has been shown to increase butyrate 
production, supporting colonic health and reducing gut 
inflammation. Similarly, inulin, a naturally occurring polysaccharide 
present in chicory root and Jerusalem artichoke, selectively enhances 

the abundance of Bifidobacterium, contributing to improved gut 
barrier function and immune modulation (Baxter et  al., 2019) 
(Murga-Garrido et al., 2021).

Polyphenols, bioactive compounds abundant in plant-based foods 
such as berries, cocoa, and green tea, also play a critical role in 
supporting gut health. These compounds interact with gut microbiota 
to produce bioactive metabolites that exert anti-inflammatory and 
antioxidant effects. For instance, anthocyanins in blueberries have 
been shown to increase the abundance of Akkermansia muciniphila, a 
bacterium linked to enhanced metabolic health and reduced markers 
of systemic inflammation (Cano et al., 2024). However, the efficacy of 
these foods can be significantly influenced by processing methods. 
High-temperature cooking or refining can degrade fibers and 
polyphenols, reducing their availability to gut microbes. Minimally 
processed foods, such as raw fruits, vegetables, and whole grains, 
retain higher levels of beneficial compounds and are therefore more 
effective in nurturing gut bacteria (Sejbuk et al., 2024).

Prebiotics, defined as substrates selectively utilized by host 
microorganisms to confer health benefits, are fundamental to 
promoting gut health. Common prebiotics include inulin, 
fructooligosaccharides (FOS), galactooligosaccharides (GOS), and 
resistant starch, all of which foster the growth of beneficial bacterial 
taxa such as Bifidobacterium and Faecalibacterium (Krumbeck et al., 
2018). Inulin, naturally present in foods like onions, garlic, and 
asparagus, is known for its ability to selectively enhance 
Bifidobacterium populations (Davani-Davari et al., 2019). Similarly, 
FOS, found in bananas, leeks, and artichokes, promotes microbial 
diversity and supports the production of SCFAs, which are crucial for 
maintaining gut barrier integrity and reducing inflammation. GOS, 
commonly derived from dairy products or synthesized for commercial 
use, has demonstrated particular benefits in infant gut microbiota, 
simulating the effects of human milk oligosaccharides (Davani-Davari 
et al., 2019).

Resistant starch, present in foods such as potatoes, green bananas, 
and legumes, has a unique role in promoting butyrate production. 
This SCFA is particularly beneficial for colonic health, as it serves as 
an energy source for colonocytes and reduces intestinal inflammation. 
However, the efficacy of prebiotics can be  influenced by food 
processing. For example, cooking methods like boiling or steaming 
generally preserve prebiotic content, whereas high-temperature frying 
or prolonged storage may degrade these beneficial fibers, reducing 
their fermentability (Queen and Queen, 2020). To maximize the 
benefits of prebiotic-rich foods, dietary interventions should prioritize 
minimally processed options and explore novel methods for 
enhancing the stability of prebiotics during food preparation (Queen 
and Queen, 2020).

4 Role of microbiota in disease 
induction

The intestinal mucosal barrier, which consists of physical, 
chemical, microbial, and immunological components, serves as one 
of the body’s major defensive barriers. It protects against bacterial 
invasion, prevents the entry of foreign antigens and toxins into the 
circulation, and minimizes water and nutrient loss. This barrier also 
regulates molecular exchange while supporting the coexistence and 
colonization of gut bacteria. Disruptions to the gut microbiota’s 
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composition can have significant repercussions, influencing the 
development of major diseases (Figure 2).

Dysbiosis, characterized by a loss of beneficial microbes and an 
overgrowth of pathogenic species, plays a central role in disease 
induction. The intestinal mucosal barrier becomes compromised, 
leading to increased gut permeability and systemic inflammation. For 
instance, in inflammatory bowel disease (IBD), the weakened mucus 
layer of the digestive tract allows luminal bacteria to penetrate 
epithelial cells (Bull and Plummer 2015), triggering proliferative and 
inflammatory processes (Parekh et al., 2015). Dysbiosis also affects the 
production of key microbial metabolites, such as short-chain fatty 
acids (SCFAs). Reduced levels of butyrate, a critical SCFA, impair gut 
barrier integrity and exacerbate inflammation, further contributing to 
the pathogenesis of IBD (Chae et al., 2024).

Emerging evidence has also highlighted the gut’s influence on 
systemic diseases such as obesity and type 2 diabetes (T2D). Obesity 
is associated with an increased Firmicutes to Bacteroides/Prevotella 
ratio, which elevates microbial genes involved in polysaccharide 
breakdown and raises SCFA production. This enhanced energy 
extraction from food contributes to weight gain. Additionally, 
microbial digestion of dietary choline and carnitine, common in 
Western diets, produces trimethylamine-N-oxide (TMAO), a 
compound linked to increased cardiovascular disease (CVD) risk. In 
T2D, dysbiosis results in a proliferation of Proteobacteria, 
Bacteroidetes, and Firmicutes, disrupting glucose metabolism and 
contributing to insulin resistance (Muscogiuri et al., 2017).

The gut microbiota’s role extends beyond metabolic and 
inflammatory disorders to include infectious diseases such as COVID-
19. Studies suggest a strong gut-lung axis, wherein the gut microbiota 
upregulates the synthesis of ACE2, a receptor used by the 

SARS-CoV-2 virus to enter cells (Wang et al., 2023). Nutraceuticals, 
including polyphenols and probiotics, have been proposed to support 
immune responses and potentially mitigate disease severity.

Neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, 
have also been linked to dysbiosis. Alterations in gut microbiota 
composition affect the gut-brain axis through microbial metabolites 
like SCFAs and tryptophan derivatives, influencing neuroinflammation 
and neurotransmitter synthesis (Junyi et  al., 2024). For example, 
elevated levels of lipopolysaccharides (LPS) in dysbiotic states can 
disrupt the blood–brain barrier and activate microglia, 
exacerbating neurodegeneration.

5 Gut-brain axis in neurodegenerative 
diseases

The gut-brain axis represents a dynamic bidirectional 
communication network linking the gut microbiota and the central 
nervous system (CNS). This intricate system operates through 
multiple mechanisms, including microbial metabolites such as short-
chain fatty acids (SCFAs), immune signaling, the vagus nerve, and 
neuroendocrine pathways via the hypothalamic–pituitary–adrenal 
(HPA) axis. Recent studies underscore the significant role of this axis 
in influencing brain function, mood regulation, and the 
pathophysiology of neurodegenerative diseases (Schneider 
et al., 2024).

Neurodegenerative diseases such as Alzheimer’s disease (AD) and 
Parkinson’s disease (PD) have been closely linked to gut dysbiosis, a 
condition characterized by imbalances in microbial composition 
(Schneider et al., 2024; Kulkarni et al., 2024; Caradonna et al., 2024). 

FIGURE 2

Dysbiosis of the human microbiota.
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In Alzheimer’s disease, gut dysbiosis contributes to increased systemic 
inflammation through the release of microbial metabolites like 
lipopolysaccharides (LPS), which compromise the blood–brain 
barrier integrity. This allows amyloid-beta peptides to accumulate, 
exacerbating neuroinflammation and neuronal damage (Kulkarni 
et al., 2024; Caradonna et al., 2024). Similarly, Parkinson’s disease is 
associated with alterations in gut microbiota composition, particularly 
a reduction in anti-inflammatory taxa such as Akkermansia 
muciniphila. These changes are thought to facilitate the misfolding and 
aggregation of α-synuclein, a hallmark of PD pathology, and promote 
its transmission from the enteric nervous system to the CNS via the 
vagus nerve (Kulkarni et al., 2024; Caradonna et al., 2024).

Microbial metabolites play a pivotal role in modulating 
neuroinflammatory pathways. SCFAs, including butyrate and 
propionate, have been shown to regulate microglial activation, which is 
critical for maintaining CNS homeostasis. A reduction in SCFA levels, 
often observed in dysbiotic states, is correlated with increased 
neuroinflammation and cognitive decline (Fodor et al., 2023). Moreover, 
tryptophan metabolites derived from gut bacteria influence serotonin 
and kynurenine pathways, both of which are integral to mood regulation 
and cognitive processes. For instance, studies have highlighted the role 
of Bacteroides species in promoting the synthesis of indole derivatives, 
which have neuroprotective effects (Fodor et al., 2023).

6 Essential gut-friendly bacteria and 
their byproducts

6.1 Akkermansia muciniphila

Akkermansia muciniphila is an anaerobic gram-negative anti-
obesity bacterium that grows singly or in pairs in mucin-rich medium 
(Liu et al., 2022). Akkermansia muciniphila has garnered significant 
attention due to its ability to degrade mucus that considers a protective 
layer that lines the gut and maintains a healthy balance that serves as 
a barrier against harmful microorganisms as excessive mucus 
production can lead to a range of health issues, including inflammatory 
bowel disease (IBD) and obesity (Geerlings et al., 2018; Kim et al., 
2021). Mucin layer is primarily made up of gelatinous mucins secreted 
by goblet cells and also consist of a peptide backbone modified by 
O-linked glycans. The presence of proline and threonine in the peptide 
backbone contributes to the unique properties of mucin, including its 
gel-like consistency and protective function (Pelaseyed et al., 2014). 
Further, the production of butyrate, a short-chain fatty acid by 
Akkermansia muciniphila not only provides an energy source for the 
cells lining the colon but also contributes to reducing inflammation 
and improving gut barrier function (Portincasa et al., 2022). Another 
metabolite produced by Akkermansia muciniphila is propionate, 
which also has anti-inflammatory effects and regulate glucose 
metabolism. It also stimulates the production of molecules that 
promote the growth of beneficial bacteria in the gut, leading to a more 
diverse and balanced gut microbiota (Rodrigues et al., 2022).

6.2 Adlercreutzia equolifaciens

Adlercreutzia equolifaciens is a Gram-positive bacterium that 
thrives in an anaerobic environment, slightly acidic pH range of 6.0 to 

6.5 by using culture medium, such as Reinforced Clostridial Medium 
(RCM). This bacterium is of particular interest due to its ability to 
produce equol, a metabolite of the soy isoflavone daidzein, which is 
found in soy products and other legumes. Research has shown that 
equol has estrogenic and antioxidant properties, which may help 
alleviate symptoms associated with hormonal imbalances, such as 
menopause, hot flashes and night sweats (Mayo et al., 2019). Further 
equol have anti-inflammatory and anti-cancer effects. Individuals who 
consume a diet rich in soy products are more likely to have a higher 
abundance of Adlercreutzia equolifaciens in their gut (Tuli et al., 2022).

6.3 Barnesiella

Barnesiella is an obligate anaerobic bacterium that can 
be cultivated under both anaerobic and microaerophilic conditions at 
a temperature range of 37–42°C in nutrient-rich media, such as brain-
heart infusion (BHI) or tryptic soy broth (TSB), supplemented with 
appropriate carbon and nitrogen sources (Ubeda et  al., 2013). 
Barnesiella is a commensal bacterium that found reasonably low level 
in the gastrointestinal tract of humans help in the breakdown of 
complex carbohydrates, production of SCFAs, modulation of immune 
responses, facilitate the clearance of intestinal VRE colonization and 
prevent the spread of highly antibiotic-resistant bacteria (Tao et al., 
2021; Ubeda et al., 2013; Aindelis and Chlichlia, 2020).

6.4 Christensenella minuta

Christensenella minuta is an obligate anaerobe that could be grow 
optimally under mesophilic conditions, between 30°C to 37°C by 
using a suitable culture medium, such as a nutrient-rich broth, to 
support its growth (Kropp et al., 2021; Ang et al., 2023). One of the 
unique metabolic features of Christensenella minuta is its ability to 
produce butyrate, a short-chain fatty acid linked with various health 
benefits, including anti-inflammatory and anti-cancer properties. 
Studies suggest that individuals with higher levels of Christensenella 
minuta may have a lower risk of type 2 diabetes, inflammatory bowel 
disease and obesity which sparked interest in the use in the 
development of probiotics and prebiotics (Mazier et al., 2021; Ang 
et  al., 2023). In addition, this bacterium can influence the host’s 
response to certain medications, such as antidiabetic drugs and 
suggested that it may contribute to inter-individual differences in drug 
response and could potentially be  targeted for personalized 
medicine approaches.

6.5 Oxalobacter formigenes

Oxalobacter formigenes is a unique bacterium that can be grow in 
anaerobic environment by using Oxalate-Minimal Medium, which 
consists of oxalate, mineral salts, vitamins and buffer system (Duncan 
et al., 2002; Daniel et al., 2021). This bacterium resides in the human 
gastrointestinal tract known for its unique ability to break down and 
metabolize oxalate, a compound that can form kidney stones in some 
individuals. Studies have shown that individuals with a higher 
abundance of Oxalobacter formigenes in their gut have a lower risk of 
developing kidney stones (Chmiel et  al., 2022). This bacterium 
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produces an enzyme called oxalyl-CoA decarboxylase, which converts 
oxalate into a less harmful compound called formate (Karamad 
et al., 2022).

7 Optimal foods for nurturing the 
growth of gut-friendly bacteria

Research has consistently shown that our dietary choices have a 
direct impact on the health and resilience of our gut microbiome 
(Singh et al., 2017; Su and Liu, 2021). The incorporation of prebiotic 
rich foods, fermented foods, and a wide variety of plants and fruits 
promote the thriving of these gut microbiome as detailed in Table 1 
(Nambiar et al., 2023; Leeuwendaal et al., 2022). The colorful plant 
foods are not only visually appealing, but they also provide a wide 
range of health benefits for the microbiome and metabolism. One of 
the key benefits of colorful foods is their high content of 
phytochemicals bioactive compounds such as carotenoids, flavonoids, 
and anthocyanins that have been shown to have numerous health-
promoting effects (Samtiya et al., 2021; Khoo et al., 2017).

The microbiome is a living dynamic environment where the 
relative abundance of species may fluctuate daily, weekly, and monthly 
depending on diet, medication, exercise, and a host of other 
environmental exposures (Monda et al., 2017; York, 2019).

7.1 Carotenoids

Gut microbiota breaks down the carotenoid’s rich foods, into 
various beneficial gut metabolites such as apocarotenoids and SCFAs 
having anti-inflammatory, antioxidant, and anticancer properties that 

contribute to decrease the risk of the development of chronic diseases, 
cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases 
and certain types of cancer (Rowles and Erdman, 2020; Rocha et al., 
2023; Eroglu et al., 2023; Min et al., 2023). They also act as antioxidants, 
protecting the body’s cells from damage caused by harmful free 
radicals. Their ability to protect against lipid peroxidation and damage 
caused by ROS makes them valuable in maintaining overall health and 
reducing the risk of chronic diseases (Lobo et  al., 2010; Rocha 
et al., 2023).

Apo-carotenoids exhibit unique characteristics, including higher 
aqueous solubility and higher electrophilicity, which make them 
particularly suitable for targeting transcription factors such as NF-κB, 
PPARγ, and RAR/RXRs (Eroglu et al., 2023). These compounds hold 
potential for therapeutic applications in the fields of inflammation, 
metabolic disorders, and cell differentiation. Studies have found that 
carotenoids can directly influence the composition of the gut 
microbiota in a positive manner (Rocha et al., 2023). Beta-carotene 
such as carrots and sweet potatoes can increase the abundance of 
certain beneficial bacteria, such as Bifidobacteria and Lactobacillus 
(Rinninella et al., 2019; Zhiguo et al., 2023; Li et al., 2022a). Lycopene, 
found in tomatoes, has been shown to increase the levels of bacteria 
that produce short-chain fatty acids, which are beneficial for gut 
health (Eroglu et al., 2023). A. Lutein, found in leafy greens, has been 
associated with a more diverse gut microbiota (Dinsmoor et al., 2019).

7.2 Flavonoids

Flavonoid-rich foods including fruits like berries, citrus fruits, 
vegetables, dark chocolate and tea, can lead to an increase in the 
diversity and abundance of gut metabolites that break down the 

TABLE 1 Various dietary sources that produce and nourish good gut bacteria.

S. No. Beneficial bacteria Substances Sources References

1. Akkermansia muciniphila Polyphenols Caffeic acid, chlorogenic acid, salvianolic acid A, ferulic, 

Concord grape polyphenols, puerarin, resveratrol, 

epigallocatechin gallate, black tea, red wine, grape juice, 

aronia juice, Canarium album extract, arctic berries, 

flavonoids

Zhou (2017), Visioli et al. (2003), 

Anhê et al. (2016), Roopchand 

et al. (2015), Kajla et al. (2015) and 

Chenbo et al. (2022)

Alkaloids Berberine, curcumin caffeine, chlorogenic acid and betaine

Capsaicin Chili peppers

Plant-derived 

carbohydrates

Nonfermentable fiber, wheat dietary fiber, konjac 

glucomannan, bran, fiber-rich common beans, oligofructose, 

Inulin-type fructan, stachyose, polysaccharides from spirulina 

platensis, Lycium barbarum polysaccharide and fucoidan

Others Oily fish, walnuts bamboo shoots, rhubarb extract and 

flaxseed

2. Adlercreutzia equolifaciens Isoflavone diet Tofu, tempeh, and soy milk Jensen et al. (2021)

3. Barnesiella Polyphenols Cherry juices

Black raspberry-rich diet

Ganoderma lucidum mushroom

Ubeda et al. (2013), Daillère et al. 

(2016), Gu et al. (2019), and 

Miaoyu et al. (2021)
Prebiotics

4. Christensenella minuta Polyphenols Red grapes, cranberries, strawberries and blueberries Mazier et al. (2021), Ang et al. 

(2023) and Waters and Ley (2019)

5. Oxalobacter formigenes Prebiotic foods Prebiotic foods like kimchi, sauerkraut, kefi, spinach, legumes, 

tea and celery

Kaufman et al. (2008) and Chmiel 

et al. (2022)
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flavonoids through fermentation processes into various metabolites 
compounds that have anti-inflammatory and antioxidant properties 
and reduce the risk of metabolic disorders such as cardiovascular 
disease by improving the insulin sensitivity (Joaquim et al., 2023; 
Wang et  al., 2022; Pan et  al., 2023). One important group of 
flavonoids known as flavan-3-ols has been shown to increase the 
levels of short-chain fatty acids (SCFAs) such as butyrate, which 
provide energy for the gut epithelial cells and have anti-inflammatory 
effects (Fotschki et al., 2015). Another bioactive compound flavanols 
associated with increase the production of urolithins metabolites in 
the gut that have been shown to have anti-inflammatory, antioxidant, 
and anticancer properties (Singh et al., 2019). Further flavonoids 
have also been found to increase the production phenolic acids, 
benzoic acid derivatives, and microbial-derived compounds that can 
influence various physiological processes in the body (Rahman et al., 
2021). Previous research reported that flavonoids have the ability to 
modulate the relative abundance by increasing the relative 
abundance of Bifidobacterium, Lactobacillus, while decreasing the 
relative abundance of Lachnoclostridium and Bilophila, highlights 
their potential as dietary supplements or functional food ingredients 
to promote a healthy gut microbiota (Baky et  al., 2022; Pan 
et al., 2023).

7.3 Anthocyanins

Anthocyanins that are responsible for bright red, purple, and blue 
colors to fruits like blueberries, blackberries, purple cabbage and 
cherries have been shown to have anti-inflammatory and antioxidant 
effects, as well as potential anti-cancer properties (Khoo et al., 2017; 
Bahare et al., 2020). They may also help regulate blood sugar levels 
and improve insulin sensitivity (Fernandes, 2019). One metabolite 
that has been extensively studied in relation to Anthocyanins increase 
nitric oxide (NO) metabolite known as signaling molecule that helps 
in the regulation of blood flow, neurotransmission, and immune 
responses Geum et al. (2020). Increased levels of nitric oxide relax 
and dilate blood vessels, leading to improved blood flow and reduced 
risk of hypertension, heart disease and diabetes (da Silva et al., 2021; 
Kumar et al., 2022). Studies have consistently shown that anthocyanin 
leads to an increase in the presence of beneficial bacteria such as 
Lactobacillus, Bifidobacterium, Blautia, Faecalibacterium, Prevotella, 
Akkermansia and stimulate the production SCFAs particularly 
butyrate (Verediano et al., 2021; Zhong et al., 2023; Liang et al., 2023).

7.4 Polyphenols

Polyphenols are a group of compounds that are naturally found 
in many plant-based foods and beverage that undergo various 
transformations by the gut bacteria and converted into a wide range 
of metabolites having antioxidant and anti-inflammatory properties 
(Gizem et al., 2020; Bertelli et al., 2021). Studies have shown that 
certain polyphenols, such as those found in green tea, berries, and 
cocoa, can increase the production of short-chain fatty acids (SCFAs) 
and branched-chain amino acids (BCAAs) and could be useful in the 
treatment and prevention of various gastrointestinal disorders 
(Manach et al., 2004; Kumar Singh et al., 2019; Lippolis et al., 2023). 
Furthermore, polyphenols have been shown to modulate the 

composition of the gut microbiota, promoting the growth of 
beneficial bacteria like Lactobacillus, Lactiplantibacillus and 
Bifidobacterium while hindering the proliferation of pathogenic 
strains like Clostridium and Fusobacterium (Corrêa et al., 2019; Wang 
et al., 2022; Lippolis et al., 2023; Rahman et al., 2021).

7.5 Alkaloids

Alkaloids have been known to possess various biological activities 
and have been used in traditional medicine for centuries (Heinrich 
et al., 2021). Studies have shown that certain alkaloids promote the 
growth of beneficial bacteria that leads to an increase in the 
production of short-chain fatty acids, such as butyrate, which have 
numerous health benefits (Feng et  al., 2018; Dehau et  al., 2023). 
Furthermore, alkaloids found in coffee, such as caffeine and 
chlorogenic acid, have been shown to increase the production of 
certain bile acids in the gut (Iriondo-DeHond et al., 2020; Chen et al., 
2023). Bile acids are important for the digestion and absorption of 
dietary fats and also have regulatory roles in lipid and glucose 
metabolism (González-Regueiro et al., 2017). Research has shown 
that berberine has antimicrobial properties, specifically targeting 
harmful bacteria like Escherichia coli (E. coli) and Clostridium difficile 
(C. difficile), while promoting the growth of beneficial bacteria like 
Bifidobacterium and Lactobacillus (Cheng et al., 2022; Zhang et al., 
2021; Peng et al., 2019).

7.6 Capsaicin

Research has shown that capsaicin can stimulate the production 
of certain gut metabolites such as SCFAs known to have various 
beneficial effects, such as reducing inflammation and improving 
insulin sensitivity (Song et al., 2017; Kang et al., 2017). Furthermore, 
capsaicin has been shown to enhance the activity of certain enzymes 
such as enzyme lipase, which is responsible for breaking down dietary 
fat (Liu et al., 2021). This increased enzyme activity can lead to a 
more efficient digestion and utilization of nutrients, ultimately 
affecting the production of gut metabolites (Menden et al., 2022; 
Chandra et  al., 2020). In addition to its direct effects on gut 
metabolites, capsaicin has also been found to influence the 
composition of the gut microbiota and increase the abundance of 
Akkermansia muciniphila (Li et al., 2022b).

8 Dietary strategies for optimizing gut 
microbiota

The composition and functionality of the gut microbiota are 
profoundly influenced by dietary choices, making nutrition a 
cornerstone for maintaining microbial health. Specific dietary 
strategies, including the incorporation of fermented foods, synbiotic 
combinations, and anti-inflammatory diets, have been shown to 
promote microbial diversity, enhance the production of beneficial 
metabolites like short-chain fatty acids (SCFAs), and reduce 
inflammation. These approaches not only support digestive health but 
also play a critical role in systemic immunity and metabolic regulation. 
By tailoring dietary interventions to the unique needs of individuals, 
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it is possible to foster a balanced gut microbiota that contributes to 
overall well-being and resilience against chronic diseases.

8.1 Prebiotic-rich foods

Prebiotics can be found in a variety of foods, including fruits, 
vegetables, whole grains, and legumes. Some common examples of 
prebiotic fibers include inulin, fructooligosaccharides (FOS), and 
galactooligosaccharides (GOS) (Lockyer and Stanner, 2019). The 
primary benefits of prebiotics are their ability to selectively stimulate 
the growth of beneficial bacteria, such as Bifidobacteria, Lactobacilli 
and enhance the production of beneficial metabolites like short-chain 
fatty acids (Markowiak and Śliżewska, 2017; Davani-Davari et al., 
2019). Prebiotic rich foods such as Chicory root and Jerusalem 
Artichokes are excellent sources of inulin, a fiber that serves as a fuel 
for the beneficial gut bacteria (Carlson et al., 2018). Similarly, the 
content of pectin in apples and resistant starch in bananas acts as 
nourishment for good bacteria (Englyst and Cummings, 1986; Leonel 
and Alvarez-Leite, 2012).

Other prebiotic foods like oats, barley, and quinoa promote 
healthy gut bacteria by providing good source of prebiotic fibers 
(Slavin, 2013). Legumes foods, including lentils, chickpeas, and 
beans, are known for their high nutritional value and are an excellent 
source of prebiotics that promote the growth of beneficial bacteria in 
the gut (Kadyan et al., 2022). The content of fructooligosaccharides 
(FOS) in garlic and onions, and inulin and oligofructose in asparagus 
vegetables act as prebiotics by stimulating the growth of beneficial gut 
bacteria (Zhang et al., 2013; Guillamón et al., 2021).

8.2 Fermented foods

Fermented foods are a rich source of probiotics that enhance gut 
health by introducing beneficial bacteria and improving microbial 
diversity. Popular examples include yogurt, kimchi, and sauerkraut. 
These foods support gut integrity by increasing levels of Lactobacillus 
and Bifidobacterium, which produce metabolites like short-chain 
fatty acids (SCFAs) that reduce inflammation and strengthen the gut 
barrier (Dimidi et  al., 2019). In addition to these widely studied 
examples, global fermented foods such as miso and natto from 
Japanese cuisine, kefir from Eastern Europe, and dosa from India 
provide unique probiotic strains and bioactive compounds. Miso and 
natto, for instance, contain Bacillus subtilis, which has been shown to 
promote immune regulation and reduce markers of systemic 
inflammation (Oshiro et al., 2021). Kefir is particularly rich in lactic 
acid bacteria and yeast, offering a broad spectrum of probiotics with 
antimicrobial and gut-stabilizing properties (Tingirikari et al., 2024).

Fermented foods provide a natural and delicious way to support a 
healthy gut microbiome. With their probiotic properties, they offer 
numerous benefits, including improved digestive health, enhanced 
immune function, increased nutrient availability, and potential mental 
well-being (Leeuwendaal et al., 2022). Yogurt is a widely consumed 
fermented dairy product that augments beneficial bacteria, such as 
Lactobacillus and Bifidobacterium (Lisko et al., 2017). Kimchi is mainly 
produced by fermented vegetables, including cabbage, radishes, and 
garlic that contain Lactobacillus bacteria, which are known to promote 
gut health and improve digestion (Dimidi et al., 2019).

Another fermented food known as Kombucha made from a 
fermented tea beverage that is rich in bioactive compounds and a 
variety of beneficial acetic acid bacteria and yeasts, contributing to a 
healthy gut microbiome (Kitwetcharoen et  al., 2023). A previous 
study conducted on rats revealed that tempeh, a fermented soybean 
product, has the potential to enhance the production of 
immunoglobulin A (IgA) and modulate the composition of gut 
microbiota. In addition to the study on rats, research involving 
supplementation of tempeh in humans for 16 days led to a significant 
increase in the abundance of beneficial gut bacteria like Akkermansia 
muciniphila (Stephanie et al., 2017).

Practical dietary recommendations include incorporating a 
variety of fermented foods into daily meals. For example, pairing 
kimchi with rice or adding yogurt to smoothies can provide both 
flavor and health benefits. Future research should explore the 
synergistic interactions between probiotics in fermented foods and 
the resident gut microbiota to optimize therapeutic applications.

8.3 Synbiotic foods

Synbiotic foods provide a convenient and effective way to support 
a healthy gut microbiome (Jiang et al., 2022). By combining prebiotics 
and probiotics, these foods offer numerous health benefits, including 
improved digestion, enhanced immune function, increased nutrient 
absorption, and reduced inflammation (Yadav et  al., 2022). 
Incorporating synbiotic foods into a balanced diet can be a valuable 
strategy for promoting overall health and well-being (Pandey et al., 
2015). Synbiotic food having a combination of arabinose, lactulose 
and Lactobacillus plantarum, have gained attention for their potential 
to effectively regulate blood glucose, blood lipid, and body weight in 
patients with Type 2 Diabetes Mellitus (T2DM) (Jiang et al., 2022). 
Another preparation known as a banana smoothie made with kefir 
or yogurt is a delicious and nutritious beverage that maximizes the 
benefits for gut bacteria. Stir-fry made with tempeh, asparagus, garlic, 
and leeks prompts, you can actively healthy gut microbiome. The 
combination of yogurt and fruits such as blueberries creates a 
synbiotic effect, where the probiotics from yogurt and the prebiotics 
from blueberries work together to promote the growth and activity 
of healthy gut bacteria (Fernandez and Marette, 2017).

8.4 Anti-inflammatory foods

Anti-inflammatory foods such as fatty fish, fruits, vegetables, 
whole grains, and spices have long been recognized for their potential 
health benefits by supporting a diverse and balanced gut microbiome, 
reducing inflammation and promoting overall gut health (Bagheri 
et al., 2022). Fish like salmon, sardines, and anchovies in diet can 
have a positive impact on gut health. Their omega-3 fatty acids and 
ability to increase healthy gut bacteria make them a valuable addition 
to an anti-inflammatory diet (Costantini et al., 2017). Flax seeds are 
rich in dietary fiber, including both soluble and insoluble fiber that 
act as prebiotics and provide nourishment for the beneficial bacteria 
in the gut (Kajla et  al., 2015; Mueed et  al., 2022). When the gut 
bacteria ferment the fiber from flax seeds, they produce short-chain 
fatty acids (SCFAs), such as butyrate that help in maintaining a 
healthy gut environment (Arora et al., 2019).

https://doi.org/10.3389/fmicb.2025.1527755
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kumar et al. 10.3389/fmicb.2025.1527755

Frontiers in Microbiology 09 frontiersin.org

9 Impact of diet on microbial ecology 
in the gut

Diet plays a pivotal role in shaping the composition, diversity, 
and metabolic activity of the gut microbiota. Long-term dietary 
patterns, including plant-based and high-protein diets, create distinct 
microbial environments that influence host health. Microbiota-
accessible carbohydrates (MACs), a subset of dietary fibers, serve as 
the primary energy source for gut bacteria, fostering the growth of 
beneficial taxa and stimulating the production of short-chain fatty 
acids (SCFAs) (De Filippo et  al., 2010). MACs are composed of 
complex polysaccharides, such as resistant starches, inulin, and 
pectin, that are indigestible by host enzymes but fermentable by gut 
microbes. These carbohydrates selectively enhance the abundance of 
health-promoting bacteria like Bifidobacterium and Faecalibacterium 
prausnitzii, both of which are associated with anti-inflammatory 
effects and improved gut barrier integrity (Hills et al., 2019). For 
example, resistant starch found in legumes and whole grains increases 
butyrate production, which supports colonic health. Similarly, inulin 
from chicory root and Jerusalem artichokes promotes the 
proliferation of Bifidobacterium, contributing to gut homeostasis and 
reduced systemic inflammation. These carbohydrates are made up of 
monosaccharides linked together by various forms of glycosidic 
connections. Any major differences in their chemical makeup, 
solubility, and size classify these carbohydrates into a wide range of 
biological niches. Dietary fibers are crucial sources of energy for the 
bacteria that live in the colon and cecum. In addition to reducing 
microbial diversity and short chain fatty acid (SCFA) production, a 
low intake of dietary fiber causes the gut microbial metabolism to 
shift toward the use of less advantageous substrates. The mucus 
barrier is harmed by a protracted absence of dietary fibers, which is 
also linked to an increase in the number of bacteria that break down 
mucins, like Akkermansia muciniphila (Makki et al., 2018).

As a result, a lack of dietary fibre and an increase in sugar and fat 
in human diets may lead to the extinction of particular bacterial 
species. These changes may lead to dysfunctions, which could 
exacerbate existing conditions like IBD, allergies, colorectal cancer, 
autoimmune illnesses, obesity, etc. A diet high in fiber helps to 
maintain a healthy gut microbiota that is more diverse and performs 
activities like producing short-chain fatty acids (SCFAs) (Figure 3). 
Low fiber intake, a diet high in protein and sugar, and an 
industrialized diet all contribute to altered gut bacterial function, 
including a significant decrease in their capacity to produce SCFAs, 
which is linked to the emergence of chronic inflammatory diseases 
(Makki et al., 2018).

10 Microbiome-targeted therapies

Advancements in microbiome research have led to the 
development of innovative therapies aimed at modulating gut 
microbiota to improve health outcomes, including CNS-related 
disorders. Microbiome-targeted therapies encompass probiotics, 
prebiotics, postbiotics, dietary interventions, and fecal microbiota 
transplantation (FMT), each offering unique mechanisms to restore 
microbial balance and enhance host health (Loh et al., 2024).

Probiotics, defined as live microorganisms that confer health 
benefits when consumed in adequate amounts, have garnered 
attention for their potential to influence the gut-brain axis. Specific 
strains, such as Lactobacillus rhamnosus and Bifidobacterium longum, 
have shown promise in alleviating symptoms of anxiety and 
depression by modulating the HPA axis and reducing systemic 
inflammation (Schächtle and Rosshart, 2021). Moreover, these 
probiotics enhance the production of neuroactive compounds like 
gamma-aminobutyric acid (GABA), which exerts calming effects on 
the CNS (Schächtle and Rosshart, 2021; Loh et al., 2024).

FIGURE 3

Effect of high and low fiber diet on gut microbiota.
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Prebiotics, including dietary fibers and oligosaccharides, serve as 
substrates for beneficial gut bacteria, stimulating the production of 
SCFAs and other bioactive metabolites. For example, inulin and 
fructooligosaccharides have been shown to increase butyrate levels, 
which play a critical role in reducing neuroinflammation and 
preserving neuronal integrity (Anand et al., 2025). Prebiotic 
interventions also hold potential for personalized nutrition, wherein 
diets are tailored to enhance specific microbial taxa associated with 
improved CNS health.

Fecal microbiota transplantation (FMT), a procedure involving the 
transfer of stool from a healthy donor to a recipient, has emerged as a 
promising therapeutic avenue for neuropsychiatric and 
neurodegenerative disorders. Preliminary clinical trials suggest that FMT 
can restore microbial diversity and ameliorate symptoms in conditions 
such as autism spectrum disorder and depression (Zhang et al., 2023; 
Peery et al., 2024). However, the standardization of FMT protocols and 
the identification of specific microbial communities responsible for 
therapeutic effects remain critical challenges (Zhang et al., 2023).

Future research should focus on the development of “designer 
probiotics” tailored to target specific diseases and the integration of 
microbiome data with genomic and metabolomic profiles to advance 
precision medicine. Additionally, leveraging computational tools to 
model host-microbiota interactions could facilitate the identification 
of novel therapeutic targets, paving the way for next-generation 
microbiome-based treatments.

11 Conclusion

The study of the human gut microbiota has advanced significantly 
in recent years, revealing its profound influence on the host’s 
metabolism, physiology, and immune system. Numerous factors, 
including nutrition, host genetics, age, medications, and lifestyle, 
shape the composition and functionality of the gut microbiota. These 
dynamic interactions play a pivotal role in human health, and 
alterations in gut microbial composition are now recognized as key 
contributors to the development of various diseases. A deeper 
understanding of the interplay between diet and microbiota holds the 
potential to develop tailored nutritional strategies aimed at reducing 
the prevalence of chronic inflammatory disorders.

Emerging evidence highlights the critical role of plant-based 
foods rich in phytochemicals and other specific dietary components 
in promoting the growth and maintenance of beneficial gut bacteria. 
However, challenges such as absorption, bioavailability, dietary 
interactions, and individual variations in metabolism can limit the 
efficacy of phytochemicals in fostering a healthy gut microbial 
community. The highly dynamic nature of gut microbiota, influenced 
by environmental factors, further complicates these interventions. 
Addressing issues such as standardization of dietary recommendations, 
variability in individual responses, and the long-term maintenance of 
dietary changes is essential for optimizing the benefits of specific foods 
on gut health.

In this review, we explored the intricate roles of beneficial gut 
bacteria and the significant impact of optimal diets on human 
health. Our findings underscore the transformative potential of 
personalized nutrition, customized to individual microbiota profiles, 
in revolutionizing healthcare. By leveraging the symbiotic 
relationship between gut bacteria and dietary patterns, targeted 
dietary interventions and preventive strategies can be developed to 

address chronic diseases. However, implementing such personalized 
recommendations on a large scale requires a paradigm shift in 
healthcare systems, moving towards individualized care. Ethical 
concerns, particularly related to privacy and the use of data in 
precision medicine, also present formidable challenges that must 
be carefully navigated.

Advancements in microbiome-targeted therapies, including 
probiotics, prebiotics, and synbiotics, along with the integration of 
artificial intelligence (AI), offer promising avenues for tailoring dietary 
interventions. AI-driven models can integrate microbiome, 
metabolome, and genomic data to generate precise nutritional 
recommendations, optimizing dietary strategies at an individual level. 
Future research should prioritize understanding the mechanisms 
underlying host-microbiota interactions, improving the bioavailability 
of key dietary components, and evaluating the long-term effects of 
dietary interventions on microbial ecology. Combining these scientific 
insights with robust ethical frameworks is essential to fully harness the 
potential of gut microbiota in promoting health and preventing 
disease. Through a multidisciplinary approach, we  can unlock 
innovative solutions that bridge scientific discovery and practical 
implementation, advancing healthcare and improving lives.
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