
Frontiers in Microbiology 01 frontiersin.org

Comparative analysis of the 
microbial composition of three 
packaged sliced dry-cured hams 
from a Chinese market
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Ham, a widely consumed and culturally significant food, undergoes fermentation 
and aging processes that contribute to its distinctive flavor and texture. These 
processes are influenced by a complex interplay of microbial communities, 
which vary by the production region. Understanding these microbial dynamics 
can provide insights into flavor development and quality improvements in ham. 
In this study, the microbial communities found in ham produced in three distinct 
regions were compared, revealing that bacteria have a more dominant role in 
shaping the overall microbiota than fungi. Notably, each type of ham exhibited a 
unique microbial profile, although those from similar regions shared more similar 
profiles. Specific bacterial biomarkers were identified for each regional ham: 
Lactobacillus and Tetragonococcus in Serrano prosciutto, Odoribacter, Alistipes, 
Staphylococcus, and Akkermansia in Jinhua prosciutto, and Pseudomonas, Blautia, 
and Bacteroides in Xuanwei prosciutto. The microbial network analysis identified 
closer associations between microorganisms in the domestically produced Chinese 
hams than in the Spanish ham, suggesting limited foreign microbial invasions that 
contributed to a richer, more stable flavor. These findings offer new insights into 
how microbial interactions shape the development of flavor and quality in ham 
and clarify future strategies for improving the production process by leveraging 
microbial communities.
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1 Introduction

Ham is a flavorful food with a rich history, cherished by the Chinese people and 
appreciated globally. During the 13th to 15th century, ham processing technology was 
introduced to Europe by Marco Polo, which profoundly influenced ham production outside 
of China and gave rise to diverse regional flavors (Zhou and Zhao, 2007). As ham processing 
continued to develop in various regions, foods with regional flavors gradually emerged, such 
as Serrano ham, Jinhua ham, and Xuanwei ham.

In the traditional ham-making process, fermentation is essential, and the process 
temperature, humidity, and strains of microorganisms collectively influence the taste of 
the final product (Bosse et al., 2018). Microorganisms, as the primary agents in the 
fermentation process, play a crucial role in flavor development (Yang et al., 2020). In 
traditional research, the composition of the microbial community in ham is mainly 
identified through microscopic observation and microbial cultivation, which can result 
in incomplete and inaccurate identification (Jiang et al., 2024). With the development of 
high-throughput sequencing technology, amplicon sequencing offers expanded avenues 
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for exploring microbial diversity. Commonly employed methods 
include 16S rRNA gene sequencing for bacteria and Internal 
Transcribed Spacer (ITS) gene sequencing for fungi, which is 
extensively applied in environmental monitoring, gut microbiota 
studies, and other microbial ecology research (Morgan et al., 2017; 
Callahan et  al., 2019). The existing research on the microbial 
community in ham showed that the bacterial composition of 
Norden ham is mainly dominated by Firmicutes, Proteobacteria, 
Actinobacteria, and Bacteroidetes, while Xuanwei ham is 
dominated by mold, Staphylococcus, and Micrococcus (Zhang, 
2014; Zou et  al., 2020). However, there is limited research 
comparing the microbial composition and internal microbial 
interactions among Xuanwei, Serrano, and Jinhua ham.

This study used next-generation sequencing technology to 
analyze the bacteria and fungi present in three commercially 
available hams, with the aim of clarifying the microbial 
composition, biomarkers, and interactions within their respective 
communities. These findings provide a systematic theoretical 
framework for understanding the formation of distinct flavors in 
these hams and enhancing their overall quality.

2 Materials and methods

2.1 Sampling

Slices of three types of vacuum-packed, ready-to-eat cured 
prosciutto were purchased from a market: Serrano prosciutto (SRP), 
Jinhua prosciutto (JHP), and Xuanwei prosciutto (XWP). The labels 
indicated that these hams originated from Spain; Jinhua, China; and 
Xuanwei, China, respectively, and had been cured for over a year. After 
purchasing, an appropriately sized sample obtained from the same 
area of each type of prosciutto was collected under a sterile hood and 
used as the basis for sequencing. Three samples of each type of ham 
were randomly selected for the experiment and stored at −80°C 
until used.

2.2 DNA extraction and sequencing

The samples were stored at −80°C and transported on dry ice. 
Total DNA was extracted using a DNA extraction kit, and the purity 
and concentration of the DNA were assessed using 1% agarose gel 
electrophoresis and a NanoDrop One. The 16S rRNA gene V3–V4 
variable region was amplified using the forward primer 
5′-ACTCCTACGGGAGGCAGCA-3′ and the reverse primer 
5′-GGACTACHVGGGTWTCTAAT-3′, and the rRNA gene ITS1 
region was amplified using the forward primer 
5′-CTTGGTCATTTAGAGGAAGTAA-3′ and the reverse primer 
5′-GCTGCGTTCTTCATCGATGC-3′. The PCR reaction program 
consisted of an initial denaturation at 98°C for 1 min; 30 cycles at 
98°C for 10 s, 50°C for 30 s, and 72°C for 30 s; and a final extension 
at 72°C for 5 min. The PCR products were subjected to 
electrophoresis on a 2% agarose gel and purified using a DNA 
purification and recovery kit. The library was prepared using an 
NEB Next® Ultra™ II FS DNA PCR-free library prep kit and 
sequenced on an Illumina NovaSeq 6,000 platform by Biomarker 

Technologies Co., Ltd., with paired-end sequencing (PE250, 
250 bp).

2.3 Composition and diversity analysis

After the data were obtained, Python scripts were used to split the 
library and remove barcode and primer sequences. Quality control of 
the raw data was performed using Trimmomatic (v0.33) (Bolger et al., 
2014), and primer sequences were identified and removed using 
cutadapt (v1.9.1) (Martin, 2011). USEARCH was used for paired-end 
merging, and UCHIME (v 8.1) (Edgar et al., 2011; Edgar, 2013) was 
used to remove chimeras. Species annotation was performed and a 
feature table was generated using the Quantitative Insights into 
Microbial Ecology (v202202) pipeline (Bolyen et al., 2019).

After normalization, Amplicon Sequence Variants (ASVs) with a 
total abundance of <30 and <2 occurrences were removed. The α- and 
β-diversity indices were calculated using the vegan package (Oksanen 
et al., 2013) with the species annotation database Silva (v138.1) (Quast 
et al., 2013). Visualization was performed using RStudio (v4.0.3), and 
Venn diagrams and petal plots were generated by the VennDiagram 
package. Differences in the α-diversity between groups were tested 
using Wilcoxon tests with the ggsignif package, with p ≤ 0.05 
indicating significant differences and p ≤ 0.01 indicating highly 
significant differences. LEfSe analysis was performed separately using 
the microeco R package (Liu C. et al., 2021).

2.4 Network interaction analysis

After normalization, ASVs with a total frequency of <0.2 were 
removed. Correlation analysis was performed based on Spearman’s rank 
correlation, and values with p > 0.05 and a correlation coefficient < 0.6 
were eliminated. The interactions within bacterial and fungal 
microbiomes were analyzed separately. The interactions between the 
microbiomes were analyzed using the WGCNA (version 1.72.5), psych 
(version 2.4.6.26), and igraph (version 2.0.3) R packages (Langfelder 
and Horvath, 2008; Csardi, 2013; Revelle and Revelle, 2015). Gephi 
software (version 0.1.0) (Bastian et al., 2009) was used for visualization.

3 Results

3.1 Analysis of the microbial diversity

Microbial diversity is an important means of understanding the 
microbial community in food. The JHP group and XWP group had the 
highest number of bacteria in common but shared the lowest number of 
fungal types. The three groups shared 13 bacterial and 9 fungal microbial 
communities (Figures 1A,B). The Shannon and Chao1 diversity indices 
are important indicators for measuring microbial richness and evenness. 
The uniformity of the bacteria was highest in the JHP group, while the 
uniformity of the fungi was highest in the SRP group. The number of 
bacterial species was highest in the JHP group, and the uniformity of the 
fungi was highest in the XWP group (Figures  1C,D). The diversity 
analysis results of the data show that there were significant differences in 
bacteria and fungi among the different types of ham (Figures 1E,F).
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3.2 Composition of and differences in 
bacteria

Different types of ham are greatly affected by fermentation 
process parameters; thus, the microbial community is also greatly 
affected. Bacteria, as an important component of the microbial 
community, has a crucial role in the fermentation process. The ham 
in the SRP and JHP groups was dominated by Firmicutes, while the 
XWP group was primarily associated with Proteobacteria, indicating 
that different types of ham exhibit variations in microbial 
composition (Figure 2A). At the genus level, the species composition 
was further elucidated, with Lactobacillus and Tetragonococcus 
accounting for over 90% of the bacteria in the SRP group. In contrast, 
Tetragonococcus and the Lachnospiraceae NK4A136 group were 
dominant in the JHP group. In the XWP group, however, 

Pseudomonas was the predominant genus (Figure  2B). These 
significant differences in composition contribute to the distinct 
flavors of the ham. Although there were notable differences in specific 
phyla and genera between groups, no significant differences were 
observed, which may be  related to the number of samples 
(Figures 2C,D).

3.3 Composition of and differences in fungi

Fungi, as an important component of microbial communities, also 
contribute to the formation of flavors. Overall, Ascomycota was the 
main fungal phylum among the three types of ham (Figure 3A). At the 
genus level, Debarytomyces was predominant, and there were 
differences in the composition and abundance of fungi in the three 

FIGURE 1

Diversity analysis of fungal and bacterial communities in different types of prosciuttos. (A,B) The shared and unique characteristics among bacteria 
(A) and fungi (B) in different groups. (C,D) Analysis of the α-diversity of bacteria (C) and fungi (D) in each group using Shannon and Chao1 indices. (E,F) 
Principal coordinates analysis based on Bray–Curtis distances of bacteria (E) and fungi (F) in the three types of ham.
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types of ham. The formation of flavor by fungi may be due to changes 
in the proportions of the fungal composition (Figures 3C,D).

3.4 Linear discriminant analysis effect size

Biomarker screening based on LEfSe is an important analytical 
method for analyzing the formation of ham flavor among different 
types of ham. Within the bacterial community, the SRP group 
included genera from the Firmicutes, specifically Lactobacillus and 

Tetragonococcus, as biomarkers (Figures  4A,B). The JHP group 
included members of Bacteroidota, such as Odorobacter, Alistipes, 
Staphylococcus, Akkermansia, Halomonas, and the xylanophyllum 
group, as biomarkers. In the XWP group, Pseudomonas, Blautia, 
and Bacteroides from Proteobacteria were identified as key 
biomarkers. The biomarker screening of fungi revealed that the SRP 
group was characterized by the genera Kurtzmaniella, 
Wickerhamomyces, and Mortierella as biomarkers, whereas the 
XWP group was characterized by the genera Wickerhammomyces 
and Cyberlindnera. These different microorganisms provide the 

FIGURE 2

Analysis of the composition and abundance of bacteria at the phylum and genus levels among the three hams, and differences in the top three phyla 
and genera. (A,C) Analysis of the bacterial composition and ranking of the three different types of ham at the phylum level. (B,D) Analysis of differences 
in the bacterial composition and ranking of the three different types of ham at the genus level. Wilcoxon significance tests were performed between 
pairs.
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possibility for unique flavor formation in the different hams 
(Figures 4C,D).

3.5 Network analysis of microbial 
communities

The microbial communities were predominantly composed 
of bacteria and fungi. Investigating the interactions within these 
communities can offer valuable insight into the microecological 
dynamics. Our focus extended beyond the interactions between 

fungal and bacterial communities in each type of ham to include 
the relationships between individual fungi and bacteria. Overall, 
the bacteria had a substantial influence on the microbial 
community, whereas fungi exerted less of an impact on the 
overall microbial community structure. The SRP microorganisms 
had the lowest number and complexity of interactions among the 
three types of ham, whereas the microbial communities in XWP 
showed the strongest correlations. In addition, the fungi and 
bacteria in JHP and XWP exhibited close relationships to form a 
complex network of interactions (Figure  5). In summary, the 
three types of ham had developed their own distinct microbial 

FIGURE 3

Analysis of the composition and abundance of fungi at the phylum and genus levels, and phyla and genera among the three hams. (A,C) Analysis of the 
fungal composition and ranking of the three different types of ham at the phylum level. (B,D) Analysis of the fungal composition and ranking of the 
three types of ham at the genus level. Wilcoxon significance tests were performed between pairs.
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networks, with the notable differences between SRP and the other 
two hams likely attributed to local customs and 
environmental factors.

4 Discussion

Ham, a product reliant on microbial fermentation during its 
production, owes its flavor profile to the composition and interaction 
of microorganisms (Chen et  al., 2021). In this study, there were 
relatively few shared bacteria and fungi taxa among the different 
hams, although JHP and XWP shared more types of bacteria, which 

may be related to their similar regional characteristics. In this study, 
it was observed that the diversity and richness of bacteria were 
significantly higher than that of fungi (Figures 1C,D), consistent with 
findings from research on Panxian, Xuanen, Sanchuan, and Sabah 
ham (Mu et al., 2019; Zhang et al., 2020; Deng et al., 2021; Lin et al., 
2023). Thus, irrespective of the method of ham production, it was 
evident that bacteria predominantly governed the fermentation 
process, with fungi playing a lesser role. SRP, a ham produced in 
Europe, exhibited the lowest levels of diversity and richness compared 
with the other groups, yet it had higher levels of fungi, suggesting a 
close association with the region. Principal coordinates analysis 
results showed significant differences among the three types of ham, 

FIGURE 4

Biomarker screening of fungi and bacteria in different hams. (A,B) Biomarkers based on Linear Discriminant Analysis (LDA) > 4 in different bacterial taxa 
of the three hams and the associated cladogram. (C,D) Biomarkers based on LDA > 3 in different fungal taxa of the three hams and the associated 
cladogram.
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which illustrated the influence of regional characteristics on the 
fermentation community of ham and the subsequent 
flavor characteristics.

At the phylum level of bacterial, Firmicutes and Proteobacteria were 
predominate in all three types of ham, with SRP and JHP particularly 
dominated by Firmicutes, consistent with the findings of Wang et al. 
(2021) on the bacterial composition of Norden ham. By contrast, XWP 
was predominantly inhabited by Proteobacteria, possibly due to the 
distinct humid and hot environment of that region. During the 
fermentation process, numerous beneficial and pathogenic bacteria 
emerged. In SRP, Lactobacillus and Tetragonococcus dominated the 
fermentation, whereas Tetragonococcus was predominant in JHP and 
Pseudomonas in XWP. The microbial composition strongly correlated 
with the fermentation region and process (Li et al., 2011). Pseudomonas 
includes many opportunistic pathogenic bacteria, such as Pseudomonas 
aeruginosa, which can cause diseases such as pneumonia and sepsis 
(Jurado-Martín et al., 2021). Therefore, individuals who are infected or 
immunocompromised should be cautious about consuming XWP to 
reduce the risk of infections.

The composition of fungi remained relatively consistent, with 
notable variations primarily involving Debaryomyces, a probiotic 
fermentation yeast (Breuer and Harms, 2006; Angulo et al., 2020). This 
genus had a consistent fermentative role across the various types of ham, 
and its proportions potentially correlated with the stage of fermentation. 
LEfse analysis is a key method for biomarker screening, and 
Lactobacillus, a dominant microorganism in fermentation, is also an 
important probiotic (Petrova et al., 2017). Tetragonococcus is also a 
common microorganism involved in fermentation (Wei et al., 2023). 
The JHP group included a significant number of beneficial gut 

microbiota, such as Lachnospiraceae, Odoribacter, and Alistipes, which 
are involved in bile acid metabolism and immune regulation (Parker 
et  al., 2020; Ghosh et  al., 2022; Yan et  al., 2023). However, it also 
harbored certain pathogenic bacteria, such as Staphylococcus, which was 
potentially linked to the fermentation process. Therefore, consumption 
of this type of ham should be approached with caution, especially with 
consideration of the health status of consumers. Blautia was identified 
as a biomarker in the XWP group and is recognized for its antibacterial 
and anti-inflammatory properties, making it a potentially beneficial 
component of the gut microbiota (Liu X. et al., 2021). Pseudomonas, 
however, as a potential pathogen, necessitates thorough disinfection 
measures during cooking. In the fungal community, fermentation fungi 
such as Kurtzmaniella and Wickerhamomyces dominated in SRP, while 
Wickerhamiella and Cyberlindnera were dominant in XWP. These 
distinct fermentation groups have an important role in shaping the 
unique flavor profiles of each type of ham. Therefore, choosing the 
appropriate ham for consumption can have beneficial effects on 
gut microbiota.

Microbial interaction networks are crucial for investigating the 
interactions among diverse microorganisms within microbial 
ecosystems (Hassani et al., 2018). The interactions among bacteria shape 
the overall microbial interaction network and are likely attributed to the 
diverse functions bacteria perform during the fermentation process (Ma 
et al., 2022). This phenomenon is closely linked to food spoilage during 
fermentation. As depicted in Figure 5, notable differences in microbial 
interactions were present between JHP and XWP hams, two locally 
produced hams in China, compared with the SRP ham. Specifically, the 
bacterial relationships in the Chinese-produced hams exhibited closer 
associations, with tightly interconnected microorganisms that maintain 

FIGURE 5

Network analysis based on Spearman correlation. Network interactions between fungi and bacteria were determined between each group and within 
the fungal and bacterial communities (r > 0.6, p < 0.05).
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functional stability and resist the proliferation of spoilage bacteria 
(Chen et al., 2022). This contributes to stabilizing the fermentation 
process and enhancing the taste of food. Furthermore, varying import 
and export standards among different countries can also contribute to 
the occurrence of this phenomenon.

5 Conclusion

In conclusion, ham, a widely consumed food globally, was analyzed 
in this study to compare the microbial communities present in hams 
from three distinct regions with distinct flavors. The analysis revealed 
that the bacterial abundance in the microbial community surpassed 
that of fungi. In addition, ham samples from similar regions shared a 
higher number of microorganisms. Each of the three types of ham 
exhibited unique microbial communities with significant differences 
among them. Notably, Lactobacillus and Tetragonococcus from the 
Firmicutes phylum were identified as biomarkers for the SRP group. In 
the JHP group, biomarkers included Odorobacter, Alistipes, 
Staphylococcus, Akkermansia, and others from the Bacteroidota 
phylum. The biomarkers of the XWP group were Pseudomonas, 
Blautia, and Bacteroides from Proteobacteria. Microbial network 
analysis revealed that bacteria had a more dominant role in the overall 
microbiota than fungi. The two domestically produced microbial 
networks in the hams from China showed greater similarity, with 
tighter associations between microorganisms. These findings may offer 
insights into the development of rich flavors, the reduction of foreign 
microbial invasions, and the stability of taste. This study provides a 
novel microbial perspective on the formation of specific microbial 
communities in ham, with implications for future quality improvements.
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