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Introduction: Migratory birds exhibit unique annual cycles that complicate their 
gut microbiota. However, the annual dynamics of gut microbiota in migratory 
birds remain unclear, hindering our understanding of their environmental 
adaptation.

Methods: Here, we  collected fecal samples from black-necked cranes (Grus 
nigricollis) across four seasons at their breeding grounds and used wintering 
ground data from databases to characterize their gut microbial compositions 
throughout the year.

Results and discussion: The results showed that the gut microbiota was 
clustered by season (Bray-Curtis: R2 = 0.348, p < 0.001; UniFrac: R2 = 0.352, 
p < 0.001). And the summer samples exhibited higher alpha (Simpson and 
Shannon), beta diversity (Bray-Curtis and UniFrac) and more diverse functions 
in gut microbiota compared to other seasons. Furthermore, in summer, the gut 
microbiota exhibited several balanced relative abundances at the family level, 
whereas Lactobacillaceae family dominated during the other seasons. Thirty-
six ASVs were identified by random forest analysis to distinguish samples from 
distinct seasons. Despite having greater diversity, the summer gut microbiota 
had a simpler network structure than the other seasons (fewer edges and 
nodes). The dispersal limitation during random processes also significantly 
influenced gut microbial community assembly. Overall, the gut microbiota of 
the black-necked crane undergoes dynamic adjustments to adapt to seasonal 
environmental changes, which may be  associated with the variations in diet 
across seasons. These results enhance our understanding of the gut microbiota 
of wild migratory birds and support further research on black-necked cranes.

KEYWORDS

black-necked crane, annual cycle, gut microbiota, migratory birds, high-altitude

1 Introduction

Gut microbes form complex symbiotic relationships with their hosts (Nichols and Davenport, 
2021). The gut microbiota is influenced by host conditions (Bajinka et al., 2020) and plays an 
important role in maintaining gut health and host metabolic pathways (Claus et al., 2011; Lee et al., 
2022). Wild animals face more complex environmental changes (e.g., seasonal diet and elevation) 
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than animals in captivity, and they undergo physiological and behavioral 
adjustments to adapt (Dallas and Warne, 2023). Research on wild animals 
has revealed that environmental changes influence the gut microbiota. For 
example, alpha and beta gut microbiota diversity increases with habitat 
elevation in pikas (Ochotona curzoniae) (Li H. et al., 2019). Furthermore, 
studies on Tibetan macaques (Macaca thibetana) (Xia et al., 2021) and 
ground squirrels (Spermophilus dauricus) (Yang et al., 2021) have revealed 
that their gut microbiota clusters by season. Additionally, during seasons 
of food abundance, the gut microbiota of animals exhibits higher diversity 
to meet the demands of digesting a diverse range of foods (Sun 
et al., 2016).

Migratory birds have a unique annual cycle (Schmiedová et al., 
2023), and their periodic migrations between breeding and wintering 
grounds expose them to diverse challenges (Lu et al., 2022). Because 
of their exposure to complex and variable environments, wild 
migratory birds have emerged as pivotal models for investigating 
microbial-host interactions (Elzinga et al., 2019). During migration, 
birds must adapt to their different habitats and local food resources 
(Grond et al., 2018). The gut microbiota plays a crucial role in bird 
migration and habitat changes (Zhang F. et  al., 2020). The gut 
microbiota assists birds in breaking down plant fibers and detoxifying 
harmful substances in their diet (Drovetski et al., 2019; Waite and 
Taylor, 2015; Zhang et al., 2021). During the cold season, bacteria such 
as Firmicutes become more abundant, facilitating energy intake 
(Liukkonen et al., 2024; Yao et al., 2023). Similarly, during migration, 
microbes associated with fat deposition, such as Corynebacterium, 
increase in abundance (Skeen et al., 2023; Thie et al., 2022; Zhang 
et al., 2021). However, the unique annual cycle of birds makes their 
gut microbiota complex and difficult to study (Wu et al., 2018).

Previous studies have identified seasonal variations in the diversity 
and functional composition of gut microbes in migratory birds. These 
include white-headed cranes (Antigone vipio) (Dong et  al., 2021), 
black-winged stilts (Himantopus himantopus), black-tailed godwits 
(Limosa limosa), and redshanks (Tringa totanus) (Zhang et al., 2021). 
Some migratory birds have extended breeding or wintering periods, 
and a prolonged stay in one location can lead to changes in the gut 
microbiota. This has been observed in studies of wild relict gulls 
(Larus relictus) (Yao et al., 2023) and the great bustard (Otis tarda) (Lu 
et al., 2024).

Most studies on the microbiota of migratory birds have focused 
primarily on a single period of the annual cycle. However, 
understanding gut microbial changes throughout the annual cycle can 
provide valuable insights into the relationship between gut microbes 
and their hosts under varying environmental conditions, thereby 
aiding in the conservation of wild and rare avian species (Song 
et al., 2014).

The black-necked crane (Grus nigricollis) is a lifelong highland bird 
that is currently listed as threatened by the IUCN. High-altitude 
environments impose environmental pressures (e.g., hypoxia, low 
temperature, and high ultraviolet light) on animals (Liu et al., 2022), and 
consequently, birds inhabiting these environments adapt their 
physiological state and gut microbiota accordingly (Wang et al., 2020). For 
example, the Eurasian tree sparrow (Passer montanus) enlarges its 
digestive organs (Sun et  al., 2023), whereas the Himalayan bluetail 
(Tarsiger rufilatus) enriches its gut with Lactobacillus and Pseudomonas to 
aid food metabolism (Zhang et al., 2024). Each year, black-necked cranes 
migrate from their wintering grounds (e.g., Yunnan-Kweichow Plateau, 
the southern slopes of the Himalayas) to their breeding grounds 

(Qinghai–Tibet Plateau, Xinjiang) in March and return in November 
(Gao et al., 2007; Wang et al., 2013). They have a relatively long breeding 
period (8 months) and a shorter wintering period (4 months) (Pu and 
Guo, 2023). Black-necked cranes primarily inhabit farmland areas during 
the winter and feed predominantly on wetlands during the breeding 
season in Zoige, China (Dong et  al., 2016). As black-necked cranes 
transition from the growing season to the non-growing season in Zoige, 
they encounter different food resources. These seasonal differences, along 
with the differences between breeding and wintering periods, provide an 
excellent opportunity to study host-gut microbial interactions throughout 
the annual cycle of a migratory bird.

In this study, black-necked crane wintering data from 
previous studies were used in conjunction with fecal samples 
collected during the breeding period across the four seasons in 
Zoige. The resulting data were analyzed using 16S rRNA gene 
sequencing to determine the gut microbiota community 
structures of black-necked cranes throughout their annual cycle. 
We  hypothesized that different seasons have different gut 
microbial community structures. Black-necked cranes’ gut 
microbiota would respond to the seasonal variation in food 
resources, showing higher diversity during seasons of 
food abundance.

2 Materials and methods

2.1 Sample collection

Black-necked cranes are the only species known to inhabit and 
reproduce on high plateaus throughout their life. The Zoige Wetland 
National Nature Reserve in China is an important breeding site for 
black-necked cranes, whereas Caohai and Dashanbao in China are 
important wintering sites. Black-necked cranes primarily inhabit 
meadows or marsh meadows in Zoige (Bai et al., 2022), which is one 
of the hotspots for biodiversity, with plants from the Cyperaceae, 
Ranunculaceae, and Asteraceae families having the largest number of 
species. The Zoige area also supports a rich diversity of animal species, 
including amphibians, fish, and various arthropods such as Diptera 
and Coleoptera (Xiang et  al., 2009). Furthermore, we  found 
arthropods are main animal-deprived food of the black-necked crane’s 
diet in our previous study (Ma et al., 2024). However, in Caohai and 
Dashanbao during the wintering period, black-necked cranes 
primarily inhabit farmland areas (Wu et al., 2013), where they feed on 
grains, potatoes, and some invertebrates (Dong et  al., 2016). 
We collected black-necked crane feces from 19 locations in Zoige in 
April and September 2022 as well as in July and November 2023 
(spring: N = 30, summer: N = 30, autumn: N = 30, winter: N = 30). 
The spring and autumn samples are part of a dataset associated with 
a recently published paper (Ma et al., 2025). During sample collection, 
we observed black-necked cranes feeding for approximately 2–3 h and 
collected feces after the birds had left. Using sterile toothpicks, 
we extracted the internal portion of each fecal sample and placed it 
into a 15 mL centrifuge tube. The samples were stored in liquid 
nitrogen and sent to a laboratory in Chengdu, China. We  also 
downloaded the gut microbiome data of black-necked cranes for the 
wintering period from the National Center of Biotechnology 
Information (NCBI; project numbers PRJNA681985) (Dashanbao; 
Zhao et al., 2021), PRJNA992803, and PRJNA995432 (Caohai; Wang 
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et  al., 2024). In total, 41 winter samples were obtained from the 
database (Supplementary Table S1; Figure 1).

2.2 Gut microbiota detection

Fecal DNA was extracted using an OMEGA Soil DNA Kit 
(M5635-02; Omega Bio-Tek, Norcross, GA, United  States). 
Negative controls were used for extraction and amplification, and 
no detectable products were observed. The 16S rRNA region 
(V3–V4) of the gut microbiota was detected using the primers 
338F/806R (Lee et  al., 2012). The polymerase chain reaction 
(PCR; 25 μL) contained: 5 × reaction buffer 5 μL, 5 × GC buffer 
5 μL, dNTP (2.5 mM) 2 μL, forward primer (10 uM) 1 μL, reverse 
primer (10 uM) 1 μL, DNA template 2 μL (20 ng/μL), ddH2O 
8.75 μL, and Q5 DNA polymerase 0.25 μL. The amplification 
program was as follows: initial denaturation at 98°C for 2 min, 
denaturation at 98°C for 15 s, annealing at 55°C for 30 s, 
extension at 72°C for 30 s for 30 cycles, and final extension at 72 
for °C 5 min. A DNA library was constructed using a TruSeq 
Nano DNA LT Library Prep Kit (Illumina). Paired-end 
sequencing of the 16S rRNA gene was conducted using an 
Illumina NovaSeq  6,000 platform at Personal Bio (Shanghai 
Personal Biotechnology Co., Ltd., Nanjing, China). The 
easyAmplicon pipeline1 was used to process the sequencing data. 
We  used the “fastx_filter” function of VSEARCH (v2.14.1) to 
trim primers and perform quality filtering. The “derep_
fulllength” function of VSEARCH was employed for the 
dereplication task, with a minimum unique size of 135. To 
denoise, we used the unoise3 function of USEARCH (v10.0.240), 
and the “usearch_global” function of VSEARCH was used to 
generate an amplicon sequence variant table. Rarefaction analysis 
was conducted using “alpha_div_rare” in USEARCH, and we did 
not observe obvious batch effects based on cluster dendrogram 
and PCA analysis (Supplementary Figure S1).

1 https://github.com/YongxinLiu/EasyAmplicon/blob/master/pipeline.sh

2.3 Statistical analysis

2.3.1 Alpha and beta diversity
All statistical tests were conducted using R software (version 4.2.1, 

2022). USEARCH was employed to calculate the alpha diversity 
measures, including the Shannon and Simpson indices, as well as the 
beta diversity metrics, which comprised the Bray-Curtis distance and 
the weighted UniFrac distance, for the microbiota analysis. 
Constrained ordination (partial canonical analysis of principal 
coordinates, CAP) and unconstrained ordination (nonmetric 
multidimensional scaling, NMDS) were performed to evaluate 
seasonal effects based on the Bray–Curtis distance and weighted 
UniFrac distance. For the CAP, we  conducted permutational 
multivariate analysis of variance (PERMANOVA) and analysis of 
variance (ANOVA) to validate its significance using 999 permutations 
in the “vegan” v2.6.4 (Oksanen et  al., 2007) package. CAP was 
performed using the “ordinate” function in the “phyloseq” v1.42.0 
package (Hu L. et al., 2018). For NMDS, seasonal effects were detected 
using the analysis of similarities (ANOSIM) function in the “vegan” 
package with 999 permutations. NMDS was performed using the 
“metaMDS” function in the “vegan” package. To investigate the effect 
of season on the Shannon index, Simpson index, Bray–Curtis distance, 
and weighted UniFrac distance, we modeled season as a fixed factor, 
location and sample collection year as a random factor using “lme4” 
v 1.1.33 (Bates et al., 2014). We applied transformations using the 
“powerTransform” function from the “car” package (v3.1.2) (Fox et al., 
2007) when the normality or constant variance of model residuals was 
not met. The indices that required transformation included the 
Simpson index, Bray–Curtis distance, and weighted UniFrac distance.

2.3.2 Differential analysis of gut microbiota 
between seasons

We used a random forest model to distinguish bacterial taxa 
between seasons, employing the machine learning algorithm in the 
“randomForest” v4.7.1.1 package (Breiman, 2001). The seasonal 
classification model was trained on 70% of the dataset. Error rates 
were estimated at the phylum, class, order, family, and genus levels, 
and the taxon level was selected to obtain the cross-validation error 
curve, as described in our previous study (Zhu et al., 2024).

FIGURE 1

Overview of our study design.

https://doi.org/10.3389/fmicb.2025.1533282
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://github.com/YongxinLiu/EasyAmplicon/blob/master/pipeline.sh


Zhang et al. 10.3389/fmicb.2025.1533282

Frontiers in Microbiology 04 frontiersin.org

2.3.3 Co-occurrence network of gut microbiota
A co-occurrence network was used to illustrate gut 

microbiota interactions at the family level. Spearman correlations 
among all samples were calculated and corrected for 
compositionality effects using 1,000 bootstrap iterations and 
permutations with the “ccrepe” package (v 1.38.1). p-values were 
adjusted for multiple testing using the default Benjamini–
Hochberg–Yekutieli method, retaining values with an adjusted 
p < 0.05. To investigate the seasonal effects on topological 
properties, we  extracted sub-networks of individual samples 
using the “subgraph” function in the “igraph” package by 
specifying individual vertices (Csardi and Nepusz, 2006). The 
number of edges, nodes, average degrees, and modularity were 
used to evaluate the complexity of the black-necked crane gut 
microbiota network. We used a generalized linear mixed model 
with a Poisson distribution for the number of edges and nodes, 
which are count data. For average and modularity, we employed 
a generalized linear mixed model with binomial error in the 
“lmer4” package. The sampling season was considered a fixed 
factor, and the sampling location, sample collection year was 
considered a random factor.

2.3.4 Community assembly of gut microbiota
The Nearest Taxon Index (βNTI) was used to qualitatively 

evaluate the deterministic or stochastic processes of community 
assembly, using the “picante” package (v 1.8.2). If the βNTI is >2 
or < −2 this indicates that the microbiota community is affected by 
the deterministic assembly process. However, if the βNTI is > −2 
and < 2, this indicates that the gut microbiota community is 
impacted by a stochastic process. Phylogenetic-bin-based null 
model analysis (iCAMP) was also conducted using the “iCAMP” 
package (v 1.5.12) to examine the assembly mechanisms of 
different gut microbiota groups in black-necked cranes. The 
iCAMP results identified five assembly mechanisms: dispersal 
limitation, drift and others, heterogeneous selection, homogeneous 
selection, and homogenizing dispersal.

2.3.5 Prediction of gut microbiota function
We used PICRUSt2 (Douglas et al., 2020) to predict the functional 

profiles of microbial communities across all samples on the basis of 
the 16S rRNA gene. The Shannon index, Simpson index of function 
were calculated using “vegan” package and we modeled season as a 
fixed factor, location and sample collection year as a random factor 
using “lme4” v 1.1.33 (Bates et al., 2014).

3 Results

We obtained 10,949,408 high-quality reads from 161 samples 
(breeding: 8775868, wintering: 2173540), with an average of 
68008.75 reads per sample. Rarefaction analysis revealed that the 
sequencing data captured most of the gut microbiota from each 
black-necked crane fecal sample (Supplementary Figure S2). In 
total, 18 phyla, 36 classes, 65 orders, 132 families, and 233 genera 
were identified.

3.1 Gut microbiota diversity of the 
black-necked crane between seasons

The constrained ordination analysis (CAP) showed that gut 
microbiota exhibited a seasonal pattern (ANOVA and PERMANOVA, 
Bray-Curtis: R2 = 0.348, p < 0.001, UniFrac: R2 = 0.352, p < 0.001; 
Figures 2A,B), and the unconstrained ordination (NMDS) analysis 
revealed the same seasonal pattern (ANOVA, Bray-Curtis: R = 0.295 
p < 0.001, UniFrac: R = 0.274, p < 0.001) based on Bray-Curtis and 
weighted UniFrac distances (Supplementary Table S2). They were 
relatively dispersed across different seasons (Figures 2A,B).

The alpha-diversity during the wintering period was 
higher than that during the breeding period. There were 
significant differences among the seasons (Simpson: χ2 = 57.719, 
p < 0.001; Shannon: χ2 = 24.494, p < 0.001; Figures  2C,D; 
Supplementary Table S3). The Simpson indices for the summer and 
winter Caohai samples were higher than those for the other 
seasons (Figure  2C; Supplementary Table S4). The Shannon 
index also indicated that the overwintering Caohai samples had 
higher diversity than the spring samples (Figure  2D; 
Supplementary Table S4).

Beta-diversity analysis showed that the wintering period had 
higher diversity than the breeding period, but the difference was not 
significant (Figures 2E,F). There were significant differences among 
the seasons (Bray-Curtis: χ2 = 30.907, p < 0.001; UniFrac: χ2 = 41.594, 
p < 0.001).

Summer, CH, and DSB had the highest beta diversity, whereas 
winter had the lowest diversity based on both Bray-Curtis and UniFrac 
distance (Figures 2E,F; Supplementary Table S4).

3.2 Gut microbiota abundances and 
biomarkers between seasons

We observed variations in the relative abundances of the gut 
microbiota. Firmicutes were the dominant phylum in all groups, 
except for the winter (CH) group in which Proteobacteria were 
dominant (Supplementary Table S5).

At the family level, Lactobacillaceae were the dominant 
microbiota (spring: 68.2%; summer: 4.8%; autumn: 54.9%; winter: 
76.4%; DSB: 42.2%; CH: 27.3%; Figure 3A; Supplementary Table S6), 
except for during the summer when Clostridiaceae_1 were 
dominant (8.7%; Supplementary Table S6). During the summer, 
certain other microorganisms exhibited relatively high 
abundances, such as Pseudomonadaceae (summer: 3.0%) 
and Enterobacteriaceae (summer: 7.2%; Figure  3A; 
Supplementary Table S6).

We further analyzed seasonal variations in gut microbiota 
biomarkers. The random forest-based model revealed that the ASV 
level provided the highest accuracy for classifying gut microbiota 
across different levels. The cross-validation error rate was 0.13 when 
using the 36 ASVs identified as having distinct microbiota (Figure 3B). 
The ASV of Lactobacillaceae was lower in abundance in the summer, 
whereas the ASVs of Moraxellaceae and Planococcaceae were higher 
(Figure 3C; Supplementary Figure S3).
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3.3 Co-occurrence network of gut 
microbiota between seasons

In total, 40 nodes (families) and 42 connections (edges) were 
retained in the black-necked crane co-occurrence network. Only 
the module did not significantly differ between seasons 
(Supplementary Table S7). The summer network topology was 
simpler, whereas the spring and winter exhibited more nodes, 
edges, and degrees. The nodes, edges, and degrees in winter (CH) 
and summer were lower than those in other seasons (nodes: 
χ2 = 33.144, p < 0.001, edges: χ2 = 36.183, p < 0.001, Figure  4; 
Supplementary Tables S7, S8).

3.4 Community assembly of black-necked 
crane gut microbiota

The βNTI results showed that −2 < βNTI > 2, indicating that the 
stochastic process is an important factor influencing gut microbiota 
assembly across all seasons (Figure  5A). ICAMP analysis was 
performed to evaluate the gut microbiota assembly processes in the 
different groups. The dispersal limitation (spring: 0.792; summer: 0.612; 
autumn: 0.728; winter: 0.445; DSB: 0.548; CH: 0.704) was the major 
driver of gut microbiota assembly in all seasons except winter 
(Figure 5B; Supplementary Table S9). However, the results for winter 
contradict the βNTI findings, as homogeneous selection (winter: 

FIGURE 2

Seasonal variability in the gut microbiota of the black-necked crane. The constrained ordination (CAP) was based on (A) Bray-Curtis and (B) UniFrac 
distances. Alpha diversity of the gut microbiota was measured using (C) Simpson and (D) Shannon indices, with the inset plots showing alpha diversity 
between the breeding and wintering periods. Beta diversity of the gut microbiota was based on (E) Bray-Curtis and (F) UniFrac distances, with the inset 
plots illustrating beta diversity between the breeding and wintering periods. Different colors represent different seasons.
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0.503), a deterministic process, was the major driver of gut microbiota 
assembly (Figures 5A,B).

3.5 Functional prediction of black-necked 
crane gut microbiota

The functional profiles inferred by PICRUSt2 indicated significant 
variations in the Simpson index (χ2 = 13.368, p < 0.05), while the 
Shannon index did not differ among seasons (χ2 = 7.296, p > 0.05). 
Additionally, both the Simpson and Shannon indices were higher in 
the summer samples relative to other seasons (Supplementary Figure S4).

4 Discussion

Elucidating the changes in the gut microbiota of the migratory 
black-necked crane throughout its annual cycle is crucial for 
understanding its environmental adaptations. In this study, we examined 

the gut microbiota of the black-necked crane throughout its annual 
cycle and found differences in its composition, diversity, function, and 
co-occurrence networks. In most groups, stochastic processes were 
more important than deterministic processes in gut microbiota assembly.

4.1 Diversity and composition of gut 
microbiota in response to seasonal dietary 
changes

Food resources in the environment are crucial factors that 
influence gut microbiota (diversity and composition) (Scott et al., 
2013). In our previous study on the dietary of black-necked cranes 
in Zoige, we found that a greater diversity of arthropods dietary in 
black-necked cranes in autumn than in spring (Ma et al., 2024). 
The current study revealed that a similar trend in the gut 
microbiota diversity, with the black-necked crane exhibiting lower 
alpha diversity in spring than in autumn. This suggests that there 
may be an association between the richness of diet and diversity of 

FIGURE 3

The dominant and distinct gut microbiota across seasons. (A) Normalized relative abundance of the most common genera in different seasons colored 
by order and separated at the top 10 family levels. Microbiota taxa were predicted using a random forest model for different seasons. (B) The top 36 
microbiota ASVs were identified in the training set based on their relative abundance. (C) The abundance of microbiota across different seasons is 
shown, with bubble size representing abundance and color indicating family.
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gut microbiota. Our findings imply that as dietary diversity 
increases, so does the diversity of the gut microbiota. Additionally, 
the current study revealed highest alpha and beta diversity of gut 
microbiota in summer (Figure 2), which leads us to speculate that 
the diet of black-necked cranes is most diverse during this period. 
The abundant water and heat resources in Zoige during summer, 
which contribute to rich food availability (Zhang Z. et al., 2020), 
likely support the hypothesis by providing a more varied array of 
food resources for the cranes. Our findings suggest a link between 
diet and microbiota diversity, prompting the need for future 
research on the relationship between dietary intake and gut 
microbiota composition.

Significant differences in gut microbiota composition have also 
been reported between seasons of food abundance and scarcity (Orkin 
et al., 2019). Studies on Tibetan macaques (Macaca thibetana) have 
shown that during seasons of food abundance, gut microbiota exhibit 
a higher level of diversity (Sun et al., 2016). To adapt to the abundance 
of food, the gut microbiota shifts and exhibits higher intra- and inter-
species diversity (Zhao et al., 2023). The gut microbiota of the Greater 
Horseshoe Bats (Rhinolophus ferrumequinum) (Xiao et al., 2019) and 
Forest Musk Deer (Moschus berezovskii) (Hu X. et al., 2018) were also 
found to show higher diversity in summer, which has an abundance 
of food compared with other seasons. Our findings are consistent with 
those of previous studies. We also observed that the gut microbiota 

FIGURE 4

Topological properties of the co-occurrence network of black-necked crane gut microbiota in different seasons, (A) edges number, (B) nodes number, 
(C) average degree, and (D) modularity.

FIGURE 5

Importance of bacterial communities from different seasons in the gut microbiota of the black-necked crane. (A) The Nearest Taxon Index (βNTI) of 
the gut microbiota, −2 < βNTI <2 indicates that stochastic processes play a significant role in shaping the gut microbiota. (B) Relative importance of 
ecological processes for microbiota across different seasons.
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exhibited higher alpha diversity in Caohai and its wintering grounds 
than at the other locations tested. This could be  because human-
maintained fields provide ample food, similar to the abundance 
observed under natural summer conditions (Bergmann et al., 2015).

We found that some gut microbiota families were enriched only 
in summer (e.g., Moraxellaceae, Planococcaceae, Bacillaceae_1). 
Moraxellaceae is associated with the benzoate degradation pathway 
(Torrecillas et  al., 2023), Planococcaceae can modulate valine 
production (Li, 2018; Wu et al., 2024), and Bacillaceae_1 is linked to 
insect lipids (Li et  al., 2022; Weththasinghe et  al., 2022). Gut 
microbiota can rapidly respond to novel food components (Leeming 
et  al., 2019). Previous studies have found that short-term dietary 
changes alter the gut microbiota of animals; however, these changes 
are difficult to observe after the return to a normal diet (Leeming et al., 
2019). This enrichment likely reflects the animals’ need for diverse 
materials during digestion.

In summer, black-necked cranes had a more diverse microbiota 
and a lower relative abundance of dominant bacteria. However, 
during other seasons, the Lactobacillaceae family was dominant. An 
increase in a stable gut microbiota may represent an adaptation to 
cope with harsh environments (Jing et al., 2022; Santos et al., 2024). 
The Lactobacillaceae family’s strong adaptability allows for long-
term colonization, maintenance of the intestinal barrier, and 
resistance to harmful bacteria, and helps hosts adapt to 
environmental changes (Santos et al., 2024). Extensive colonization 
by microorganisms ensures adequate energy intake (Ducarmon 
et al., 2019). The persistence of colonizing species in animals is likely 
due to their role in degrading storage carbohydrates, such as starch 
and fiber (Lee et  al., 2024). Lactobacillaceae, known for their 
involvement in carbohydrate digestion, may colonize the gut for 
extended periods.

4.2 The gut microbiota network responds 
to seasonal changes

During summer, gut microbial samples revealed high microbial 
diversity but fewer nodes, edges, and degrees in the co-occurrence 
network, indicating a simpler network structure. This is likely due to 
the abundance of available food sources, which enables opportunistic 
bacteria to thrive and temporarily dominate (Stein et  al., 2013). 
However, transient gut microbiota often have lower competitive 
adaptability in the gut than long-term colonizing species, which is why 
they do not persist (Lee et  al., 2024). Once the season of food 
abundance has passed, these transient microbial changes are unlikely 
to persist. However, this situation is transient, and the complexity of 
the microbial network is expected to evolve.

We observed more complex microbial networks in other 
seasons, indicating that the microbiota networks had more nodes, 
edges, than those in summer. These complexities arise because of 
the harsh survival challenges that occur outside the summer. High 
environmental stress may cause the microbiota to establish more 
positive interactions within communities (Li G. et al., 2019) and 
support the stress-gradient hypothesis (Bertness and Callaway, 
1994; Maestre et al., 2009). To overcome these difficulties, animals 
adjust their microbial networks to enhance their adaptability by 
increasing the complexity of their gut microbiota, which can 
be  considered a strategy for biological adaptation to diverse 

environments (Faust and Raes, 2012). Adaptation has been found 
in many species, including wild ass (Equus kiang) (Gao et al., 2020), 
great tit (Parus major) (Bodawatta et  al., 2021), Plateau Zokor 
(Eospalax baileyi) (Liu et al., 2024), and bharal (Pseudois nayaur) 
(Gao et al., 2024).

4.3 Stochastic processes are important for 
microbiota community assembly

Dispersal limitation was the primary driver of the gut microbiota 
assembly in black-necked cranes during all seasons except winter. 
Dispersal limitations are important for microbiota assembly. This 
pattern has been observed in studies on honeybees (Apis cerana and 
Apis mellifera) (Ge et  al., 2021) and birds such as the common 
nightingale (Luscinia megarhynchos) (Sottas et  al., 2021), thrush 
nightingale (Luscinia luscinia) (Sottas et al., 2021), and green-winged 
teal (Anas crecca) (Wang et al., 2022). Dispersal limitations reduce the 
ease with which gut microbes spread between individuals. Previous 
studies on mammalian gut microbes have found that geographical 
proximity enhances microbial communication among animals, 
whereas increased physical distance is a key factor affecting the 
composition of gut microbes (Moeller et al., 2017). Birds, with higher 
mobility and broader activity ranges than other animals, experience 
reduced gut microbiota interactions among individuals (Weinhold, 
2022). The reduced interaction of the gut microbiota could be  a 
significant factor affecting the gut microbial composition of black-
necked cranes.

5 Conclusion

This study investigated the annual cycle of gut microbiota in 
migratory black-necked cranes. We  found that the diversity, 
composition, predicted dominant functions and co-occurrence 
networks of the gut microbiota varied across seasons. The summer 
samples exhibited greater alpha diversity and beta diversity, as well as 
more diverse functions compared to other seasons. In all seasons 
except summer, Lactobacillaceae dominated the gut microbiota. The 
network structure of the gut microbiota was simpler in summer than 
in other seasons. Dispersal limitations were identified as a key factor 
influencing the assembly of gut microbial communities. Overall, 
black-necked cranes exhibit dynamic adjustments in their gut 
microbiota to adapt to annual environmental changes, which might 
be related to the variation of their seasonal diet. Our research reports 
on the gut microbiota of black-necked cranes throughout their annual 
cycle, providing valuable insights for the study of migratory birds’ gut 
microbiota. Future research should focus on multi-year continuous 
sampling, particularly incorporating samples collected during 
migration and pay greater attention to the relationship between diet 
and the gut microbiota of animals.
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