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Teosinte-derived SynCom and
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modulate the maize microbiome,
enhancing growth, yield, and soil
functionality in a Mexican field
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Modern agriculture faces the challenge of optimizing fertilization practices while
maintaining soil resilience and microbial diversity, both critical for sustainable
crop production. We evaluated the e�ects of multiple fertilization strategies
on soil microbial communities and plant performance, comparing conventional
methods (urea-based and phosphorus fertilizers applied manually or via drone-
assisted precision delivery) with biofertilization using a synthetic microbial
consortium (SynCom) derived from teosinte-associated microbes. This SynCom
consisted of seven bacterial strains: Serratia nematodiphila EDR2, Klebsiella

variicola EChLG19, Bacillus thuringiensis EML22, Pantoea agglomerans EMH25,
Bacillus thuringiensis EBG39, Serratia marcescens EPLG52, and Bacillus tropicus

EPP72. High-throughput sequencing revealed significant shifts in bacterial
and fungal communities across treatments. Untreated soils showed limited
diversity, dominated by Enterobacteriaceae (>70%). Conventional fertilization
gradually reduced Enterobacteriaceae while increasing Pseudomonas and
Lysinibacillus populations. Drone-assisted conventional fertilization notably
enhanced Acinetobacter and Rhizobiales growth. Biofertilization treatments
produced the most pronounced shifts, reducing Enterobacteriaceae below
50% while significantly increasing beneficial taxa like Bacillus, Pantoea, and
Serratia. Network analysis demonstrated that microbial interaction complexity
increased across treatments, with Bacillus emerging as a keystone species.
Drone-assisted biofertilization fostered particularly intricate microbial networks,
enhancing synergistic relationships involved in nutrient cycling and biocontrol,
though maintaining the stability of these complex interactions requires careful
monitoring. Our findings provide key insights into how precision biofertilization
with teosinte-derived microbial consortia can sustainably reshape the maize
microbiome, improving crop performance and soil resilience.
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1 Introduction

Integrating technological advancements empowered by
automation into agricultural practices has garnered significant
attention in recent years due to their potential to enhance
production efficiency and sustainability (Pisante et al., 2012; Bellon
Maurel and Huyghe, 2017; Pérez-Pons et al., 2020). Among these
innovations, using drones to apply fertilizers and biofertilizers
represents a promising advancement (Spoorthi et al., 2017).
Traditional fertilizer application methods, characterized by uneven
distribution and significant wastage, often result in suboptimal
plant growth and exacerbate environmental issues such as nutrient
leaching and soil degradation. Conversely, drone technology offers
precision agriculture capabilities, ensuring uniform distribution
and targeted application, which can minimize these drawbacks
and improve overall agricultural productivity (Späti et al., 2021;
Panjaitan et al., 2022; Maraveas, 2022). However, very little is
known whether such automation practices have long-term effects
on soil health that might influence agricultural productivity.

The soil microbiome is a significant soil health indicator, as
it comprises a complex community of microorganisms, including
bacteria, microbial eukaryotes, and archaea, and plays a crucial role
in soil health and plant growth. These microorganisms are involved
in essential processes such as nutrient cycling, organic matter
decomposition, and disease suppression (Chaparro et al., 2012).
However, conventional agricultural practices, including intensive
chemical fertilizers, can disrupt these soil microbial communities,
reducing soil fertility and increasing plant vulnerability to pests
and diseases. Recent research has highlighted the importance of
preserving and enhancing soil microbial diversity as a strategy for
sustainable agriculture (Hartmann et al., 2015; Lupatini et al., 2017;
Gupta et al., 2022).

Biofertilizers are formulations of living microorganisms that
promote plant growth by increasing the availability of primary
nutrients to the host plant and have emerged as an eco-friendly
alternative to chemical fertilizers (Wu et al., 2005; Li et al.,
2023). They offer numerous benefits, including improved soil
structure, enhanced nutrient uptake, and increased resilience
to environmental stressors (Bhardwaj et al., 2014). Biofertilizers
applied through drone technology could amplify these benefits by
ensuring precise and efficient delivery, thereby maximizing their
positive impact on the soil microbiome (Malusá et al., 2012; Schütz
et al., 2018; Mitter et al., 2021).

Despite several theoretical advantages, very few empirical
studies have rigorously quantified the impact of drone-delivered
fertilizers and biofertilizers on soil microbial community structure
and function, particularly in field settings. Most research has
mainly focused on the effects of these substances when applied
through traditional methods (Wu et al., 2005; Nosheen et al.,
2021). Any potential synergistic effects of combining drone
technology with biofertilization practices on soil microbiota remain
largely unexplored. Understanding these interactions is critical for
developing innovative and sustainable soil management practices
that can support the growing global demand for food while
preserving environmental health (Malusá et al., 2012; Bamdad et al.,
2022).

Recent studies have highlighted the potential of microbial
consortia, particularly those derived from native plant species,

in enhancing soil nutrient dynamics and plant resilience under
various environmental conditions (Vassilev et al., 2015; Olanrewaju
et al., 2017). In maize cultivation, biofertilizers containing Bacillus,
Pseudomonas, and Azospirillum have been shown to improve
root architecture, nitrogen fixation, and phosphate solubilization,
leading to higher yields and improved soil structure (Bhattacharyya
and Jha, 2012; Singh et al., 2020). However, challenges remain
in ensuring the persistence and colonization of these beneficial
microbes in agricultural soils, particularly when applied through
mechanized or precision-based approaches (Compant et al., 2010).
Recent advances suggest that the integration of biofertilization
with emerging technologies, such as drone-assisted delivery,
could optimize microbial survival and function by ensuring
even distribution and minimizing environmental stressors during
application (de Souza et al., 2021). Despite these theoretical
advantages, field-based evidence remains limited, necessitating
further research into how precision application techniques
influencemicrobial community dynamics and long-term soil health
(Bashan et al., 2014; Hartmann et al., 2015).

This study aimed to fill this knowledge gap by investigating the
interacting effects of traditional and drone-based chemical fertilizer
and biofertilizer application methods on the soil microbiome.
Through high-throughput sequencing and comprehensive
microbial analysis, we examined how these application strategies
influence soil microbial community composition, diversity, and
functionality. The findings will provide valuable insights into the
potential of drone technology to enhance soil health and promote
sustainable agricultural practices.

2 Materials and methods

2.1 Field site selection and experimental
design

This study was conducted in native Mexican maize fields in
the rural community of San Juan de las Manzanas, Ixtlahuaca
de Rayón, Estado de México (−99.842025 and 19.556658). The
experimental plots were established using a randomized complete
block design (RCBD) with five replicates per treatment (Piepho
et al., 2004). Each plot received one of the following treatments:
no application (control) (NA), conventional fertilization backpack
(MF) and drone-assisted (DF), and biofertilization with SynCom
applied manually (MB) and via drone technology (DB) (Mogili
and Deepak, 2018; Saleem et al., 2019). Comprehensive site
characterization was performed for each field to account for
environmental variability. This included soil type classification
(IUSS Working Group WRB, 2015), collection of historical crop
data, and recording climatic conditions throughout the growing
season (Lobell et al., 2011). These environmental parameters were
integrated into subsequent data analyses to assess treatment efficacy
across diverse agroecological contexts.

2.2 Biofertilizer (SynCom) formulation

Based on functional traits, SynCom enhanced plant growth,
nutrient cycling, and pathogen suppression. The formulation
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TABLE 1 Bacterial strains isolated from Zea species and their

functional traits.

Strain Source Relevant
phenotype

Serratia nematodiphila

EDR2
Zea diploperennis Amylase

Klebsiella variicola

EChLG19
Zea mays subsp. mexicana
Chalco landrace

Metalophores 6
ions (Fe, Mo, Cu, V,
Co, and Zn)

Bacillus thuringiensis

EML22
Zea mays subsp. mexicana
Mesa Central landrace

Phosphate
solubilization, IAA

Pantoea agglomerans

EMH25
Zea mays subsp. mexicana
Mesa Central landrace

ACC deaminase

Bacillus thuringiensis

EBG39
Zea mays subsp. Parviglumis
Balsas landrace

BFN, Chitinase

Serratia marcescens

EPLG52
Zea perennis Protease

Bacillus tropicus EPP72 Zea perennis Cellulase

process involved screening bacterial isolates for nitrogen fixation,
phosphate solubilization, and production of phytohormones
such as indole-3-acetic acid (IAA). The SynCom comprised
seven beneficial bacterial strains isolated from teosinte seeds:
Serratia nematodiphila EDR2, Klebsiella variicola EChLG19,
Bacillus thuringiensis EML22, Pantoea agglomerans EMH25,
Bacillus thuringiensis EBG39, Serratia marcescens EPLG52, and
Bacillus tropicus EPP72 (Table 1) (De-la-Vega-Camarillo et al.,
2023a). Each bacterial strain was cultured independently in R2A
broth media at 28◦C with orbital shaking at 150 rpm until reaching
an optical density (OD600) of 1.0 (Reasoner and Geldreich, 1985).
Cultures were then centrifuged at 13,000 rpm for 10min, and the
resulting pellets were resuspended in sterile saline solution (0.85%
NaCl) to achieve a final concentration of 1 × 109 CFU/ML (De-la-
Vega-Camarillo et al., 2023b). The SynCom was prepared for field
application by mixing equal volumes of each bacterial suspension.
The viability of each strain in the final mixture was confirmed
through colony-forming unit (CFU) counts on selective media
(Timmusk et al., 2017).

2.3 Application of treatments

The treatments were applied using drone-assisted and backpack
methods. For drone application, a DJI Agras MG-1S drone
equipped with four precision nozzles was utilized (Zhang and
Kovacs, 2012). The drone was calibrated to deliver 50mL of
treatment solution per plant, with flight paths programmed to
ensure uniform coverage of each plot (Tripicchio et al., 2015).
Backpack applications were conducted using backpack sprayers,
calibrated to deliver 50mL per plant, following standard agronomic
practices (Szilagyi-Zecchin et al., 2016). Applications were carried
out at four key growth stages: pre-treatment at 0 days after sowing
(DAS), mid-season at 25 DAS, early reproductive stage at 55
DAS, and harvest at 85 DAS, aligning with critical periods in
maize development (Abendroth et al., 2011). Weather conditions,
including temperature, humidity, and wind speed, were recorded

during each application to account for potential variability in
treatment efficacy (Sánchez et al., 2014). These environmental
parameters were later incorporated into the data analysis to assess
their impact on treatment performance.

2.4 Soil sampling

Soil samples were collected from each experimental plot 5
days after the application to observe the changes in the microbial
communities due to fertilization and biofertilization processes as
follows: 0 DAS (pre-treatment), 30 DAS (mid-season), 60 DAS
(early reproductive stage), and 90 DAS (post-harvest) (Ma and
Biswas, 2015). Each sample comprised five subsamples taken
from the corners and center of each plot at a depth of 0–15 cm
using a sterilized soil drill (Peigné et al., 2013). The subsamples
were homogenized to create a composite sample (∼500 g) per
plot, following standard soil sampling protocols (Larkin, 2015).
Immediately after collection, soil samples were placed in sterile,
airtight containers and transported on ice to the laboratory.
To preserve microbial community structure and DNA integrity,
samples were stored at −80◦C until further processing (Rissanen
et al., 2010).

2.5 Physicochemical soil analysis

Soil physicochemical properties were analyzed following
standardized protocols. Before analysis, samples were air-dried at
room temperature (25 ± 2◦C), ground, and sieved through a 2-
mmmesh to remove coarse particles and plant debris (International
Organization for Standardization, 2006). The following parameters
were assessed: pH (1:2.5 soil/water ratio), electrical conductivity
(EC), organic matter content (Walkley-Black method), total
nitrogen (Kjeldahl method), available phosphorus (Olsen method),
and exchangeable potassium (ammonium acetate extraction) (Bao,
2000; Jones, 2001).

2.6 Spectral data collection and analysis

Soil nutrient availability was assessed using a combination of
satellite and drone-based multispectral imaging. Satellite data were
obtained from Sentinel-2 MSI (10m resolution) (Drusch et al.,
2012). At the same time, high-resolution imagery (3 cm/pixel) was
acquired using a DJI Phantom 4 Multispectral drone equipped
with a six-band multispectral camera (blue, green, red, red edge,
near-infrared, and RGB) (Hassan et al., 2019). Drone flights
were conducted at 40m altitude between 10:00 and 14:00 under
clear sky conditions (cloud cover <10%), coinciding with soil
sampling dates (Assmann et al., 2019). Radiometric calibration
was performed using a calibrated reflectance panel before each
flight (Wang and Myint, 2015). Both satellite and drone imagery
were atmospherically corrected using Sen2Cor (version 2.8) and
Pix4D Mapper (version 4.6.4), respectively (Main-Knorn et al.,
2017; Pix4D SA, 2020).
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Spectral indices were calculated to estimate specific soil
nutrients: Modified Soil-Adjusted Vegetation Index (MSAVI)
for nitrogen content, Band Ratio Phosphorus Index (BRPI) for
available phosphorus, and Potassium Abundance Index (KAI) for
exchangeable potassium (Wang et al., 2014; Song et al., 2023).
Additional indices included the Iron Oxide Ratio (IOR) and
Normalized Difference Salinity Index (NDSI) for micronutrient
availability assessment (Ge et al., 2011). Calibration models were
developed using partial least squares regression (PLSR) to relate
spectral indices to laboratory-measured nutrient concentrations
(Viscarra Rossel and Behrens, 2010). Model validation was
performed using a subset of soil samples (30%) that was not used
in calibration.

For each experimental plot, spectral data were extracted from
both satellite (10 m2 pixels) and drone imagery (9 cm2 pixels)
using zonal statistics in QGIS 3.22 (QGIS Development Team,
2024). Temporal variations in nutrient availability were analyzed
using repeated measures ANOVA with Bonferroni correction
for multiple comparisons (p < 0.05). The relationship between
spectral-derived and laboratory-measured nutrient values was
assessed using Spearman correlation coefficients and root mean
square error (RMSE) calculations (Gorelick et al., 2017).

2.7 DNA extraction and metagenomic
analysis

Total genomic DNA was extracted from 0.5 g of soil
using the DNeasy PowerSoil Kit (Qiagen, Hilden, Germany),
following the manufacturer’s instructions with an additional
bead-beating step for enhanced cell lysis (Lim et al., 2010).
The V3–V4 regions of the 16S rRNA gene were amplified
using 341F/785R (CCTACGGGNGGCWGCAG/GACTACHVG
GGTATCTAATCC) primers for bacteria (Klindworth et al.,
2013), and the internal transcribed spacer (ITS) regions were
amplified using ITS1F/ITS2 (CTTGGTCATTTAGAGGAAGTAA/
GCTGCGTTCTTCATCGATGC) primers for fungi (Gardes and
Bruns, 1993); both with unique 6-nucleotide barcodes for sample
identification. PCR reactions were performed in 30 µL volumes
containing 15 µL Phusion Master Mix (New England Biolabs,
Ipswich, MA, USA), 0.2µm of each primer, and 10 ng of template
DNA. The thermal cycling conditions were as follows: initial
denaturation at 98◦C for 1min, followed by 30 cycles of 95◦C
for 10 s, 50◦C for 30 s (16S primers)/56◦C for 30 s (ITS primers),
and 72◦C for 30 s, with a final extension at 72◦C for 5min (Wu
et al., 2015). Amplified products were purified using the GeneJET
Gel Extraction Kit (Thermo Fisher Scientific, Waltham, MA, USA)
and verified by 2% agarose gel electrophoresis. Sequencing was
performed on the Illumina MiSeq platform at Genome Science
Core, Wayne State University (Detroit, USA), with a read length
of 250 bp paired-end (Caporaso et al., 2011).

2.8 Bioinformatic processing

Raw sequencing data were processed using QIIME2 (version
2021.2) for demultiplexing and quality filtering (Bolyen et al., 2019).
Reads with a Phred score below 20, chimeric sequences, and those

shorter than 200 bp were discarded. Operational taxonomic units
(OTUs) were delineated at 97% sequence similarity using DADA2
(Callahan et al., 2016). Taxonomic identities were attributed in
comparison to the SILVA database (v13.8) for bacterial sequences
(Quast et al., 2012) and the UNITE database (v132) for fungal
sequences (Nilsson et al., 2019).

Microbial community diversity was assessed using both alpha
and beta diversity metrics. Alpha diversity was quantified using
Shannon, Simpson, Chao1, ACE (Abundance-based Coverage
Estimator) indices, and observed species richness, calculated
using the scikit-bio library (scikit-bio Development Team, 2020)
in Python 3.8 (Van Rossum and Drake, 2009). Rarefaction
curves were generated to evaluate sampling depth adequacy
using the rarefaction_curve function from scikit-bio. Beta
diversity was assessed using weighted and unweighted UniFrac
distances (Lozupone et al., 2011), Bray-Curtis dissimilarity index
(Bray and Curtis, 1957), Jaccard index (Jaccard, 1912), and
Hellinger distance (Legendre and Gallagher, 2001), computed
with the scipy.spatial.distance module (Virtanen et al., 2020).
To visualize relationships between microbial communities, we
performed Principal Coordinate Analysis (PCoA) and Non-metric
Multidimensional Scaling (NMDS) using the scikit-learn library
(Pedregosa et al., 2011). Differences in alpha diversity metrics
between treatment groups were assessed using one-way ANOVA
followed by Tukey’s HSD post-hoc test, implemented with the
scipy—stats module. For beta diversity, the statistical significance
of community differences was tested using Permutational
Multivariate Analysis of Variance (PERMANOVA) with 999
permutations, implemented through the skbio.stats.distance
module. To elucidate potential microbial interactions, co-
occurrence networks were constructed using three complementary
approaches: the SparCC algorithm (Friedman and Alm, 2012)
implemented in the FastSpar package (Watts et al., 2019), the
CoNet method (Faust and Raes, 2016) using the RMT-based
approach in the MENA package (Deng et al., 2012), and SPIEC-
EASI (Kurtz et al., 2015) using the SpiecEasi Python package.
Networks were visualized using NetworkX (Hagberg et al.,
2008) and plotted with Matplotlib (Hunter, 2007). Network
properties, including modularity, average path length, and
clustering coefficient, were calculated using NetworkX. To identify
microbial taxa significantly enriched or depleted between different
treatments, we performed differential abundance analysis using
DESeq2 (Love et al., 2014) through the DESeq2 Python package,
considering taxa with an adjusted p-value < 0.05 and absolute
log2 fold change > 1 as significantly differentially abundant. All
statistical analyses were performed in Python 3.8, and plots were
generated using Matplotlib and Seaborn (Waskom, 2021).

2.9 Plant growth and physiological
measurements

Plant height was measured from the base to the flag leaf
collar at the silking stage using a measuring tape. A plant canopy
analyzer assesses leaf area index (LAI) (Welles and Norman,
1991). Chlorophyll content was determined using a SPAD-502
meter (Uddling et al., 2007). Nitrogen, phosphorus, and potassium
content in leaves were determined from samples collected at the
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tasseling stage. Dried and ground leaf samples were analyzed
using the Kjeldahl method for nitrogen and inductively coupled
plasma optical emission spectrometry (ICP-OES) for phosphorus
and potassium (Jones et al., 1991). Water use efficiency (WUE) was
calculated as the ratio of grain yield to total water use during the
growing season (Passioura, 2006). Nitrogen use efficiency (NUE)
was determined as the ratio of grain yield to total nitrogen applied
(Moll et al., 1982). Maize was harvested at physiological maturity,
∼120 days after sowing (DAS) (Abendroth et al., 2011). Yield was
measured as tons per hectare (tons ha−1) by weighing the total
biomass of ears per plot after shelling and adjusting to 14% standard
moisture content (Zia et al., 2013). The harvest index was calculated
as the ratio of grain yield to total aboveground biomass (Hay, 1995;
Badu-Apraku et al., 2012). Kernel weight was assessed by weighing
1,000 grains per plot (CIMMYT standard procedures). Cob length
and diameter were measured using a digital caliper (Carcova and
Otegui, 2001).

Statistical analysis of yield data was performed using one-
way ANOVA, followed by Tukey’s HSD post-hoc test for pairwise
comparisons, with significance set at p < 0.05. Statistical analyses
were performed using R software (version 4.1.0, R Foundation for
Statistical Computing, Vienna, Austria) (R Core Team, 2021).

2.10 Statistical analysis

All statistical analyses were performed using Python (version
3.9.19) (Van Rossum and Drake, 2009). The following libraries
were utilized: pandas (version 2.2.2) for data manipulation and
preprocessing (McKinney, 2010), scikit-learn (version 1.5.1) for
machine learning-based feature selection (Pedregosa et al., 2011),
statsmodels (version 0.14.2) for inferential statistics and hypothesis
testing (Seabold and Perktold, 2010), and SciPy (version 1.12.0)
for additional statistical computations (Virtanen et al., 2020). Data
visualization was performed using matplotlib (version 3.9.2) and
seaborn (version 0.13.2) (Hunter, 2007; Waskom et al., 2020).

To assess the relationship between microbial diversity and crop
performance, multiple statistical approaches were implemented.
The normality of the data was tested using the Shapiro–Wilk
test, while Levene’s test assessed the homogeneity of variances.
When assumptions of parametric tests were met, one-way
ANOVA followed by Tukey’s HSD post-hoc test was applied to
compare means across different treatments. For non-parametric
comparisons, the Kruskal–Wallis test, followed by Dunn’s test with
Bonferroni correction, was performed.

Multiple linear regression models were constructed using the
ordinary least squares (OLS) method in the statsmodels library to
evaluate the influence of microbial diversity and environmental
factors (temperature, precipitation, and soil pH) on crop yield and
health metrics. The regression model used was:

Y = β0 + β1X1 + β2X2 + ... + βnXn + ε

Where Y represents the dependent variable (e.g., crop yield
or plant health index), X1, X2,..., Xn are independent variables
(diversity indices, environmental covariates, and fertilization
treatment), β0, β1, β2,..., βn are regression coefficients, and ε is

the error term. Model assumptions were verified using quantile-
quantile (Q-Q) plots, the Shapiro–Wilk test for normality of
residuals, and the Breusch-Pagan test for homoscedasticity.

Significance levels were set at p < 0.05, and 95% confidence
intervals were calculated for all parameter estimates. Effect sizes
were reported where applicable using Cohen’s f ² for regression
models and eta-squared (η²) for ANOVA. All statistical analyses
were conducted in a fully scripted and reproducible manner, with
code available upon request.

3 Results

Our study showed that different fertilization strategies
significantly affect soil physicochemical properties, microbial
community structure, maize yield, and disease incidence.
Satellite-derived indices strongly correlate with key soil
parameters, validating their use in soil health monitoring.
Biofertilization treatments, mainly when applied via drone
technology, demonstrated the most pronounced positive impacts
on soil microbial diversity, nutrient availability, crop yield, and
disease resistance.

3.1 Correlation analysis of soil
physicochemical parameters and
satellite-derived indices

This analysis showed a remarkably high precision in the
correlation between laboratory-measured soil physicochemical
properties and spectral indices derived from georeferenced satellite
imagery. A highly positive correlation (r ≈ 0.98, p < 0.001) was
evident between laboratory analyses and spectral image analyses for
corresponding sample points (e.g., S1 laboratory vs. S1 spectral, S2
laboratory vs. S2 spectral, and so on up to S50) (Figure 1).

Importantly, this high correlation was observed only between
matching sample points and not between different field areas (see
red diagonal series in Figure 1). For instance, the spectral data for
sample S1 showed a near-perfect correlation with the laboratory
data for S1 but not with laboratory data from S2, S3, or any other
sample points. This pattern was consistent across all 50 sample
points (S1–S50).

The strength and specificity of these correlations underscore
the accuracy of spectral image analysis in capturing soil
physicochemical properties. Critical parameters such as pH,
organic matter (OM), total nitrogen (TN), and available
phosphorus (AP) all showed correlations of r > 0.95 (p <

0.001) between laboratory and spectral measurements for each
respective sample point.

3.2 Impact of fertilization strategies on soil
properties, plant physiology, and maize
yield

The application of different fertilization strategies significantly
influenced soil properties, nutrient uptake, plant physiological
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FIGURE 1

Correlation heatmap comparing soil physicochemical parameters obtained through traditional laboratory analysis with corresponding
satellite-derived soil indices (S1–S50, n = 50). Colors represent Spearman correlation coe�cients ranging from 0.00 (dark blue) to 1.00 (dark red).
Hierarchical clustering was performed using Ward’s minimum variance method with Euclidean distances. Data were standardized before correlation
analysis. Statistical significance was determined using Benjamini-Hochberg adjusted p-values (p < 0.05).

traits, maize yield, and disease incidence. The heatmap analysis
(Figure 2a) showed strong correlations between fertilization
treatments and key soil and plant parameters. Biofertilization
treatments, particularly drone biofertilization, were associated
with higher soil microbial biomass (0.72 ± 0.05), improved
soil aggregate stability (0.78 ± 0.03), and increased soil organic
matter content (0.86± 0.04). In contrast, conventional fertilization
resulted in lower microbial biomass (0.46 ± 0.04) and aggregate
stability (0.48 ± 0.02), suggesting a reduced impact on soil
structure and long-term fertility. Soil pH was significantly higher
in biofertilization treatments (6.8± 0.1) compared to conventional
fertilization (6.3 ± 0.2) and untreated controls (5.9 ± 0.3)
[ANOVA, F(4, 95)= 21.7, p < 0.001].

Biofertilization also enhanced plant nutrient uptake and
physiological performance. Nitrogen content in leaves was highest

under drone biofertilization (0.86 ± 0.02%), followed by backpack
biofertilization (0.80± 0.03%) and conventional drone fertilization
(0.74 ± 0.02%). In contrast, conventional fertilization and
untreated controls had significantly lower nitrogen content (0.63
± 0.04% and 0.41 ± 0.03%, respectively) (p < 0.05). Similar
phosphorus and potassium uptake trends were observed, with
the highest concentrations detected in biofertilization treatments.
Chlorophyll content was also significantly higher in drone
biofertilization (48.2 ± 1.8 SPAD) compared to conventional
fertilization (42.7 ± 2.1 SPAD) and untreated plants (35.4 ± 2.5
SPAD) (p < 0.001), indicating improved photosynthetic capacity.

Plant morphological responses aligned with these physiological
changes. Plants in drone biofertilization treatments exhibited
greater height (2.1 ± 0.1m) and larger leaf area index (3.9 ± 0.2)
compared to conventionally fertilized (1.8 ± 0.1m, 3.2 ± 0.1) and
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FIGURE 2

E�ects of di�erent fertilization strategies on maize yield and disease incidence. (a) Heatmap showing normalized correlations between fertilization
treatments, soil properties, and plant performance metrics. Darker shades indicate stronger positive correlations with measured parameters,
particularly in biofertilization treatments. (b) Box plots showing the distribution of disease incidence (%) for five common maize pathogens under
di�erent treatment regimes. (c) Representative maize cobs from di�erent treatments: (x) no treatment, (y) conventional drone fertilization, and (z)
drone biofertilization. (d) Field photograph showing maize plants under control treatment (left) and drone biofertilization treatment (right) at the
flowering stage. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001; ANOVA followed by Tukey’s post-hoc test. Error bars represent the
standard error of the mean.

untreated plants (1.4 ± 0.2m, 2.5 ± 0.2) (p < 0.05). These growth
improvements translated into enhanced cob development, with
drone biofertilization resulting in the most considerable cob length
(19.4 ± 0.7 cm) and diameter (5.6 ± 0.2 cm), whereas untreated
plants produced significantly smaller cobs (11.3 ± 0.9 cm length,
4.1± 0.3 cm diameter) (Figure 2c).

Yield outcomes reflected these physiological advantages. Drone
biofertilization resulted in the highest mean yield (7.4 ± 0.03
tons/ha), significantly outperforming backpack biofertilization (7.2
± 0.14 tons/ha), conventional drone fertilization (6.7 ± 0.19
tons/ha), conventional fertilization (6.3 ± 0.33 tons/ha), and
untreated controls (2.5 ± 0.21 tons/ha) [ANOVA, F(4, 95) =

42.6, p < 0.001]. Post-hoc Tukey’s HSD tests confirmed that
drone biofertilization yielded significantly higher than all other
treatments (p < 0.05) (Figure 2b).

Disease incidence varied significantly across treatments, with
biofertilization demonstrating a strong protective effect. Kruskal–
Wallis tests, followed by Dunn’s post-hoc comparisons, showed
that drone biofertilization significantly reduced the incidence of
Fusarium wilt (20% [IQR: 15–25%]) compared to conventional
fertilization (55% [IQR: 50–65%]) and untreated controls (80%
[IQR: 70–85%]) (p < 0.05). Similar reductions were observed for
root rot, stalk rot, and head smut, indicating that biofertilization,
particularly when delivered via precision technology, enhances
plant resilience against pathogenic infections (Figure 2b).

The visual assessment of cob quality and field performance
further supported these quantitative findings. Cobs from drone
biofertilization treatments exhibited more uniform kernel filling,
greater grain weight, and lower levels of kernel abortion compared
to conventionally fertilized and untreated plants (Figure 2c).
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Additionally, maize plants under biofertilization showed increased
vigor, with more robust stems and healthier foliage at the flowering
stage compared to the control (Figure 2d).

3.3 Taxonomic richness and multivariate
analysis of soil microbial communities

The metabarcoding sequencing of soil samples yielded 2.5
million raw reads across 40 libraries, representing five fertilization
treatments: no application, backpack fertilization, drone
fertilization, backpack biofertilization, and drone biofertilization,
with four sampling points and two replicates each. After quality
filtering and chimera removal, 1.8 million high-quality sequences
were retained, clustering into 57 distinct genera (27 bacterial
and 30 fungal OTUs). Taxonomic classification revealed four
major phyla across 14 classes, 25 orders, and 34 families, with
Ascomycota (≈65%) and Basidiomycota (≈25%) dominating the
fungal community. Z-score analysis revealed distinct microbial
distribution patterns across treatments, significantly enriching
beneficial microorganisms in biofertilization treatments. Control
soils (NA) showed a higher abundance of Cladosporium (Z =

1.55), Setophoma (Z = 1.33), and Enterobacter (Z = 1.32), while
biofertilized soils, particularly under drone application (DB),
exhibited significant enrichment of plant growth-promoting
microorganisms including Rhizobium (Z = 1.51),Mortierella (Z =

1.53), and Penicillium (Z = 1.53) (Figure 3A).
Bacterial communities exhibited complementary patterns,

with plant growth-promoting rhizobacteria showing significant
enrichment in biofertilization treatments. Rhizobium abundance
increased markedly in DB (Z = 1.51) and MB (Z = 1.00)
treatments, mainly from time points 2 to 4. Similarly, Pseudomonas

and Bradyrhizobium showed progressive enrichment in
biofertilization treatments (Z-scores increasing from 0.54 to
0.98 and 0.32 to 1.01, respectively). The drone application methods
(DB and DF) showed more stable community compositions
across replicates than backpack applications (average standard
deviation: drone = 0.24, backpack = 0.41). Temporal analysis
revealed distinct succession patterns: initial time points (1–2)
showed moderate shifts from control conditions (average 1Z =

0.45), while later time points (3–4) exhibited more pronounced
community restructuring (average 1Z = 0.89). This temporal
progression was particularly evident in biofertilization treatments,
where beneficial microorganisms showed consistent enrichment
patterns (temporal correlation coefficient r = 0.78, p < 0.001).
Post-hoc Dunn’s tests with Benjamini-Hochberg correction
confirmed that biofertilization treatments, particularly drone-
assisted application, resulted in significantly higher microbial
richness than other treatments (p < 0.05). The most pronounced
differences were observed between DB4 and NA1 treatments
(average 1Z = 2.14 for fungi, 1Z = 1.89 for bacteria). The
progressive increase in Z-scores from NA to DB treatments,
particularly evident in time points 3 and 4, suggests a cumulative
positive effect of biofertilization on microbial community structure
(Figure 3B).

Bacterial and fungal communities analysis revealed significant
differences in taxonomic composition and abundance patterns

across treatments and time points (Figure 4). Kruskal–Wallis tests
showed substantial variations among treatments for both fungi
[χ²(4)= 38.2, p< 0.001] and bacteria [χ²(4)= 42.7, p< 0.001]. For
fungi, drone biofertilization (DB) showed the highest enrichment
in beneficial genera, with Mortierella (Z = 1.53), Penicillium (Z =

1.53), and Fusarium (Z = 1.56) increasing significantly from time
points 1 to 4. Backpack biofertilization (MB) showed similar but
less pronounced trends (average Z-scores rising from 0.68 to 1.21
across time points). In contrast, chemical fertilization treatments
(MF andDF) showedmoderate enrichment (Z-scores ranging from
0.29 to 0.84), with drone application (DF) showing more consistent
patterns than backpack application (MF) (coefficient of variation:
DF= 18.2%, MF= 27.4%).

Canonical Correlation Analysis (CCA) of treatment groupings
based on environmental variables (Figure 5) revealed that the
first two canonical axes explained 68 and 17% of the total
variance, respectively. Permutation tests (999 permutations)
confirmed the significance of the canonical correlations (p <

0.001). Microbial diversity and availability of nutrients, particularly
nitrogen (N) and phosphorus (P), were positively associated
with biofertilization. The CCA plot shows a clear separation
of treatment groups, with drone biofertilization (DB) clustering
distinctly from other treatments and associated with higher
nutrient availability.

The weighted UniFrac Principal Coordinate Analysis (PCoA)
revealed distinct clustering patterns for fungal and bacterial
communities across different fertilization treatments. For fungal
communities (Figure 6A), the first three principal coordinates
explained 99.9% of the total variation (PC1: 95.9%, PC2: 3.3%,
and PC3: 0.8%). The no-treatment control was separated from
the fertilization treatments, with biofertilization treatments (both
drone and conventional applications) forming a distinct cluster.
Conventional fertilization and drone fertilization treatments
showed intermediate positioning, suggesting a gradual shift in
community composition.

The bacterial community structure (Figure 6B) showed a
different pattern, with the three principal coordinates explaining
99.8% of the total variation (PC1: 97.6%, PC2: 1.6%, and
PC3: 0.6%). The treatments exhibited clear spatial separation,
with drone biofertilization and conventional drone fertilization
clustering distinctly from conventional fertilization and no-
treatment controls. Notably, the biofertilization treatment showed
an intermediate position between conventional and drone-based
applications, suggesting a gradient of community composition
changes influenced by the fertilizer and application methods.

3.4 Microbial network dynamics in
response to drone-assisted biofertilization

Network analysis revealed complex interactions among
microbial guilds in response to drone-assisted biofertilization
based on correlated changes in abundance throughout the crop
cycle (Figure 7). Bacteria with potential plant growth-promoting
abilities showed strong positive correlations among themselves
(r > 0.8), particularly between Bacillus, Pseudomonas, and
Acinetobacter suggesting a synergistic relationship in their
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FIGURE 3

Heatmap visualization of bacterial (A) and fungal (B) diversity across di�erent treatments. The heatmaps show the relative abundance of di�erent
genera, with color intensity representing Z-score values ranging from −2.00 (blue) to 2.00 (red). Each column represents a di�erent treatment
condition, and taxonomic groups are displayed radially with their corresponding hierarchical clustering dendrograms.

FIGURE 4

Taxonomic richness of soil microbial communities under di�erent fertilization treatments. (A) Box plots showing fungal (ITS region) diversity across
treatments at di�erent time points. (B) Box plots showing bacterial (16S rRNA) diversity across treatments at di�erent time points. Boxes represent
interquartile ranges (IQR), horizontal lines indicate medians, whiskers extend to 1.5 × IQR, and points show outliers. Asterisks indicate significant
di�erences between treatments (*p <0.05), ns = not significant.

response to biofertilization (Figure 7A). Potential nitrogen-fixing
bacteria, represented by Enterobacter and Klebsiella, displayed
positive correlations (r≈ 0.6 to 0.8) with several PGPB (Figure 7A),
suggesting a cooperative response to the treatment.

Interestingly, phytopathogenic fungi showed varied responses
(Figure 7B). While some, like Pythium, exhibited negative
correlations with PGPB (r ≈ −0.7), others, like Botrytis, showed
weaker negative correlations (r ≈ −0.4), suggesting differential
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FIGURE 5

Canonical Correlation Analysis (CCA) of treatment groupings based on environmental variables. Vectors represent correlations between ordination
axes and soil parameters: microbial richness, pH, temperature, and nutrient availability (N, P, K, measured in mg/kg). Colored ellipses represent 95%
confidence intervals for treatment groups. The first and second canonical axes explain X% and Y% of the total variance, respectively. Data were
standardized before analysis. The significance of the canonical correlations was tested using permutation tests (999 permutations, p < 0.05).

FIGURE 6

Three-dimensional Principal Coordinate Analysis (PCoA) of weighted UniFrac distances shows soil microbial communities’ beta diversity patterns
under di�erent fertilization treatments. (A) Fungal community structure separates treatment groups, with PC1, PC2, and PC3 explaining 95.9%, 3.3%,
and 0.8% of the total variation, respectively. (B) Bacterial community structure depicting distinct clustering patterns among treatments, with PC1,
PC2, and PC3 explaining 97.9%, 1.6%, and 0.6% of the total variation, respectively. Treatments are color-coded: No treatment (red), Conventional
fertilization (turquoise), Conventional drone fertilization (yellow), Biofertilization (blue), and Drone biofertilization (light blue). The percentage of
variation explained by each principal coordinate is shown in parentheses on the respective axes.

suppression. Organic matter-degrading fungi, including Mucor

and Rhizopus, demonstrated positive correlations (r > 0.7) with
both PGPB and nitrogen-fixing bacteria, indicating facilitation

of nutrient cycling by these fungi in response to biofertilization
(Figure 7). Plant growth-promoting fungi, particularly Penicillium
and Trichoderma, showed strong positive correlations (r > 0.8)
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FIGURE 7

Network analysis of microbial interactions under di�erent fertilization regimes. (A) Control (no fertilization); (B) Conventional fertilization; (C)
Biofertilization; (D) Drone-assisted conventional fertilization; (E) Drone-assisted biofertilization; (F) Environmental fungi interactions. Node colors
represent di�erent microbial guilds, as indicated in the legend. Node size is proportional to the relative abundance of each taxon. Edge colors
indicate positive (red) or negative (blue) correlations, with intensity proportional to the strength of the correlation. Only significant correlations (p <

0.05) with an absolute value > 0.6 are shown. PGPB, Plant Growth-Promoting Bacteria; PGPF, Plant Growth-Promoting Fungi.

with PGPB (Figure 7D), suggesting a complementary response to
the treatment. The network involving organic matter-degrading
bacteria (Figure 7E) suggests a strong positive correlation (r > 0.8)
with PGPB and nitrogen-fixing bacteria, indicating an integrated
response in nutrient mobilization and plant growth promotion.
Environmental fungi displayed varied correlations with other
microbial groups (Figure 7F). Some genera, like Naganishia,
showed moderate positive correlations (r ≈ 0.5 to 0.7) with PGPB,
while others exhibited weak to moderate negative correlations
(r ≈ −0.3 to −0.6), suggesting diverse ecological roles in the
biofertilized soil.

These results highlight the complex, interconnected response
of the soil microbiome to drone-assisted biofertilization and reveal
potential synergies and antagonisms that emerged throughout
the treatment.

4 Discussion

The structure of the soil microbial community was analyzed
under various agricultural treatments, revealing substantial shifts
in bacterial composition associated with fertilization strategies.
The current study demonstrates that the number of applications
and the type of treatment—whether backpack, drone-assisted,
or biofertilizer—significantly affected the relative abundances of
dominant and subdominant bacterial taxa.

Our analysis of untreated agricultural soils indicated a marked
predominance of Enterobacteriaceae, with Enterobacter and
Klebsiella genera constituting a significant portion of the bacterial

community. This aligns with Köberl et al. (2011) finding that
Enterobacteriaceae is a dominant family in agricultural soils from
Egypt (25% of total sequences), particularly in non-organic farming
systems. Chen et al. (2019) also observed this dominance pattern
in conventional rice cropping systems, where Enterobacteriaceae
members significantly increased under conventional fertilization
practices. These observations are consistent with the work of Fierer

et al. (2007), who demonstrated the capacity of these genera to

thrive under nutrient-depleted conditions. The prevalence of such
opportunistic bacteria typically indicates disturbed or simplified

ecosystems, as Van Elsas et al. (2012) documented in their
comprehensive study of soil microbial dynamics.

The microbial shifts observed in this study following
the application of teosinte-derived SynCom and precision
biofertilization suggest that targeted microbial inoculation can
lead to functionally enriched soil communities. The significant
reduction in Enterobacteriaceae, coupled with the increase in
Bacillus, Pantoea, and Rhizobiales, aligns with previous research
demonstrating that biofertilization promotes beneficial microbial
groups that enhance nutrient cycling and plant resistance to stress
(Bargaz et al., 2018; Deng et al., 2019a,b). Similar patterns have been
reported in soil microbiome studies where the introduction of plant
growth-promoting bacteria (PGPB) increases microbial diversity
and network connectivity (Zhalnina et al., 2018). Additionally, the
observed increase in Verrucomicrobia and Acidobacteria, often
associated with stable and resilient soil environments, suggests
that biofertilization not only enhances microbial diversity but
also contributes to long-term soil functionality (Fierer et al.,
2007).
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Additionally, we observed a significant presence of Firmicutes,
predominantly Bacillus species (Mandic-Mulec et al., 2015),
consistent with the findings correspond with previous studies
highlighting the adaptability of spore-forming bacteria to
environments with variable nutrient availability (Lennon and
Jones, 2011; Shade et al., 2012). Such limited microbial diversity
is often a hallmark of agricultural soils subject to minimal
management, as noted in recent meta-analyses of soil microbiome
structures (Delgado-Baquerizo et al., 2020).

The conventional backpack fertilization induced a significant
shift in microbial composition, with the relative abundance
of Enterobacter and Klebsiella decreasing over successive
applications (Geisseler and Scow, 2014). Conversely, genera
such as Pseudomonas and Lysinibacillus exhibited an increase in
relative abundance (Zhalnina et al., 2018). Pseudomonas, renowned
for their metabolic versatility and plant growth-promoting
attributes, appears to capitalize on the enhanced nutrient
availability of fertilization (Paungfoo-Lonhienne et al., 2015).
The proliferation of Lysinibacillus, a genus within the Firmicutes
phylum, suggests that fertilization supports the growth of selected
taxa and facilitates the emergence of new microbial competitors.
Lysinibacillus is known for its significant contributions to soil
health, particularly in the decomposition of organic matter and
nutrient cycling processes, both contributors to overall soil fertility
(Ding et al., 2013; Caulier et al., 2019). These alterations in
microbial community structure underscore the complex ecological
dynamics triggered by conventional fertilization practices in
agricultural soils.

Four applications of drone-assisted fertilization yielded a
similar trend to backpack methods but with more pronounced
impacts on microbial diversity (Adak et al., 2012). The dominance
of Enterobacter and Klebsiella decreased with consecutive
applications, mirroring the trend observed in backpack fertilization
(Kavamura et al., 2018). Notably, other bacterial genera, including
Bacillus, Pseudomonas, and Rhizobium, became significant
microbial community members under these conditions (Zhang
et al., 2015). Those genera are highly adaptable and can thrive in
various environmental conditions, including those with elevated
levels of anthropogenic inputs (Lori et al., 2023). Many of
those genera are known for their diverse metabolic capabilities,
including the degradation of complex organic compounds that
may contribute to enhancing nutrient cycling in fertilized soils
(Leff et al., 2015).

The proliferation of various bacterial groups, particularly those
involved in nutrient cycling, further emphasizes the impact of
drone-assisted fertilization on microbial dynamics (Zheng et al.,
2019). The seemingly increased abundances of specific genera, such
as Rhizobium, Bacillus, Pseudomonas, Azospirillum, Burkholderia,
Bradyrhizobium, and Streptomyces, crucial contributors to nitrogen
fixation, phosphate solubilization, and overall soil health enhancers,
suggests that this fertilization method may enhance soil nutrient
levels and promote the growth of beneficial bacteria (Gao et al.,
2019). Such shifts could yield long-term benefits for soil health
and plant productivity, fostering a more sustainable agricultural
ecosystem (Bender et al., 2016).

The more pronounced alterations observed in drone-assisted
fertilization compared to backpack methods may be attributed to

the enhanced precision and uniformity of application achieved
with drone technology (Mogili and Deepak, 2018). This precision
potentially results in a more homogeneous distribution of
nutrients, creating microenvironments that favor the proliferation
of specific bacterial genera, such as Bacillus, Pseudomonas,
Rhizobium, Burkholderia, Azospirillum, Bradyrhizobium, and
Lysinibacillus. Furthermore, drone-assisted fertilization does not
contribute to soil compaction compared to backpack or machine-
based fertilization, which may contribute to a soil structure that is
more favorable to microbial communities (Cardoso et al., 2013).

Biofertilization, whether backpack or drone-assisted, induced
the most significant changes in microbial community structure,
characterized by a marked increase in diversity (Bargaz et al., 2018).
The relative abundance of specific bacterial genera decreases (e.g.,
Enterobacter, Stenotrophomonas, and Klebsiella), while others, such
as Burkholderia and Azospirillum, become more prominent (Kour
et al., 2020). Burkholderia species are known for their biosynthetic
potential to produce complex organic compounds that contribute
to plant growth through various mechanisms, including nitrogen
fixation and plant growth-promoting hormones (Suárez-Moreno
et al., 2012). The increase in Azospirillum, a well-established genus
known for its nitrogen-fixing capabilities and association with the
rhizosphere, suggests that biofertilization not only enriches the
soil microbiome but also specifically enhances the populations of
bacteria that directly benefit plant health (Bashan and de-Bashan,
2010; Fukami et al., 2018).

Biofertilization treatments also increased Verrucomicrobia and
Acidobacteria, which include species like Solibacter,Koribacter, and
Occallatibater, often associated with healthy, stable soils (Fierer
et al., 2007). The increased presence of Verrucomicrobia, known for
their roles in carbon cycling and environmental resilience, indicates
a shift toward a more functionally diverse and potentially more
resilient soil ecosystem (Bergmann et al., 2011). Acidobacteria are
recognized for their adaptability to varied soil conditions and ability
to degrade complex organic materials, further contributing to the
overall health and sustainability of the soil environment (Kielak
et al., 2016).

The comparative analysis of backpack and drone-assisted
applications suggests that drone-assisted biofertilization may yield
a more uniform distribution of beneficial microbes, leading to
a more substantial increase in microbial diversity (Deng et al.,
2019a,b). However, it is essential to consider the potential long-
term implications of these changes. While increased microbial
diversity is generally associated with enhanced soil health and
resilience (Wagg et al., 2014), introducing specific genera at high
abundance could lead to microbial community structure and
functionality shifts. These changes must be monitored to ensure
they align with sustainable agricultural practices and optimal
nutrient cycling in the soil (Vitousek et al., 2013; Kuypers et al.,
2018).

In untreated soils, fungi genera such as Cladosporium,
Nigrospora, and Sordaria are relatively more abundant (Tedersoo
et al., 2014). Cladosporium is known for its resilience in various
environments, including soils, where it acts as a saprotroph,
decomposing organic matter (Bensch et al., 2010). Nigrospora

and Sordaria are similarly adapted to less disturbed soils, often
associated with decomposing plant material (Ma et al., 2022).
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The presence of Ascomycota in untreated soils suggests a
fungal community dominated by decomposers, reflecting a stable
ecosystem with balanced organic matter turnover (Sterkenburg
et al., 2015).

The introduction of conventional backpack fertilization leads
to a notable increase in the relative abundance of specific fungal
genera (Francioli et al., 2016). Some Fusarium species, potential
plant pathogens, show increased presence, potentially indicating
a risk for crops under these fertilization regimes (Moretti et al.,
2017). Aspergillus, another genus that thrives in nutrient-rich
environments, also becomes more prominent, possibly benefiting
from increased nutrient availability (Houbraken et al., 2014).

Drone-assisted conventional fertilization exhibits a similar
pattern but with an even higher relative abundance of specific
fungal genera as the number of applications increases (Zhu
et al., 2016). Specifically, genera such as Fusarium, Penicillium,
Verticillium, Gibberella, and Chrysosporium show a marked
increase in relative abundance under drone-assisted fertilization
conditions. This suggests that drone-assisted fertilization might
create conditions favoring the proliferation of these genera,
potentially leading to an increased risk of soil-borne diseases. The
presence of lignin-degrading fungi in both backpack and drone-
assisted treatments indicates an active breakdown of lignin-rich
organic matter, which could be a response to increased organic
inputs from fertilization (Osono and Takeda, 2006).

Backpack and drone-assisted biofertilization treatments exhibit
the most significant changes in the fungal community. These
treatments are characterized by a substantial increase in the relative
abundance of Mortierella, Penicillium, and Trichoderma, genera
known for their beneficial effects on soil health and plant growth
(Frac et al., 2018).Mortierella is often associated with improved soil
structure and nutrient cycling (Li et al., 2020), while Penicillium

and Trichoderma are well-known for their roles in biocontrol,
suppressing soil-borne pathogens, and promoting plant health
(Harman et al., 2004).

In addition to the beneficial taxa, Agaricomycetes are observed
in biofertilization treatments. These genera are typically found
in forest soils and are known for their mycorrhizal associations,
which enhance plants’ nutrient uptake (Tedersoo and Smith,
2013). Their presence in agricultural soils suggests biofertilization
may foster a soil environment more conducive to mutualistic
relationships, potentially leading to enhanced plant growth and
resilience (van der Heijden et al., 2015). The data also reveal
significant increases in other beneficial fungal genera such as
Trichoderma, known for its biocontrol properties, and Mortierella,
associated with phosphate solubilization. The clustering patterns
are compared to backpack and drone-assisted biofertilization,
which leads to a more homogeneous distribution of fungal
taxa. The relative abundance of potentially pathogenic fungi is
reduced in biofertilization treatments compared to conventional
fertilization, suggesting a shift toward a community dominated by
beneficial fungi (Berendsen et al., 2012).

The increased microbial diversity, particularly in
biofertilization treatments, may improve soil health through
enhanced nutrient cycling, disease suppression, and promotion
of beneficial plant-microbe interactions (Trivedi et al., 2020).
However, the high abundance of specific genera in biofertilization

treatments raises questions about potential long-term effects on
soil microbial balance and function (Dubey et al., 2019).

Across all treatments, Bacillus emerges as a central node
within themicrobial networks, consistently showing strong positive
correlations with other beneficial bacteria and fungi (Viswanath
et al., 2021). Bacillus is well-known for its plant growth-promoting
properties, including the production of antibiotics, enzymes, and
phytohormones that enhance plant health and protect against
pathogens (Radhakrishnan et al., 2017). Its central role across
different treatments suggests that it is a keystone species in
these soil ecosystems, critical for maintaining a healthy microbial
balance (Banerjee et al., 2018). As agricultural inputs are applied—
whether through conventional or biofertilization methods—there
is a noticeable increase in network complexity, characterized by
a more significant number of positive and negative interactions
between various microbial taxa (Mahanty et al., 2017). The
introduction of fertilization generally enhances the presence of
nutrient cycling and plant growth-promoting bacteria, which are
crucial for nitrogen fixation and overall soil fertility. However, this
also coincides with an increased presence of potentially pathogenic
microorganisms, particularly under conventional fertilization
(Rousk and Bååth, 2011). These organisms tend to thrive in
nutrient-rich environments, suggesting that while fertilization
promotes beneficial microbial activity, it also creates conditions
that could facilitate the proliferation of soil-borne diseases.

Biofertilization, mainly when applied with drone technology,
significantly alters the microbial community structure, leading to
more intricate and potentially beneficial networks (Deng et al.,
2019a,b). The rise of beneficial fungi Trichoderma, Penicillium, and
Mortierella, known for their biocontrol properties, indicates that
biofertilization fosters a more resilient soil ecosystem (Keswani
et al., 2019). These fungi form positive correlations with key
bacterial genera, suggesting a synergistic effect that could enhance
soil health and plant growth. The mutualistic relationships,
particularly involving mycorrhizal fungi, further support the idea
that biofertilization promotes a balanced and functionally diverse
soil microbiome (Emam, 2016).

The networks under biofertilization treatments are notable for
the emergence of genera involved in organic matter degradation
and nutrient cycling (Jacoby et al., 2017). As beneficial bacteria like
Rhizobium and Bacillus increase abundance through successive
biofertilization applications, opportunistic fungi like Cladosporium
and Setophoma significantly decrease. Similarly, while nitrogen-
fixing bacteria such as Bradyrhizobium and Azospirillum increase
their presence, potentially pathogenic fungi like Ascochyta

and Neoascochyta decline. Conversely, as beneficial fungi like
Trichoderma and Penicillium establish themselves, opportunistic
bacteria such as Enterobacter and Stenotrophomonas show marked
reductions. These negative correlations suggest a competitive
exclusion process where beneficial microorganisms may actively
suppress potentially pathogenic or opportunistic species,
contributing to a more balanced and healthy soil ecosystem.
The increased complexity of the microbial interactions in these
treatments suggests that biofertilization supports plant health and
contributes to long-term soil sustainability by promoting processes
that recycle organic matter and improve soil fertility (Lehmann
et al., 2017).
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While biofertilization enhances beneficial interactions within
the microbial community, increasing complexity can lead to
challenges in microbial management (Parnell et al., 2016). The
more complex the network, the greater the potential for beneficial
and antagonistic interactions. For example, certain environmental
microorganisms can negatively correlate with plant growth-
promoting bacteria, suggesting that not all interactions are valuable
and that introducing biofertilizers must be carefully managed to
avoid unintended consequences (Chaparro et al., 2012).

The antagonistic relationships between certain fungi and
bacteria highlight the need for a nuanced approach to fertilization
strategies (Mendes et al., 2011). While promoting beneficial
microbes is desirable, monitoring and managing the soil
environment is crucial for preventing the dominance of potentially
harmful species. The balance between promoting plant growth and
controlling pathogens is delicate, and the success of biofertilization
treatments may hinge on maintaining this balance (Raaijmakers
and Mazzola, 2016).

In summary, our study reveals the intricate dynamics of soil
microbial communities in response to various fertilization
strategies. The transition from conventional methods to
biofertilization, mainly when applied via drone technology,
demonstrates significant shifts in microbial community
composition. We observed the decline of potentially pathogenic
genera, such as Cladosporium and Setophoma, concurrent with
increased beneficial bacteria, including Bacillus and Rhizobium.
These changes were accompanied by establishing beneficial fungi
like Trichoderma and Mortierella, while opportunistic bacteria
such as Enterobacter showed marked reductions. However, it is
essential to recognize that these microbial community structure
shifts present opportunities and challenges. While the increased
abundance of plant growth-promoting microorganisms and
nitrogen-fixing bacteria (e.g., Bradyrhizobium, Azospirillum)
suggests enhanced soil functionality, the persistent presence of
some potentially pathogenic fungi (e.g., Fusarium) requires careful
monitoring. The emergence of Bacillus as a keystone species across
treatments and the development of complex bacterial-fungal
networks involving Penicillium and Agaricomycetes underscores
the potential for targeted microbial management in agricultural
systems. These temporal dynamics and microbial interactions
suggest biofertilization, mainly when delivered through drone
technology, may promote a more balanced and resilient soil
ecosystem. However, maintaining this equilibrium will require
informed management strategies.

5 Conclusion

This study provides valuable insights into how soil microbial
communities respond to fertilization strategies, highlighting
microbial succession patterns and community restructuring.
Our findings demonstrate that conventional fertilization and
biofertilization treatments induce distinct shifts in the soil
microbiome. Notably, biofertilization applications, particularly
when delivered via drone technology, were associated with an
increased abundance of beneficial microorganisms such as Bacillus
and Rhizobium, while the presence of potentially pathogenic

organisms decreased over time. The temporal analysis of
bacterial-fungal networks suggests that successive biofertilization
applications drive significant microbial restructuring, though
the long-term stability of these changes warrants further
investigation. Understanding these dynamics is crucial for
refining biofertilizer formulations and application strategies to
maximize their benefits for soil health and crop productivity.
Beyond identifying microbiome shifts, this study reinforces the
role of biofertilizers as a viable tool for sustainable agriculture.
By demonstrating their ability to enhance beneficial microbial
communities while suppressing harmful taxa, our findings
contribute to advancing biofertilizer-based management
strategies that improve soil functionality and resilience. Future
research should focus on elucidating the mechanistic pathways
underlying these microbial interactions and assessing their
agronomic impacts over multiple growing seasons. These
insights pave the way for more effective and ecologically sound
fertilization practices that integrate soil microbiome management,
ensuring long-term agricultural sustainability while maintaining
high productivity.
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