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Infections due to multidrug-resistant (MDR) Escherichia coli are associated 
with severe morbidity and mortality, worldwide. Microbial drug resistance is a 
complex phenomenon which is conditioned by an interplay of several genomic, 
transcriptomic and proteomic factors. Here, we have conducted an integrated 
transcriptomics and proteomics analysis of MDR E. coli to identify genes which 
are differentially expressed at both mRNA and protein levels. Using RNA-Seq and 
SWATH-LC MS/MS it was discerned that 763 genes/proteins exhibited differential 
expression. Of these, 52 genes showed concordance in differential expression at 
both mRNA and protein levels with 41 genes exhibiting overexpression and 11 genes 
exhibiting under expression. Bioinformatic analysis using GO-terms, COG and 
KEGG functional annotations revealed that the concordantly overexpressed genes 
of MDR E. coli were involved primarily in biosynthesis of secondary metabolites, 
aminoacyl-tRNAs and ribosomes. Protein–protein interaction (PPI) network analysis 
of the concordantly overexpressed genes revealed 81 PPI networks and 10 hub 
proteins. The hub proteins (rpsI, aspS, valS, lysS, accC, topA, rpmG, rpsR, lysU, and 
spmB) were found to be involved in aminoacylation of tRNA and lysyl-tRNA and, 
translation. Further, it was discerned that three hub proteins - smpB, rpsR, and topA 
were non homologous to human proteins and were involved in several biological 
pathways directly and/or indirectly related to antibiotic stress. Also, absence of 
homology ensures a little cross-reactivity of their inhibitors/drugs with human 
proteins and undesirable side effects. Thus, these proteins might be explored as 
novel drug targets against both drug-resistant and -sensitive populations of E. coli.
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Introduction

Escherichia coli are common gut bacteria which are frequently reported from medical and 
veterinary clinics (Croxen et al., 2013; Nhung et al., 2015). The soaring use of antibiotics in 
agriculture, veterinary, poultry and clinics has increased the incidence of antimicrobial 
resistant bacteria, including E. coli. Several reports have indicated that E. coli have become 
resistant to many antibiotics of the beta-lactam, aminoglycoside, (fluoro) quinolone classes 
and also to the newer antibiotics like colistin, which is a matter of grave concern (Liu et al., 
2016; Peng et al., 2021; Singh et al., 2022). Antimicrobial resistant infections have not only 
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escalated the costs of medical treatment, in many cases it might lead 
to treatment failures (Dadgostar, 2019). According to an estimate, by 
the year 2050 antimicrobial resistant infections might lead to 10 
million human deaths (de Kraker et al., 2016).

Antimicrobial resistance (AMR) is a complex phenomenon. 
Several mechanisms underlying bacterial AMR have been explained, 
including genetic change(s) or mutations in the target genes, 
horizontal acquisition of AMR genes, reduced cell wall permeability, 
efflux pumps etc. (Reygaert, 2018; Martinez and Baquero, 2000). Most 
of these mechanisms are linked with changes in the bacterial genomes 
and have been extensively studied using PCR-amplification of the 
resistance gene(s) and, more recently by whole genome sequencing. 
However, genomic analyses cannot predict the levels of expressed 
genes and proteins. Genomes express themselves via the 
transcriptomes and proteomes, which are the ultimate functional 
moieties of the cell. But their expression levels fluctuate with external 
stimuli like environmental stresses and drug exposure (Freiberg et al., 
2004; Martínez and Rojo, 2011). Recent reports have shown that 
alterations in the metabolic pathways is a widely used strategy adopted 
by bacteria to exhibit drug tolerance, persistence and resistance 
(Martínez and Rojo, 2011; Bhargava and Collins, 2015; Meylan et al., 
2017; Koeva et al., 2017; Goossens et al., 2020). However, the specific 
metabolism-related protein profiles of drug-resistant bacteria are still 
poorly understood. During drug exposure, bacteria might adopt 
alternative cellular functions and/or over- or under express various 
genes to overcome the drug effect. Thus, the knowledge of 
transcriptome and proteome of drug-resistant pathogens is necessary 
for a comprehensive understanding of microbial drug resistance, 
identification of novel drug targets and for development of new drug 
molecules. Studies based on elucidating the role of microbial 
transcriptomes and proteomes in drug resistance are quite less 
(Singhal et al., 2012; Chopra et al., 2013; Thai et al., 2017; Shen et al., 
2021; Pan et al., 2023). Analysis of differentially expressed genes and 
proteins of drug-resistant bacteria can reveal novel strategies adopted 
by the bacteria to overcome the effects of drugs.

Thus, the aim of this study was to conduct a combined 
comparative transcriptomic and proteomic analyses of drug 
sensitive and -resistant strains of enteropathogenic E. coli to 
understand the mechanisms and biological pathways underlying 
bacterial multidrug resistance. Two strains of phylogroup D of 
E. coli isolated earlier by us and preserved as glycerol stocks (50% 
v/v) in a −80°C deep refrigerator were investigated (Bajaj et al., 
2015). Molecular typing of these strains in our laboratory had 
revealed that these strains belonged to the same genomic clade 
(Bajaj et al., 2015). Also, whole genome analysis of these strains 
revealed that they were genetically similar as their average 
nucleotide identity (ANI) was 97.21% (Aswal et al., 2023). E. coli IP9 
was drug-sensitive while E. coli IPE was multidrug resistant 
exhibiting resistance for many β-lactams, fluoroquinolones and 
kanamycin (Bajaj et al., 2015; Singh et al., 2022). The differentially 
expressed genes (DEGs) and differentially expressed proteins 
(DEPs) of multidrug resistant (MDR) E. coli were discerned using 
RNA-sequencing (RNA-Seq) and SWATH-LC MS/MS, respectively. 
The genes which were observed to be differentially expressed at both 
mRNA and protein levels were identified and their biological 
functions and metabolic pathways were elucidated with help of 
ontological analysis using GO-term enrichment, Cluster of 
Orthologous Genes (COG)-classification and Kyoto Encyclopaedia 

of Genes and Genomes (KEGG) pathway analysis. Protein–protein 
interaction (PPI) networks of the proteins corresponding to these 
genes were determined to discern their interactome, followed by 
identification of the hub proteins. To the best of our knowledge, this 
is the first study which has used an integrated proteomics, 
transcriptomic and bioinformatics approach to understand the 
mechanistic details of drug resistance and identify novel drug 
targets against MDR E. coli.

Materials and methods

Bacterial strains

In this study, E. coli strains - E. coli IP9 and E. coli IPE isolated 
earlier from an urban river of India and preserved as glycerol stocks 
(50% v/v) in a −80°C deep refrigerator were investigated (Bajaj 
et  al., 2015). Triplex-PCR based typing had revealed that these 
strains belonged to phylogroup D and were of the same genomic 
clade as revealed by REP-, ERIC- and BOX-PCR based genotypic 
fingerprinting (Bajaj et al., 2015). E. coli IP9 was a drug sensitive 
isolate while E. coli IPE was a MDR strain exhibiting resistance for 
many β-lactams, fluoroquinolones and kanamycin (Bajaj et al., 2015; 
Singh et al., 2022). The antibiotic susceptibilities of these strains 
were earlier determined by the Kirby-Bauer disk diffusion 
susceptibility test and confirmed by PCR-amplification of the 
relevant genes (Bajaj et al., 2015; Singh et al., 2022). Recently, whole 
genome sequences of these strains were determined and submitted 
to the NCBI genome database with accession numbers: 
GCA_026183935.1 for E. coli IPE and GCA_026183955.1 for E. coli 
IP9 (Aswal et al., 2023). The ANI of E. coli IP9 and IPE was 97.21%, 
indicating a significant similarity in their genomes. These strains 
were revived in our laboratory by overnight incubation in LB broth 
at 37°C, 200 rpm. The cells were harvested by centrifugation at 
8000 rpm for 10 min (at 4°C) from the exponential phase 
(OD600 = 0.8) cultures.

Transcriptomic analysis

RNA isolation, library preparation, and 
sequencing

Bacteria were collected by centrifugation at 4, 472 x g followed by 
washing the bacterial pellet with 1X PBS solution. RNA was isolated 
from both the strains using the Qiagen RNeasy mini kit following the 
manufacturer’s instructions. Briefly, a cell lysis buffer was added to the 
cell pellet, mixed by vigorous shaking for 10 min followed by addition 
of an equal volume of 100% ethanol. The samples were then 
transferred on a RNeasy micro column for “on-column” DNase 
treatment. The RNA was then eluted in 20 μL of nuclease-free water. 
The library preparation was performed using Illumina specific 
adaptors. The adaptor ligated products were barcoded and 12 cycles 
of PCR was performed. The PCR products were cleaned using 
AMPure XP beads. The final enriched library was eluted in 15 μL of 
0.1X TE buffer. Sequencing was performed on a Novaseq 6,000 using 
150PE chemistry. Paired end sequencing of the transcriptomes of the 
three biological replicates of the MDR (E. coli IPE) and drug sensitive 
(E. coli IP9) strains was done with a read length of 150.
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Analysis of RNA-Seq data
Nf-core/rnaseq (ver. 3.11.2)1 module of the nf-core project was 

used to analyze the transcriptomics data. Nf-core/rnaseq incorporates 
several tools for analysis. FastQC (ver. v0.11.9) was used to determine 
the quality of the sequencing reads. Adapter trimming was done using 
Trim Galore (ver. 0.6.7). SortMeRNA (ver. 4.3.4) was used to remove 
ribosomal RNA reads. RSEM (ver. 1.3.1), SALMON (ver. 1.10.1) and 
HISTAT2 (ver. 2.2.1) were used to map the sequencing reads on the 
reference genome of E. coli K-12 substrain MG1655 (RefSeq assembly; 
accession GCF_000005845.2). Since this study involved analysis of 
prokaryotic RNA-Seq data, the parameters used were --featurecounts_
feature_type = CDS, −-featurecounts_group_type = gene and --skip_
rseqc. RNA-Seq data quality control was performed using RSeQC (ver. 
3.0.1). RNA-Seq specific quality control (QC) metrics, such as 
sequencing depth, read distribution and coverage uniformity was 
performed with RSeQC (ver. 3.0.1) and feature-wise read counting 
was done using subread feature Counts (ver. 2.0.1). The comprehensive 
QC report was prepared using MultiQC (ver. 1.13).2

Analysis of the DEGs of the MDR and -sensitive strain was 
performed using the R language and iDEP RNA-Seq differential gene 
expression pipeline (release 0.96) of the DESeq2 (ver. 1.36.0). Genes 
were considered differentially expressed when the Benjamini–
Hochberg multiple testing adjusted p-value was lesser than 0.05 (padj 
≤0.05). Genes whose log2 fold change (log2FC) values were > 1.0 
or < −1.0 were considered as Differentially Expressed Genes (DEGs).

Proteomic analysis

Protein sample preparation
Bacterial cells were washed with normal saline solution and 

dispersed in sonication buffer containing 50 mM Tris–HCl,10 mM 
MgCl2, 0.1% sodium azide, 1 mM phenylmethylsulphonyl fluoride 
and 1 mM; pH 7.4 (Singhal et al., 2012). Cells at a concentration of 1 g 
wet weight /5 mL of lysis buffer were broken down using a sonicator 
at 35% amplitude for 10 min at 4°C. The homogenate was centrifuged 
at 12,000 xg for 30 min at 4°C and the clear supernatant was overnight 
precipitated at -20ο C with chilled acetone. The precipitated protein 
was collected by centrifugation (12,000 xg, 20 min), air dried and 
suspended in appropriate volume of protein dissolving buffer. Protein 
concentration was determined using the Bradford assay 
(Bradford, 1976).

Separation and identification of proteins by 
nanoLC AB Sciex Triple TOF 5600-MS

Equal amount of protein samples was digested with trypsin and 
analyzed using a Triple TOF 5600 mass spectrometer (AB Sciex, USA) 
equipped with Eskigent MicroLC 200 system (Eskigent, Dublin, CA) 
with an Eskigent C18 - reverse phase column. 1 microgram of digested 
proteins was desalted online using the online C18 trap column with 
98% water, 2% acetonitrile and 0.1% formic acid at flow rate of 5 μL/
min for 10 min. The desalted peptides were eluted on a C18 reverse 
phase analytical column for separation and analysis. A 120 min 

1 https://github.com/nf-core/rnaseq, accessed on 13 May 2023.

2 http://multiqc.info/

gradient in multiple steps (ranging from 5–50% acetonitrile in water 
containing 0.1% formic acid) was set for eluting the peptides from the 
ChromXP analytical column. The separated peptides were ionized and 
entered into the mass spectrometer and multiply charged molecules 
were fragmented using the IDA™ (information dependent data 
acquisition) criteria of the analyst software for library generation. In 
brief, 500 ng of all the samples were pooled together and run using 
IDA criteria of the mass spectrometer for library generation in 
triplicate. Mass spectrometric data for the first quadrupole was 
acquired in the range of 350 Da to 1,250 Da whereas 20 most abundant 
multiply charged peptides were fragmented in the mass range of 
150 Da to 1,500 Da in the second quadrupole or collision induced 
dissociation cell. The accumulation time for each MS/MS experiment 
was 50 ms. The ionization potential for the turbo V ion source was 
kept at 4500 V and temperature for source was set 150°C, GS1 and 
GS2 were at 19 and 15 L/min, respectively. Declustering potential 
(DP) was set at 80 V. The resultant IDA data files were analyzed in 
ProteinPilot™ (Sciex software) for identification of peptides and 
proteins against E. coli proteome using Paragon algorithm and the 
pooled peptide list was used as the spectral library for SWATH 
analysis. Experiments were performed in technical replicates.

SWATH parameters for label free quantification
In SWATH™ Sciex (Sequential window acquisition of all 

theoretical Spectra) DIA (Data independent acquisition) acquisition 
method, fixed value Q1 transmission window was kept at 12 Da for 
the mass range of 350–1,250 Da. Total 75 sequential windows were 
acquired independently with an accumulation time of 62 ms, along 
with three technical replicates for each of the sets. Total cycle time was 
kept constant at <5 s. For label free quantification, peak extraction and 
spectral alignment was performed using PeakView® 2.2 software with 
the following parameters: number of peptides selected for quantitation 
2, confidence of peptide identification was set as more than 95%, 
number of fragment ions for each peptide was set as 5, extraction ion 
chromatogram (XIC) peak width was fixed 30 ppm for matching the 
RT whereas the XIC extraction window set for matching the peptide 
across the different samples was set at 5 min. For statistical 
interpretation, MarkerView software™ (ver. 1.3. 1; AB Sciex) was 
used. The SWATH acquisition data was processed using SWATH™ 
Acquisition MicroApp (ver. 2.0) in PeakView® software.

Data analysis

Raw data was search processed with ProteinPilot™ using the 
Paragon and Progroup Algorithms for protein and peptide 
identification. Analysis was also done using the integrated tools in 
Protein Pilot at 1% false discovery rate (FDR). The identification file 
was used as spectral library in the quantitation experiment for 
SWATH/DIA. Retention time calibration was performed using the 
most abundant peptide across all the samples. Proteins whose log2 
fold change (log2FC) values were > 0.5 or < −0.5 (padj ≤0.05) were 
considered as differentially expressed proteins (DEPs). Both DEGs 
and DEPs were visualized using ggVolcanoR.3

3 https://ggvolcanor.erc.monash.edu/
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GO-term enrichment analysis of DEGs and DEPs
To elucidate the functions of DEGs and DEPs, GO-term enrichment 

analysis was performed with ShinyGO4 using E. coli K-12 MG1655 as 
the reference strain. The enrichment analysis was done at all the three 
levels of GO-terms: biological process (BP), cellular component (CC) 
and molecular function (MF). Gene sets that ranked in the top ten for 
BP, CC and MF were individually enriched for DEGs and DEPs. This 
data was used to construct GO plots, which show the number of genes 
and their relative enrichment significance for each enriched category.

Identification of the genes differentially 
expressed at both mRNA and protein levels, 
GO-term enrichment, COG and KEGG pathway 
analysis

The concordance in differentially expressed mRNA transcripts and 
proteins of the MDR strain was evaluated by creating a nine-quadrant 
correlation plot for DEGs with log2FC expression >0.1 or < −0.1 and for 
DEPs with log2FC expression >0.5 or < −0.5 (p ≤ 0.05). The biological 
functions and metabolic pathways of the concordantly differentially 
expressed genes were determined using the GO-term enrichment, COG 
classification and KEGG pathway analysis. For GO-term enrichment 
ShinyGO (p ≤ 0.05) was used, for COG classification COGclassifier 
(v1.0.5) was used and for KEGG pathway analysis Database for 
Annotation, Visualization and Integrated Discovery (DAVID) was used.

Protein–protein interactions of the genes 
differentially expressed at both mRNA and 
protein levels and identification of the hub 
proteins

The protein–protein interactions (PPIs) in the concordantly 
differentially expressed genes were discerned using STRING database 
(ver.12.05) with ≥0.3 as the threshold strength. The top ten hub 
proteins were identified using the Maximal Clique Centrality (MCC) 
algorithm which is reportedly the most effective method of finding 
hub nodes. The hub proteins were discerned from the PPI network 
using cytoHubba plugin of Cytoscape ver. 3.9.1.6

Validation of hub proteins as probable drug 
targets against MDR Escherichia coli

The similarity of the hub proteins with the human proteins was 
determined using NCBI-BLAST. Hub proteins exhibiting ≥30% 
sequence identity and ≥ 80% coverage with human proteins, were 
considered as homologs of the human proteins and were removed 
from further analysis. The remaining hub proteins were considered as 
non-homologous to human proteins (NHHPs; Garg et al., 2020).

PPI interaction network of antibiotic resistance 
genes of MDR Escherichia coli and the hub 
proteins

The antibiotic resistance genes of MDR E. coli were discerned 
using the Comprehensive Antibiotic Resistance Database (CARD; 
McArthur et al., 2013). A PPI network of the proteins encoded by the 
antibiotic resistance genes and the hub proteins was generated using 

4 http://bioinformatics.sdstate.edu/go/

5 https://cn.string-db.org/

6 https://cytoscape.org

the STRING database to generate their interactome (at an interaction 
score of 0.3). The interactome was analyzed using k-mean clustering 
and the clusters were enriched for biological functions at FDR < =0.05.

Results

RNA-Seq data analysis

Analysis of RNA-Seq data of the MDR and drug-sensitive E. coli 
strains revealed that 4,101 genes were differentially expressed. Of 
these, the log2FC value of 2,127 genes was beyond the defined 
threshold (log2FC > 0.1 for overexpressed genes and log2FC < −0.1 
for unexpressed genes; p ≤ 0.05). Hence, 2,127 genes were considered 
as DEGs and analysed further. Of these, 982 genes were found to 
be overexpressed, while 1,145 genes were found to be under expressed 
by the E. coli MDR strain (Figure 1A; Supplementary Table S1).

SWATH-LC MS data analysis

Analysis of the SWATH-LC MS data of the MDR and drug-
sensitive E. coli strains revealed that 770 proteins were differentially 
expressed. Of these, the log2FC values of 270 proteins were beyond 
the defined threshold (log2FC > 0.5 for upregulated proteins and 
log2FC < −0.5 for downregulated proteins; p ≤ 0.05) hence, only these 
proteins were considered as DEPs and included in further analysis. Of 
these, 89 proteins were found to be upregulated, while 187 proteins 
were found to be downregulated by the E. coli MDR strain (Figure 1B; 
Supplementary Table S2).

GO-term enrichment analysis of the DEGs 
and DEPs

The overexpressed DEGs were found to be  involved in the 
biological processes related to amide biosynthesis (112 proteins), 
peptide metabolic process (100 proteins), translation (97 proteins), 
peptide biosynthesis (96 proteins), ribonucleoprotein complex 
biogenesis (69 proteins), organelle assembly (53 proteins), ribosome 
assembly (48 proteins) and ribonucleoprotein complex (43 proteins). 
The overexpressed DEGs were located within the ribosome (59 
proteins), ribonucleoprotein complex (56 proteins), ribosomal subunit 
(54 proteins), large ribosomal subunit (32 proteins), small ribosomal 
subunit (22 proteins) and exonuclease repair complex (4 proteins). The 
molecular functions of the overexpressed DEGs were primarily related 
to structural molecular activity (59 proteins), structural constituent of 
ribosome (56 proteins), rRNA binding (52 proteins), tRNA binding 
(31 proteins), aminoacyl-tRNA ligase activity (20 proteins), ribosome 
binding (20 proteins), translation regulator activity (18 proteins) 
(Supplementary Figure S1A). The under expressed DEGs were found 
to be  involved in biological processes related to carboxylic acid 
catabolic process (100 proteins), carbohydrate transport (79 proteins), 
monocarboxylic acid catabolic process (58 proteins), response to 
xenobiotic stimuli (26 proteins) and primary amino acid metabolic 
processes (18 proteins). They were located within the cell projection 
(46 proteins), bacterial-type flagella (24 proteins), pilus (22 proteins), 
bacterial-type flagella basal body (18 proteins), and type II protein 
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secretion system (11 proteins). Their molecular functions were 
primarily related to carbohydrate transmembrane transporter activity 
(52 proteins), protein-phosphocysteine-sugar phosphotransferase 
activity (18 proteins), carbohydrate cation symporter activity (15 
proteins), motor activity (8 proteins) and CoA-transferase activity (7 
proteins) (Supplementary Figure S1B).

Overexpressed DEPs were found to be  involved in biological 
processes related to amide biosynthesis process (12 proteins). They 
were located in intracellular regions (56 proteins), cytoplasm (55 
proteins) and cytosol (53 proteins). Their molecular functions were 
related to RNA binding (11 proteins), OB-fold nucleic acid binding 
domain (3 proteins), polyketide sugar unit biosynthesis (3 proteins) 
and tRNA synthetase class II (3 proteins) (Supplementary Figure S1C). 
Under expressed DEPs were involved in biological processes related to 
organonitrogen compound biosynthesis process (49 proteins), cellular 
protein metabolic process (33 proteins), small molecule biosynthesis 
process (31 proteins), cellular amide metabolic process (28 proteins), 
amide biosynthesis (23 proteins), peptide metabolic process (21 
proteins), peptide biosynthesis (19 proteins), translation (19 proteins), 
fatty acid biosynthesis (7 proteins) and mannose transmembrane 
transport (3 proteins). They were located within the ribosomal subunit 
(11 proteins), cytosolic ribosome (11 proteins), large ribosomal unit 
(6 proteins), small ribosomal subunit (5 proteins), NADH 
dehydrogenase complex (4 proteins), respiratory chain complex (4 
proteins), ATPase complex (3 proteins) and acetyl-CoA carboxylase 
(2 proteins). Their molecular functions were related to protein binding 
(51 proteins), ligase activity (18 proteins), rRNA binding (11 proteins), 
iron ion binding (14 proteins), structural constituent of ribosome (10 
proteins), ferrous ion binding (8 proteins) and mannose 
transmembrane transporter (3 proteins) (Supplementary Figure S1D).

Discerning the concordance in 
transcriptomics and proteomics data

A total of 763 genes/proteins were discerned which exhibited the 
log2FC differential expression values within the defined thresholds 

(Supplementary Table S2). The Pearson’s correlation coefficient in the 
log2FC expression values of transcriptomics and proteomics datasets 
was 0.078 (p-value = 0). Of these 763 genes/proteins, 101 genes/
proteins were present in 1st and 9th quadrants suggesting a 
non-concordance in the expression levels of mRNA and their 
corresponding proteins. The expression of the genes present in the 1st 
quadrant was upregulated at mRNA level but downregulated at the 
protein level. While the expression of the genes present in the 9th 
quadrant was upregulated at protein level but downregulated at the 
mRNA level. In the 2nd and the 8th quadrants, 283 genes were present 
which were significantly differentially expressed at the mRNA level 
but did not exhibit any differential expression at the protein level. In 
the 4th and the 6th quadrants, 120 genes were present which did not 
exhibit any significant differential expression at mRNA level but a 
significant differential expression at the protein level. In the 3rd and 
the 7th quadrants, 52 genes were present which exhibited a positive 
correlation at both transcription and translation levels (Figure 2). 
Thus, 52 genes were discerned in the E. coli MDR strain which were 
differentially expressed at both mRNA and protein levels. Of these, 41 
genes were found to be overexpressed (3rd quadrant, Table 1) and 11 
genes were under expressed (7th quadrant, Table 2).

Functional analysis of the genes exhibiting 
concordance in differential expression at 
both mRNA and protein levels

GO-term enrichment analysis
GO-term enrichment analysis of the 41 genes which exhibited 

overexpression at both mRNA and protein levels revealed that these 
were primarily involved in biological processes related to cellular 
amide metabolic biosynthesis (11 proteins), amide biosynthesis (10 
proteins), ncRNA metabolic process (9 proteins), translation (8 
proteins), peptide biosynthesis (8 proteins) and tRNA aminoacylation 
for protein translation (4 proteins). At the molecular functional level, 
they exhibited nucleic acid binding (16 proteins), RNA binding (12 
proteins), tRNA binding (5 proteins), aminoacyl-tRNA ligase activity 

FIGURE 1

Volcano plots depicting differential gene/protein expressions at log2FC beyond the defined threshold; p-value ≤0.05: (A) DEGs with log2FC values 
beyond the range −1 to 1, (B) DEPs with log2FC values beyond the range − 0.5 to 0.5. The over- and under-expressed genes/proteins are shown in red 
and blue color, respectively. The plots were generated using ggvolcanoR (https://ggvolcanor.erc.monash.edu/).
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(4 proteins) and lysine-tRNA ligase activity (2 proteins). They were 
located in cytoplasm (28 proteins), non-membranous bound organelle 
(5 proteins) and intracellular organelle (5 proteins) (Figure 3A).

GO-term enrichment analysis of the 11 genes which exhibited 
under expression at both mRNA and protein levels revealed that these 
were primarily involved in biological processes related to maltodextrin 
transport (2 proteins), polysaccharides transport (2 proteins) and 
oligosaccharide transport (2 proteins). At the molecular functional 
level, they exhibited transition metal binding activities (5 proteins) 
and ferric ion binding (2 proteins). All the proteins were located on 
the ATP-binding cassette transporter complex (Figure 3B).

COG classification and KEGG pathway analysis
COG classification of the 41 genes which exhibited overexpression 

at both mRNA and protein levels revealed that they belonged to 15 
functional categories. Of these, 11 genes were involved in translation, 
ribosomal structure and biogenesis, six genes in cell wall/membrane/
envelope biogenesis, five genes in post-translational modification, 
turnover and chaperon, three genes in coenzyme transport and 
metabolism, two genes each in replication, recombination and repair, 
energy production and conversion, carbohydrate transport and 
metabolism and unknown function. One gene each was involved in 
transcription, signal transduction mechanism, intracellular trafficking, 
secretion and vesicular transport, amino acid transport and 
metabolism, nucleoside transport and metabolism, lipid transport and 
metabolism, and inorganic ion transport and metabolism (Figure 4A). 
The 11 genes which exhibited similarity in under expression at both 
mRNA and protein levels were classified into seven COG functional 
categories. Three genes were involved in carbohydrate transport and 
metabolism, two in inorganic ion transport and metabolism, one each 
in energy production and conversion, in amino acid transport and 

metabolism, coenzyme transport and metabolism, lipid transport and 
metabolism and general function (Figure 4B).

The KEGG pathway enrichment analysis of the 41 genes which 
were overexpressed at both mRNA and protein levels revealed that 
seven of these genes were involved in biosynthesis of secondary 
metabolites (enrichment score 1.485704), four genes in aminoacyl-
tRNA biosynthesis pathway (enrichment score 2.608108) and three 
genes in ribosome biosynthesis (enrichment score 2.783654) 
(Figure 5). The KEGG pathway enrichment analysis of the 11 genes 
concordantly under expressed at both mRNA and protein levels did 
not yield any result.

PPI network analysis and identification of the hub 
proteins

Analysis of the PPI network of the proteins corresponding to 
the 41 genes concordantly overexpressed at both transcription and 
translation levels revealed that they were involved in 81 PPIs 
(Figure 6). On the basis of the maximal clique centrality (MCC) 
score, ten proteins were identified as the hub proteins of these 
interaction networks. These were: aspS (aspartate-tRNA ligase/ 
aspartyl-tRNA synthetase), valS (valine-tRNA ligase/ valyl-tRNA 
synthetase), lysS (lysine-tRNA ligase/lysyl-tRNA synthetase), lysU 
(lysine-tRNA ligase/lysyl-tRNA synthetase), rpmG (large ribosomal 
subunit protein bL33 (50S ribosomal protein L33)), rpsI (small 
ribosomal subunit protein uS9/30S ribosomal protein S9), rpsR 
(small ribosomal subunit protein/30S ribosomal protein S18), spmB 
(small protein B/SsrA-binding protein), topA (DNA topoisomerase 
1) and accC (biotin carboxylase). The hub proteins and their MCC 
scores have been detailed in Table 3. The hub proteins were found 
to be primarily involved in tRNA and lysyl-tRNA aminoacylation, 
and translation. At the molecular level they were involved in tRNA 

FIGURE 2

The nine-quadrant plot showing concordance in the log2FC values of differentially expressed genes (DEGs) and differentially expressed proteins 
(DEPs). Genes which show positive correlation at both mRNA and protein levels are present in 3rd and 7th quadrants and are shown in blue color.
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TABLE 1 Details of the concordantly overexpressed genes of E. coli MDR strain discerned by combined transcriptomics and proteomics.

S. No Name of the gene and protein Function Log2FC (gene 
expression)

Log2FC (protein 
expression)

1. rfbB (dTDP-glucose 4,6-dehydratase 1 (EC 

4.2.1.46))

NAD binding 13.3722738 2.20862609

2. rfbA (Glucose-1-phosphate 

thymidylyltransferase 1 (G1P-TT 1) (EC 

2.7.7.24) (dTDP-glucose pyrophosphorylase 

1) (dTDP-glucose synthase 1))

Metal ion binding 8.17958198 2.0911649

3. lysU (Lysine--tRNA ligase, heat inducible 

(EC 6.1.1.6) (Lysyl-tRNA synthetase) 

(LysRS))

Lysine-tRNA ligase activity 7.4180544 4.55160903

4. yagU (Inner membrane protein YagU) Response to acidic pH 4.19006328 0.50106214

5. rib (3,4-dihydroxy-2-butanone 4-phosphate 

synthase (DHBP synthase) (DHBPS) (EC 

4.1.99.12))

Protein homodimerization activity 3.27334576 0.66636193

6. sodB (Superoxide dismutase [Fe] (EC 

1.15.1.1))

Superoxide dismutase activity 3.21026214 0.97327487

7. rpsR (Small ribosomal subunit protein bS18 

(30S ribosomal protein S18))

Small ribosomal subunit rRNA 

binding

2.93529538 0.73218065

8. purU (Formyltetrahydrofolate deformylase 

(EC 3.5.1.10) (Formyl-FH(4) hydrolase))

Formyltetrahydrofolate deformylase 

activity

2.44073618 0.60018293

9. acrA (Multidrug efflux pump subunit AcrA 

(AcrAB-TolC multidrug efflux pump subunit 

AcrA) (Acridine resistance protein A))

Transmembrane transporter activity 2.24830789 1.09033838

10. rpsI (Small ribosomal subunit protein uS9 

(30S ribosomal protein S9))

tRNA binding 1.98689822 1.04326103

11. yhbY (RNA-binding protein YhbY) RNA binding 1.95772549 1.46607357

12. eno (Enolase (EC 4.2.1.11) (2-phospho-D-

glycerate hydro-lyase) (2-phosphoglycerate 

dehydratase))

Protein homodimerization activity 1.94705179 0.57238355

13. glnH (Glutamine-binding periplasmic 

protein (GlnBP))

Glutamine binding 1.91812861 0.60066724

14. greA (Transcription elongation factor GreA 

(Transcript cleavage factor GreA))

Bacterial-typeRNA polymerase 

holoenzyme binding

1.70603887 0.58989593

15. rpmG (Large ribosomal subunit protein 

bL33 (50S ribosomal protein L33))

Structural constituent of ribosome 1.70091029 0.52116122

16. dacA (D-alanyl-D-alanine carboxypeptidase 

DacA (DD-carboxypeptidase) (DD-

peptidase) (EC 3.4.16.4) (Beta-lactamase) 

(EC 3.5.2.6) (Penicillin-binding protein 5) 

(PBP-5))

Beta-lactamase activity 1.69712814 0.5918107

17. nuoB (NADH-quinone oxidoreductase 

subunit B (EC 7.1.1.-) (NADH 

dehydrogenase I subunit B) (NDH-1 subunit 

B) (NUO2))

Quinone binding 1.68110768 1.38351941

18. accC (Biotin carboxylase (EC 6.3.4.14) 

(Acetyl-coenzyme A carboxylase biotin 

carboxylase subunit A))

Acetyl-CoA carboxylase activity 1.63999445 0.62329811
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TABLE 1 (Continued)

S. No Name of the gene and protein Function Log2FC (gene 
expression)

Log2FC (protein 
expression)

19. topA (DNA topoisomerase 1 (EC 5.6.2.1) 

(DNA topoisomerase I) (Omega-protein) 

(Relaxing enzyme) (Swivelase) (Untwisting 

enzyme))

DNA binding 1.63075652 0.6043047

20. tolB (Tol-Pal system protein TolB) Protein-containing complex 

binding

1.61881347 0.66940982

21. sdhB (Succinate dehydrogenase iron–sulfur 

subunit (EC 1.3.5.1))

Succinate dehydrogenase 

(ubiquinone) activity

1.57664473 0.52821973

22. grxD (Glutaredoxin 4 (Grx4) (Monothiol 

glutaredoxin))

Disulfide oxidoreductase activity 1.47892511 1.10904147

23. thiI (tRNA sulfurtransferase (EC 2.8.1.4) 

(Sulfur carrier protein ThiS 

sulfurtransferase) (Thiamine biosynthesis 

protein ThiI) (tRNA 4-thiouridine synthase))

tRNA U4 sulfurtransferase 1.4562179 0.83577373

24. rlmB (23S rRNA (guanosine-2’-O-)-

methyltransferase RlmB (EC 2.1.1.185) (23S 

rRNA (guanosine2251 2’-O)-

methyltransferase) (23S rRNA Gm2251 

2’-O-methyltransferase))

RNA binding 1.43916572 0.65337225

25. rluD (Ribosomal large subunit 

pseudouridine synthase D (EC 5.4.99.23) 

(23S rRNA pseudouridine(1911/1915/1917) 

synthase) (rRNA pseudouridylate synthase 

D) (rRNA-uridine isomerase D))

Pseudouridine synthase activity 1.38208643 0.52671278

26. bamA (Outer membrane protein assembly 

factor BamA (Omp85))

Outer membrane biogenesis 1.3670567 2.61384269

27. smpB (SsrA-binding protein (Small protein 

B))

RNA binding 1.34409894 2.3132047

28. seqA (Negative modulator of initiation of 

replication)

DNA replication origin binding 1.31627878 2.24904635

29. gstA (Glutathione S-transferase GstA (EC 

2.5.1.18) (GST B1-1))

Glutathione transferase activity 1.31476427 1.53911607

30. nagA (N-acetylglucosamine-6-phosphate 

deacetylase (GlcNAc 6-P deacetylase) (EC 

3.5.1.25))

N-acetylglucosamine-6-phosphate 

deacetylase activity

1.30408659 0.65904607

31. valS (Valine--tRNA ligase (EC 6.1.1.9) 

(Valyl-tRNA synthetase) (ValRS))

Valine-tRNA ligase activity 1.2939003 2.5908781

32. degP (Periplasmic serine endoprotease DegP 

(EC 3.4.21.107) (Heat shock protein DegP) 

(Protease Do))

Serine-type peptidase activity 1.28686848 0.85463352

33. aspS (Aspartate--tRNA ligase (EC 6.1.1.12) 

(Aspartyl-tRNA synthetase) (AspRS))

Aspartate-tRNA ligase activity 1.2654914 1.66674373

34. ydcH (Uncharacterized protein YdcH) Transceription regulator 1.26094475 0.89665598

35. yhbJ (RNase adapter protein RapZ) RNA binding 1.24343218 2.15306445

36. rcsF Outer membrane lipoprotein RcsF Cellular response to cell envelop 

stress

1.22552494 0.55077488

37. ppiB (Peptidyl-prolyl cis-trans isomerase B 

(PPIase B) (EC 5.2.1.8) (Rotamase B))

Peptidyl-prolyl cis-trans isomerase 

activity

1.2217117 2.3605269
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TABLE 1 (Continued)

S. No Name of the gene and protein Function Log2FC (gene 
expression)

Log2FC (protein 
expression)

38. lysS (Lysine--tRNA ligase (EC 6.1.1.6) 

(Lysyl-tRNA synthetase) (LysRS))

Lysine-tRNA ligase activity 1.20254035 0.62226595

39. hemL (Glutamate-1-semialdehyde 

2,1-aminomutase (GSA) (EC 5.4.3.8) 

(Glutamate-1-semialdehyde 

aminotransferase) (GSA-AT))

Transaminase activity 1.07279768 1.45671431

40. rlmI (Ribosomal RNA large subunit 

methyltransferase I (EC 2.1.1.191) (23S 

rRNA m5C1962 methyltransferase) (rRNA 

(cytosine-C(5)-)-methyltransferase RlmI))

Protein homodimerization activity 1.06900742 0.5624809

41. yeeZ (Protein YeeZ) ATP binding 1.00468423 0.99181048

TABLE 2 Details of the concordantly under-expressed genes of E. coli MDR strain discerned by combined transcriptomics and proteomics.

S. No Name of the gene and 
protein

Function Log2FC (gene 
expression)

Log2FC (protein 
expression)

1 metE (5-methyltetrahydropteroyltriglut

amate--homocysteine methyltransferase 

(EC 2.1.1.14) (Cobalamin-independent 

methionine synthase) (Methionine 

synthase, vitamin-B12 independent 

isozyme))

Methionine synthase activity −2.6135055 −1.8460639

2 yrdA (Protein YrdA) Zinc ion binding −1.9251177 −1.2546857

3 Bfr (Bacterioferritin (BFR) (EC 

1.16.3.1) (Cytochrome b-1) 

(Cytochrome b-557))

Ferric iron binding −1.2901495 −12.63613

4 malE (Maltose/maltodextrin-binding 

periplasmic protein (MMBP) 

(Maltodextrin-binding protein) 

(Maltose-binding protein) (MBP))

Maltose binding −1.2432956 −1.5255921

5 yjiY (Pyruvate/proton symporter BtsT 

(Brenztraubensaure transporter) 

(Pyruvate/H(+) symporter))

Symporter activity −0.9818285 −1.2231589

6 yahK (Aldehyde reductase YahK (EC 

1.1.1.2) (Zinc-dependent alcohol 

dehydrogenase YahK))

Alcohol dehydrogenase 

(NADP+) activity

−0.8786242 −1.0459354

7 yhbW (Luciferase-like monooxygenase) Oxidoreductase activity −0.8385109 −1.9618579

8 cyaY (Iron–sulfur cluster assembly 

protein CyaY (Bacterial frataxin 

ortholog))

Ferric iron binding −0.7704802 −1.409128

9 malM (Maltose operon periplasmic 

protein)

Carbohydrate transport −0.7482777 −1.1703698

10 malK (Maltose/maltodextrin import 

ATP-binding protein MalK (EC 

7.5.2.1))

ABC-type maltose transporter 

activity

−0.7322275 −1.6484885

11 glpQ (Glycerophosphodiester 

phosphodiesterase, periplasmic 

(Glycerophosphoryl diester 

phosphodiesterase, periplasmic) (EC 

3.1.4.46))

Calcium ion binding −0.5756688 −1.1040456
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and RNA binding and were located in ribosomal subunits and 
cytosol. However, no PPI networks were discerned for the proteins 
corresponding to the concordant under expressed genes.

Identification of potential drug target(s) from the 
hub proteins

To avoid cross-reactivity of the potential inhibitors of the hub 
proteins with the human proteins, human homologs of the hub proteins 
were discerned in the human proteome using NCBI-BLAST. Of the ten 
potential hub proteins which could be potential drug targets, seven hub 
proteins (rpsI, aspS, valS, lysS, accC, rpmG and lysU) showed homology 

with the human proteins with identity ranging between 39 to 47% and 
alignment coverage ranging from 81 to 99%. Two hub proteins rpsR and 
smpB did not show any homology with the human proteins, while topA 
showed 25.28% identity and 65% alignment coverage with the human 
proteins (Table 3).

Interactome of the antibiotic resistance genes of 
MDR Escherichia coli with the hub proteins

CARD analysis revealed 69 genes whose products were related to 
antibiotic resistance in MDR E. coli (Supplementary Table S3). Of 
these, 47 genes could be mapped by STRING on the PPI network 

FIGURE 3

GO-enriched terms associated with the genes exhibiting differential expression at both mRNA and protein levels in E. coli MDR strain: (A) GO-terms 
associated with the 41 concordant overexpressed genes (B) GO-terms associated with the 10 concordant under-expressed genes. The X-axis shows 
the GO-terms and the Y-axis shows the fold enrichment values associated with each GO-term.

FIGURE 4

COG-based functional classification of the genes exhibiting differential expression at both mRNA and protein levels in E. coli MDR strain: 
(A) overexpressed genes (B) under-expressed genes.
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along with the hub proteins - topA, smpB and rpsR. Three prominent 
clusters were observed in the interactome: cluster 1 composed of 39 
proteins involved in antibiotic detoxification (acrA, acrB, acrD, acrE, 

acrF, acrR, acrS, baeR, cpxA, crp, emrA, emrB, emrK, emrY, evgA, 
evgS, gadX, hha, kdpE, leuO, marA, marR, mdfA, mdtA, mdtB, mdtC, 
mdtE, mdtF, mdtG, mdtH, mdtM, mdtN, mdtO, mdtP, mprA, soxR, 

FIGURE 5

KEGG-enriched pathways and enrichment score associated with the concordantly overexpressed genes in E. coli MDR strain.

FIGURE 6

Schematic representation of the PPI networks of the concordantly overexpressed genes, identification of the hub proteins and potential drug targets 
against MDR E. coli.
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soxS, tolC and ybiH). Cluster2 contained 7 proteins involved in lipid 
A biosynthesis (eptA, ugd, arnT, arnC, bacA, yojI and msbA) and 
cluster 3 contained 4 proteins involved in RNA binding (rpsR, smpB, 
topA and rsmA). The complete interactome has been depicted in 
Supplementary Figure S2.

Discussion

An in-depth understanding of AMR is paramount for 
development of new antibiotics/drugs, vaccines and diagnostic tools. 
AMR has been mainly studied using standard microbiological growth-
inhibition methods, PCR-amplification of the AMR genes, gene 
sequencing for mutation detection and more recently by whole 
genome sequencing (Boolchandani et  al., 2019). Recently, several 
studies have indicated that bacteria withstand antibiotic stress by 
modifying their metabolic pathways (Richter et al., 2017; Stokes et al., 
2019). However, the role of microbial metabolic pathways and other 
proteins in the context of bacterial drug resistance is inadequately 
understood. In the present study, we  have used transcriptomics, 
proteomics and bioinformatics approaches to identify differentially 
expressed genes and proteins of MDR E. coli followed by extensive 
bioinformatics-based studies to discern novel drug targets against 
antibiotic resistant E. coli.

The differentially expressed genes of the MDR E. coli were inferred 
by integrating RNA-Seq and SWATH-LC MS/MS datasets to identify 
genes exhibiting concordant differential expression at both 
transcriptomics and proteomics levels. Thus, 763 genes/proteins were 
discerned whose log2FC differential expression values attained the 
defined thresholds. The results from both the technologies were 
integrated for unambiguous and technical artifact-free interpretations. 
The Pearson’s correlation coefficient between the log2FC expression 
values of transcriptomics and proteomics datasets was 0.078 (p-
value = 0), which is low. This is, however, not very surprising because 
several studies have reported that mRNA expression levels and protein 
level abundance do not necessarily correlate, due to biological 
differences between transcription and translation processes and, also 
due to experimental limitations (Gygi et al., 1999; Brötz-Oesterhelt 
et al., 2005). Moreover, the correlation between mRNA and protein 
abundance was reportedly not very strong in bacteria (Gygi et al., 

2000). From the biology viewpoint, differential RNA and protein 
turnover, post-translational modifications, proteolytic processing 
events and allosteric protein interactions might result in a low 
concordance in mRNA and protein levels. From the technological 
viewpoint, challenges in the experimental design and data 
interpretation methods might be responsible for non-concordance in 
mRNA and protein levels.

On the basis of the nine-quadrant correlation plot, it was 
discerned that 52 genes of the MDR E. coli showed a positive 
correlation in differential gene expression at both transcription and 
translation levels. Of these, 41 genes were overexpressed and 11 genes 
were under expressed by MDR E. coli at both mRNA and protein 
levels. GO-term enrichment analysis of these 41 overexpressed genes 
revealed that they were primarily involved in biological processes 
related to amide/peptide/protein biosynthesis and translation. KEGG 
pathway enrichment analysis of the 41 overexpressed genes revealed 
that they were primarily involved in biosynthesis of aminoacyl-tRNA, 
ribosomes and secondary metabolites. Thus, our results are similar to 
a recent study which reported that proteins predominantly related to 
metabolism, transcriptional and translational regulation, and stress 
response showed differential expression in drug resistant E. coli and 
other bacteria (Mehrotra et  al., 2023). Thus, inhibitors of amide/
peptide/protein biosynthesis and translation can be suitable candidates 
against drug resistant E. coli. However, such drug molecules which 
inhibit bacterial translation and related processes are available (e.g., 
aminoglycosides, tetracyclines macrolides etc.) but increasing 
instances of bacterial resistance against these antibiotics are being 
reported. Thus, alternative drug targets/strategies need to 
be discovered.

Investigating the PPIs/interactome not only helps in 
understanding the function(s) of individual protein(s), it also helps in 
characterizing the various pathways in which proteins might 
be  involved. Analysis of the PPI networks of the proteins 
corresponding to the 41 concordantly overexpressed genes of the 
E. coli MDR strain revealed that they were involved in 81 PPI 
networks. Ten proteins were identified as the hub proteins of these PPI 
networks. These were: aspS (aspartate-tRNA ligase/ aspartyl-tRNA 
synthetase), valS (valine-tRNA ligase/ valyl-tRNA synthetase), lysS 
(lysine-tRNA ligase/lysyl-tRNA synthetase), lysU (lysine-tRNA ligase/
lysyl-tRNA synthetase), rpmG (large ribosomal subunit protein bL33 

TABLE 3 Details of the top ten hub proteins discerned from the PPI networks of concordantly overexpressed genes of MDR E. coli strain.

Hub protein Uniprot ID % identity 
with human 

proteins

% alignment 
with human 

proteins

Homologous with 
the human 

proteins

Log2FC 
(based on 

SWATH -LC 
MS/MS)

Potential drug 
target

RpsI P0A7X3 39.02 93 Yes 1.04 No

AspS P21889 40.19 99 Yes 1.66 No

ValS P07118 40.08 98 Yes 2.59 No

LysS P0A8N3 43.35 97 Yes 0.62 No

AccC P24182 47.69 99 Yes 0.62 No

TopA P06612 25.28 65 No 0.60 Yes

RpmG P0A7N9 44.44 81 Yes 0.52 No

RpsR P0A7T7 - - No 0.73 Yes

LysU P0A8N5 44.07 97 Yes 4.55 No

SmpB P0A832 - - No 2.31 Yes
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(50S ribosomal protein L33)), rpsI (small ribosomal subunit protein 
uS9/30S ribosomal protein S9), rpsR (small ribosomal subunit 
protein/30S ribosomal protein S18), spmB (small protein B/SsrA-
binding protein), topA (DNA topoisomerase 1) and accC (biotin 
carboxylase). At the functional level, the majority of the hub proteins 
were involved in aminoacylation of tRNA and protein-translation.

It is well known that hub proteins can interact with multiple 
proteins and they are critically important for the whole biological 
system due to their high connectivity (Higurashi et al., 2008; Ota et al., 
2016). Inhibition/elimination of the function of a hub protein can 
influence multiple downstream pathways and biological networks 
which also affects the organismal fitness (He and Zhang, 2006). Thus, 
blocking the activity of hub proteins with appropriate inhibitors/drugs 
can be a useful strategy against a pathogen (Garg et al., 2020). This 
implies that the hub proteins discerned in this study might be explored 
as potential drug targets against MDR E. coli. However, if a homolog 
of a potential drug target is present in the host, it might lead to cross-
reactivity of the inhibitor/drug with the host protein and, consequently 
undesirable side effects. Therefore, to avoid cross-reactivity of the 
potential inhibitors of the hub proteins with the host proteins, 
homology between the human and the hub proteins was discerned by 
NCBI-BLAST. Of the ten hub proteins, seven hub proteins (rpsI, aspS, 
valS, lysS, accC, rpmG and lysU) exhibited homology with the human 
proteins, their identity ranging between 39 to 47% and alignment 
coverage ranging between 81 to 99%. However, two hub proteins - 
smpB and rpsR and did not show any homology with the human 
proteins, while topA showed 25.28% identity and 65% alignment 
coverage with the human proteins. Hence, the hub proteins smpB, 
rpsR and topA might be explored as potential drug targets against 
MDR E. coli.

SmpB is reportedly a small protein (B) which along with ssrA 
(small stable RNA A) is required during the process of bacterial trans-
translation for recycling of ribosomes stalled on defective mRNA (Li 
et al., 2013). In Neisseria gonorrhoeae, Mycobacterium tuberculosis, and 
Staphylococcus aureus trans-translation was reportedly essential for 
viability and virulence of bacteria (Personne and Parish, 2014; Liu 
et al., 2018; Aron et al., 2021). Also, disruption of the trans-translation 
pathway was reported to result in increased sensitivity of bacteria for 
antibiotics (Huang et al., 2019; Campos-Silva et al., 2021). Thus, SmpB 
has been proposed as a potential drug target against several bacteria 
(Alumasa and Keiler, 2015).

RpsR is a small ribosomal subunit (30S) protein which is an 
essential component of the protein biosynthetic machinery of E. coli 
(Shoji et al., 2011). Previous studies have reported that the expression 
of the gene encoding rpsR was greatly enhanced during biofilm 
formation in E. coli (Schembri et al., 2003; Beloin et al., 2004). A PPI 
network based study based on integration of differentially expressed 
genes of E. coli during stress conditions implicated that many RNA 
binding proteins (including rpsR) played an important role in 
bacterial response to stress (Nagar et  al., 2016). In Deinococcus 
radiodurans, a highly upregulated expression of the ribosomal proteins 
rplB, rpsL, rpsR was reported in response to oxidative stress (Gao 
et al., 2020).

TopA is a DNA topoisomerase I enzyme which regulates global 
and local DNA supercoiling. DNA supercoiling affects many DNA 
centred processes such as, DNA replication, recombination, 
transcription and transposition (Drlica, 1992; Usongo and Drolet, 

2014). Interestingly, the levels of DNA supercoiling are dependent on 
processes like transcription (Liu and Wang, 1987), nutrient availability 
and growth environment (Goldstein and Drlica, 1984; Balke and 
Gralla, 1987; Cheung et al., 2003). TopA activity has been reportedly 
essential for bacterial response to acid exposure, heat shock and 
antibiotics (Qi et al., 1996; Weinstein-Fischer et al., 2000; Stewart 
et al., 2005; Yang et al., 2015). Also, topA activity has been shown to 
be  important for adaptation of E. coli for high temperature and 
oxidative stress (Qi et al., 1999; Tse-Dinh, 2000; Weinstein-Fischer 
et al., 2000).

To summarize, integrative proteo-transcriptomics revealed several 
genes which were differentially expressed by MDR E. coli. Bioinformatic 
analysis using GO-terms, COG and KEGG annotations revealed that 
the 41 overexpressed genes were primarily involved in tRNA 
aminoacylation and peptide and amide biosynthesis. Analysis of the 
PPI networks of the upregulated proteins revealed ten hub proteins of 
which, three hub proteins viz. smpB, rpsR and topA were 
non-homologous to human proteins. Several published reports have 
indicated an important role of these proteins in resistance for 
antibiotics and stress adaptation in E. coli. Moreover, inhibitors of these 
hub proteins would exhibit novel mechanisms of action hence, 
emergence of resistance against these seems unlikely in the near future. 
Further PPI network studies of the antibiotic resistance genes of MDR 
E. coli with the hub proteins also confirmed that smpB, rpsR and topA 
interacted with several antibiotic resistance genes. Since these hub 
proteins regulate several biological pathways of E. coli, directly and/or 
indirectly related to antibiotic stress, inhibitors of these proteins can 
be effective against both drug-resistant and -sensitive populations of 
E. coli. Moreover, non-homology of these proteins with the host 
proteins, leaves little scope for cross-reactivity with human proteins 
and undesirable side effects. However, further experiments including 
a greater number of drug-resistant and -sensitive strains of E. coli are 
required to understand the complex phenomenon as microbial drug 
resistance and explore the utility of the hub proteins smpB, rpsR and 
topA as novel drug targets against E. coli. Also, a judicious use of 
inhibitors of these novel drug-targets is warranted to minimize the 
possibility of resistance emergence against them, in future.
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