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Introduction: Streptococcus pneumoniae is a Gram-positive bacterium

responsible for severe infections such as meningitis and pneumonia. The

increasing prevalence of antibiotic resistance necessitates the identification of

new therapeutic targets. This study aimed to discover potential drug targets

against S. pneumoniae using an in silico subtractive genomics approach.

Methods: The S. pneumoniae genome was compared to the human genome to

identify non-homologous sequences using CD-HIT and BLASTp. Essential genes

were identified using the Database of Essential Genes (DEG), with consideration

for human gut microflora. Protein-protein interaction analyses were conducted

to identify key hub genes, and gene ontology (GO) studies were performed to

explore associated pathways. Due to the lack of crystal structure data, a potential

target was modeled in silico and subjected to structure-based virtual screening.

Results: Approximately 2,000 of the 2,027 proteins from the S. pneumoniae

genome were identified as non-homologous to humans. The DEG identified

48 essential genes, which was reduced to 21 after considering human gut

microflora. Key hub genes included gpi, fba, rpoD, and trpS, associated with

20 pathways. Virtual screening of 2,509 FDA-approved compounds identified

Bromfenac as a leading candidate, exhibiting a binding energy of −26.335 ±

29.105 kJ/mol.

Discussion: Bromfenac, particularly when conjugated with AuAgCu2O

nanoparticles, has demonstrated antibacterial and anti-inflammatory properties

against Staphylococcus aureus. This suggests that Bromfenac could be

repurposed as a potential therapeutic agent against S. pneumoniae, pending

further experimental validation. The approach highlights the potential for drug

repurposing by targeting proteins essential in pathogens but absent in the host.
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GRAPHICAL ABSTRACT

1 Introduction

Streptococcus pneumoniae, also known as pneumococcus, is
a significant global community health concern. This pathogen is
the chief cause of: meningitis, bacterial pneumonia, and febrile
bacteremia, and is linked to conditions such as otitis media,
sinusitis, and bronchitis (Shami et al., 2023). In developing
countries, it mainly affects young children and the elderly,
resulting in an estimated one million child deaths annually from
pneumococcal disease. The WHO emphasizes the urgent need for
better vaccines and treatments to combat this pathogen and rising
antimicrobial resistance. In 2024, S. pneumoniae was added to
the WHO’s updated Bacterial Priority Pathogens List (BPPL) as a
medium-priority pathogen because of its significant disease burden
(https://www.who.int/publications/i/item/9789240093461). This
inclusion highlights the critical need for enhanced research and
development of new therapeutic strategies to address infections
caused by this virulent microorganism. Lower respiratory
infections resulted in 2.6 million deaths globally in 2013,
with a notable increase to 2.74 million in 2015 (McMichael
et al., 2006). Beginning in the 1980s, a significant increase in
antibiotic intolerance across various regions has been shown
by S. pneumoniae. Although antibiotics and conjugate vaccines
are available, bacterial otitis media remains a leading cause and
pre-clinical visits and antibiotic failure are majorly influenced by
pneumococcus in the United States. The issue is exacerbated by the

prevalence of resistant strains, with resistance to penicillin being
displayed by over 40%, which often leads to resistance against other
antibiotics such as macrolides and tetracyclines, posing a global
health challenge (Musher, 1992). In the United States, the upper
respiratory tracts of children are found to contain more than 40%
of penicillin-resistant pneumococcal strains (Panwhar and Fiedler,
2018). The growing antibiotic resistance is considered a significant
global concern (O’Brien et al., 2009). Additionally, resistance
traits and pathogenic factors are capable of being disseminated by
S. pneumoniae through competence-dependent horizontal gene
transfer (McIntosh, 2002). Continuous serotype monitoring and
an understanding of the prevalence of drug-resistant strains in the
general population are required for effective management of this

issue (Sharew et al., 2021).
Invasive Pneumococcal Disease (IPD) is predominantly

associated with serotype 14 among the 101 recognized serotypes of
S. pneumoniae (Geno et al., 2015). The development of conjugated
pneumococcal vaccines targeting S. pneumoniae infections is based
on polysaccharide capsular serotypes (Chiba et al., 2014). For
instance, serotype 14 was addressed by the design of the 23-valent
Polysaccharide Pneumococcal Vaccine (PPV) for the management
of IPD. However, limited immunogenicity against pneumococci
has been demonstrated by PPSV23 (Cilloniz et al., 2016). Currently,
the Pneumococcal Polysaccharide Vaccine (PPSV23), the 10-
valent Pneumococcal Conjugate Vaccine (PCV10), the 7-valent
Pneumococcal Conjugate Vaccine (PCV7), and the 13-valent

Frontiers inMicrobiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1534659
https://www.who.int/publications/i/item/9789240093461
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Gohain et al. 10.3389/fmicb.2025.1534659

Pneumococcal Conjugate Vaccine (PCV13) are in use. Despite the
introduction of multi-valent PCV7, a noted increase in serotype 14
infections over time has been observed, which has been attributed
to the rise in drug resistance (Al-Jumaili et al., 2023).

The gold standard methods used to study outbreaks and
identify pneumococcal isolates, such as MultiLocus Sequence
Typing (MLST) and Pulse-Field Gel Electrophoresis (PFGE),
are molecular serotyping (Enright and Spratt, 1998), but high
associated costs are encountered. Thus, a challenge has been
presented by the accurate determination of the serotypes (Hu
et al., 2014). It is therefore imperative that a new novel therapeutic
drug target against S. pneumoniae is identified (Khan et al., 2022).
Better therapeutics may be led to by the discovery of a new drug
target (Lodha et al., 2013). Fortunately, new strategies have been
introduced through advancements in the post-genomic era and
whole-genome sequencing of pathogens, including comparative
subtractive genomics, for developing novel drugs and vaccine
candidates. Additionally, potential drug targets against these
pathogens can be identified using computational approaches (Fair
and Tor, 2014).

The subtractive genomic approach is used to compare host
and pathogen genomes to identify essential pathogen-specific
proteins that are absent in the host (Barh et al., 2011; Bottacini
et al., 2014; Uddin et al., 2015, 2020; Uddin and Saeed, 2014).
Genes critical for pathogen survival, replication, and sustainability
are highlighted, enabling the identification of therapeutic targets
that do not affect host biology. By focusing on non-host genes
involved in distinct metabolic pathways, pathogen function can
be disrupted while minimizing potential side effects (Uddin et al.,
2020; Wadood et al., 2018). Computational studies are utilized
to prioritize target genes, streamline experimental efforts, and
reduce the need for extensive research. The integration of multi-
omics data with structural and functional analysis is employed
to refine target selection, ensuring a systematic approach that
filters out paralogous and homologous sequences while focusing
on non-paralogous sequences essential for pathogen viability.
Overall, subtractive genomics is recognized as a valuable tool for
identifying promising therapeutic targets and facilitating efficient
drug development.

The current strategy for combating resistant pathogens
focuses on identifying unique and innovative drug targets
within the bacterial genome. Various methodologies, particularly
computational subtractive genomics analysis, are employed to
pinpoint these new drug targets effectively (Barh et al., 2011; Uddin
et al., 2015; Wadood et al., 2018). In this research, a computational
subtractive genomics approach was utilized to discover novel
targets against S. pneumoniae. This involved high-throughput
screenings of the S. pneumoniae genome and human gut bacteria
genome against the human genome to identify non-homologous
sequences using CD-HIT. The Database of Essential Genes (DEG)
was integrated into the analysis to detect potential drug targets,
alongside differential pathway analysis and subcellular localization
assessments. This process revealed druggable, non-homologous
essential proteins of S. pneumoniae, providing valuable insights
through GO and metabolic pathway evaluations (Ali et al., 2023).
Additionally, a drug repurposing approach consisting of structure-
based virtual screening was applied to potentially inhibit the
target protein.

2 Materials and methods

The current methodology consists of two stages, as illustrated
in Figure 1. In the first stage, distinctive and potentially druggable
targets in S. pneumoniae were identified using a subtractive
genomics approach, which involved the analysis of metabolic
pathways and gene ontology (GO), followed by homology
modeling of the target protein. This approach has been effectively
used to prioritize potential drug targets (Khan et al., 2022).
Various databases and computational tools were utilized to identify
therapeutic targets against S. pneumoniae.

In the second stage, virtual screening of 2,509 FDA-approved
compounds was performed using ADMET prediction, molecular
docking, and Density Functional Theory (DFT) to identify
potential repurposed inhibitors. Molecular docking and molecular
dynamics simulations were then conducted to determine the most
potent repurposed inhibitor.

2.1 Obtaining genomes of both the bacteria
and the host organism

The complete genome assemblies of S. pneumoniae

(GCF_002076835.1_ASM207683v1_protein.fasta) and humans
(GCF_000001405.40_GRCh38.p14_protein.fasta) were accessed
from the National Center for Biotechnology Information (NCBI;
Sayers et al., 2022) website (https://www.ncbi.nlm.nih.gov/).
Essential protein sequences for prokaryotic organisms were
retrieved from DEG (Zhang, 2004; http://origin.tubic.org/deg/
public/index.php).

2.2 Elimination of duplicate sequences

The genome of S. pneumoniae was processed using CD-HIT
(version 4.8.1) with a 90% identity threshold (Fatoba et al., 2021;
Fu et al., 2012). This tool, which is commonly used for clustering
and comparing protein and genomic sequences, was employed to
remove redundant or duplicate proteins (Huang et al., 2010). As a
result, duplicate protein sequences were filtered out, leaving only
the unique sequences for subsequent analysis.

2.3 Recognition of non-similar proteins and
assessment of gut microbiota

Protein sequences in S. pneumoniae lacking homologs in
human proteins were identified using a BLASTp search against the
Homo sapiens genome (Fatoba et al., 2021), with an E-value cut-
off of 10−5. Sequences with notable similarity to human proteins
were excluded, while non-homologous sequences were retained for
further analysis.

Since the gut microbiota plays a crucial role in maintaining
health and influencing disease states, interactions between humans
and their gut microorganisms are predominantly mutualistic
and symbiotic rather than merely commensal (Savage, 1977;
Sears, 2005). These microorganisms offer numerous benefits,
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FIGURE 1

Workflow of the study.

such as preventing pathogen proliferation, fermenting inactive
energy substrates, modulating immune responses, regulating
gastrointestinal growth, synthesizing essential vitamins (e.g.,
vitamin K and biotin), producing fat storage-related hormones,
and providing disease protection (Guarner and Malagelada,
2003). However, unintended inhibition of key microbial proteins
could be detrimental. To assess this, the selected non-human
S. pneumoniae proteins were compared with the genomes of
human gut microorganisms, obtained from various literature
sources (Anis Ahamed et al., 2021) and the mBodyMap
Database (Jin et al., 2022), using a BLASTp search with an E-
value cut-off of 10−5. Additionally, a BLASTp analysis of S.

pneumoniae non-homologous proteins were performed against
the DEG database, identifying essential proteins with an E-value
threshold of 10−100.

2.4 Recognition of vital non-similar genes

Proteins crucial to cellular metabolism are present in all
organisms (Deng et al., 2011). Therefore, a BLASTp analysis was
performed on the non-homologous proteins of S. pneumoniae

against the DEG database. Proteins deemed essential in S.

pneumoniae were identified by applying a stringent E-value
threshold of 10−100. A minimum cut-off score of 100 was used to
select essential genes (Fatoba et al., 2021). This approach yielded a

dataset of proteins that are both non-homologous to humans and
essential for S. pneumoniae.

2.5 Analysis of UniProt ID mapping and
evaluation of drug potential in selected
sequences

The UniProt ID Mapper facilitates the conversion of protein
identifiers across biological databases (Zaru et al., 2023), providing
a centralized platform for data integration and standardization.
By automating this process, it efficiently links identifiers from
diverse databases, enhancing interoperability, and supporting
bioinformatics analyses. To identify potential new drug targets,
all critical, unique, and predicted protein sequences were cross-
referenced with the DrugBank database (Knox et al., 2011), which
contains targets for FDA-approved drug molecules.

2.6 Analysis of sequence alignment using
the EMBOSS needle tool for pairwise
comparisons

Pairwise sequence alignment analysis was conducted using
EMBOSS Needle to compare two biological sequences for the
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identification of regions showing similarity or homology (Ionescu,
2019; Panwar et al., 2015). This tool, which is part of the EMBOSS
suite (Rice et al., 2000), employs the Needleman-Wunsch algorithm
for aligning sequences, facilitating the exploration of evolutionary
relationships, functional similarities, and structural motifs.

2.7 Subcellular localization identification

Proteins are classified into various subcellular regions, such
as the cytoplasm, inner membrane, periplasmic space, and outer
membrane, using localization prediction methods. Potential drug
and vaccine targets are identified among proteins located in the
cytoplasm and outer membrane, respectively. Accurate localization
is deemed essential for understanding protein function and
interactions, thereby aiding the development of targeted therapies.
The function of specific proteins is regarded as critical for
identifying therapeutic targets, as proper subcellular localization
is necessary for protein activity. UniProt was employed for this
analysis, and the results were validated using the CELLO v.2.5
online tool (Shami et al., 2023). It has been demonstrated that,
due to the ability of proteins to localize in multiple cellular
compartments, understanding their localization is vital for the
design of effective therapeutic strategies.

2.8 Exploration of protein connectivity in
networks

Protein-protein interaction (PPI) networks for the proteins
were sourced from STRING database version 12.0 (https://string-
db.org/; Szklarczyk et al., 2011). PPIs are fundamental to cellular
signaling and transduction, marking them attractive therapeutic
drug development targets (Nada et al., 2024). Recent technological
advances have made targeting these interactions increasingly
feasible. These networks were constructed and visualized using
Cytoscape 3.7.2 (Shannon et al., 2003). After merging the networks
of the targets to illustrate the interactions among all selected
proteins, a topological analysis was conducted. The central node
within the network was identified using the cytohubba plugin (Chin
et al., 2014).

2.9 Gene ontology analysis and pathway
analysis using ShinyGo

Functional enrichment of gene lists was assessed using
ShinyGO 0.80 (Ge et al., 2020; Hannan et al., 2024). Enrichment
was evaluated across three GO categories: biological processes (BP),
molecular functions (MF), and cellular components (CC). Pathway
analysis was also performed to identify significantly enriched
pathways using resources such as KEGG (Kyoto Encyclopedia of
Genes and Genomes) and Reactome. Default parameters were
applied for the analyses, and results were visualized through bar
charts and dot plots, which displayed relevant GO terms and
pathways along with their p-values and enrichment scores. Insights

into the biological functions and interactions of the gene sets were
provided by this combined approach.

2.10 Protein framework development and
assessment

Due to the lack of an experimentally determined crystal
structure for rpoD, the 3D model of the protein was created
using homologymodeling. The rpoD sequence from S. pneumoniae

was sourced from UniProt (https://www.uniprot.org/) with the
ID WP_000201898 and was used to build the model via Swiss
Model (Schwede, 2003). Refinement of the initial models was
performed with the Galaxy web server (Ko et al., 2012). Themodels’
quality was evaluated through tools such as Verify3D, ERRAT,
and Procheck (https://saves.mbi.ucla.edu/; Shami et al., 2023),
and secondary structure predictions were made using PSIPRED
(McGuffin et al., 2000). Stability and conformational dynamics
of the model were examined with molecular dynamics (MD)
simulations over a 100 ns timeframe (Khataniar et al., 2023).

2.11 Binding site prediction

Structural pockets and cavities are often associated with the
binding and active sites of proteins. In this study, the binding site
of the modeled protein was predicted using UniProt (https://www.
uniprot.org/) and the Motif search tool (https://www.genome.jp/
tools/motif/), along with the FTMap server (Das et al., 2024;
Kozakov et al., 2015) and the CASTp server (http://sts.bioe.uic.edu/
castp/; Tian et al., 2018). Additionally, a comprehensive review of
the relevant literature was conducted. The identified active sites
were utilized for Molecular docking studies with ligands and the
respective protein targets.

2.12 Virtual screening of FDA-approved
compounds

2.12.1 ADMET
A collection of 2,509 FDA-approved drugs was obtained

from the DrugBank database, and ADMET screening was carried
out using Discovery Studio to filter out undesirable ligands.
This screening included evaluations of parameters such as
aqueous solubility, blood-brain barrier permeability, CYP2D6
binding, hepatotoxicity, intestinal absorption, and plasma protein
binding. Further toxicity predictions were made using the Ames
mutagenicity model to exclude unsuitable ligands.

2.12.2 Molecular docking
The protein was refined based on the subtraction genomics

study, and molecular docking of the ligands that qualified the
ADMET were docked with the target using the LibDock module
(Tai et al., 2023) within Discovery Studio. LibDock is extensively
used for the virtual screening of compound libraries to identify
potential drug candidates. This high-throughput docking approach
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facilitates the rapid screening of large chemical libraries by assessing
ligand binding poses and interactions within a target protein’s
active site.

2.12.3 Density Functional Theory
Properties such as electron affinities, ionization potentials,

orbital energies, and molecular structures were assessed through
DFT analysis (Rajkhowa et al., 2022). This analysis focused on
HOMO-LUMO frontier orbitals, which indicate the chemical
reactivity of the compounds. A higher EHOMO value indicates
a greater tendency for a molecule to donate electrons, while
the ELUMO value reflects its electron-accepting ability. A smaller
HOMO-LUMO gap (δE) was associated with increased molecular
reactivity and decreased stability of the compound. These
calculations were executed in Discovery Studio using DMol3 with
the B3LYP functional and the DNP basis set. Ligands were selected
based on energy gap, ensuring optimal stability and binding affinity
for the target protein.

2.13 Protein-drug complexes: molecular
dynamics simulations

MD simulations were carried out to evaluate the stability
and conformational changes of the proposed model, as well as
to examine protein-ligand interactions over various time frames
(Rajkhowa et al., 2017). The model protein underwent MD
simulation for 100 ns, while the ligand-protein complex was
simulated for 50 ns using the GROMACS package version 2021.4
with the GROMOS54a7 force field. The protein was placed within
a cubic periodic box and was solvated using the SPC water model,
with a separation of∼1.0 nm between the solute molecules and the
boundaries of the box. Energy minimization was followed by a 50
ns equilibration phase at a pressure of 1 bar and a temperature of
298K, employing Berendsen coupling. The production dynamics
simulation was subsequently conducted in an NVT ensemble at
298 K.

The RMSD (root mean square deviation) was calculated to
determine the average positional deviation between atom groups in
the protein-ligand complex relative to the protein frame, providing
insights into complex stability. The RMSF (root mean square
fluctuation) was used to analyze the average deviation of individual
residues from their reference positions, highlighting regions of
the protein with the greatest variability compared to the reference
structure. To assess the compactness of the protein structure, the
radius of gyration (Rg) was measured, which indicates the distance
of protein residues from the center of mass, thus providing insights
into the overall compactness and folding state of the protein
structure (Gl et al., 2020). Using the Automated Topology Builder
(version 3.0) online tool (https://atb.uq.edu.au/; Stroet et al., 2018),
the topology of selected ligands was generated (Saha and Jha, 2024).

2.14 Calculations of binding-free energy

The binding free energy was assessed through the Molecular
Mechanics Poisson-Boltzmann Surface Area (MM-PBSA)

approach within GROMACS (Manhas et al., 2019; Rajkhowa et al.,
2022). This technique combines molecular mechanics energy with
solvation energy derived from the Poisson-Boltzmann equation
and the solvent-accessible surface area (SASA).

Molecular mechanics energies, including bond, angle,
torsional, and non-bonded interactions, were computed from
MD trajectory. Solvation-free energies were estimated using
the Poisson-Boltzmann equation, with SASA contributions for
non-polar interactions.

MM-PBSA were chosen for its efficiency and accuracy
in evaluating binding energies. It effectively analyzes protein-
ligand, protein-protein interactions, and conformational changes,
providing insights into the energetic contributions and forces
driving molecular recognition and stability.

3 Results

The study was conducted to identify novel drug targets in S.

pneumoniae, a bacterium responsible for severe infections such as
meningitis, bacteremia, and pneumonia. In developing nations, it
is associated with acute lower respiratory tract infections, causing
∼5 million deaths annually among children under five (Sheoran
et al., 2022). Increasing penicillin resistance and limited vaccine
efficacy have led to rising morbidity and mortality, while drug
development remains slow due to high costs and the requirement
for specialized expertise, further complicated by emerging drug-
resistant strains.

Advancements in bioinformatics have facilitated drug
discovery, with subtractive genomics widely utilized to identify
pathogen-specific targets through in silico proteome analysis. This
approach allows for the selection of essential bacterial proteins
without affecting the host genome, thereby minimizing toxicity. In
this study, subtractive genomics was employed to identify potential
drug targets in S. pneumoniae, a method previously applied to
characterize unique targets in human pathogens (Wadhwani and
Khanna, 2016).

3.1 Paralogous protein sequence
elimination

The complete proteome of S. pneumoniae, comprising 2027
protein sequences, was retrieved from the NCBI database in
FASTA format. The aim of the study was to identify unique,
essential proteins specific to the pathogen that could be potential
therapeutic targets. After retrieving the proteome, paralogous
sequences were removed to improve the precision of subsequent
analyses. This task was performed using the CD-HIT tool,
which reduced the proteome to 2016 proteins by eliminating 11
redundant sequences.

3.2 Profiling of non-homologous proteins

Similarity between the pathogen’s proteins and those of the host
may be observed. Therefore, it is necessary to identify and exclude
these homologous host protein sequences from the pathogen’s
proteome to mitigate potential toxicity to host cells. This was
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TABLE 1 UniProt ID mapper result.

Sl_no. From Entry Protein names Gene names Organism Length

1 WP_000201898.1 POA4I9 RNA polymerase sigma factor SigA sigA, rpoD, SP_1073 S. pneumoniae serotype 4 (strain ATCC
BAA-334/TIGR4)

369 AA

2 WP_000201898.1 POA4JO RNA polymerase sigma factor SigA sigA, rpoD, spr0979 S. pneumoniae (strain ATCC
BAA-255/R6)

369 AA

3 WP_000103700.1 POA4M9 Oligopeptide transport system
permease protein AmiD

amiD, SP_1889 S. pneumoniae serotype 4 (strain ATCC
BAA-334/TIGR4)

308 AA

4 WP_000103700.1 POA4NO Oligopeptide transport system
permease protein AmiD

amiD, spr1705 S. pneumoniae (strain ATCC
BAA-255/R6)

308 AA

5 WP_001019003.1 POA4S1 Fructose-bisphosphate aldolase fba, SP_0605 S. pneumoniae serotype 4 (strain ATCC
BAA-334/TIGR4)

293 AA

6 WP_001019003.1 POA4S2 Fructose-bisphosphate aldolase fba, spr0530 S. pneumoniae (strain ATCC
BAA-255/R6)

293 AA

7 WP_000165444.1 P67595 Tryptophan—tRNA ligase trpS, SP_2229 S. pneumoniae serotype 4 (strain ATCC
BAA-334/TIGR4)

341 AA

8 WP_000165444.1 P67596 Tryptophan—tRNA ligase trpS, spr2034 S. pneumoniae (strain ATCC
BAA-255/R6)

341 AA

accomplished by using BLASTp with an E-value cutoff of 10−5.
Following the BLASTp analysis, 2000 non-homologous sequences
were identified.

3.3 Identification of crucial genes that are
non-homologous

The development and growth of pathogens are significantly
influenced by essential proteins. These proteins are deemed
highly promising and secure targets for drug development.
DEG was employed to pinpoint these crucial proteins, leading
to the identification of 48 essential proteins vital for the
pathogen’s survival.

3.4 Screening of human gut metagenomes

Antibiotics, which often impact both pathogenic and beneficial
bacteria in the human microbiota, can lead to prolonged
disruption of normal gut flora (Willing et al., 2011). To reduce
the risk of broadside effects, pathogen proteins similar to
gut flora proteins were identified and excluded as potential
drug targets. The complete genome of S. pneumoniae was
used as a query against reference genomes of gastrointestinal
flora using BLASTp within the mBodyMap Database. Of 2,087
gut bacterial sequences, 87 were found to be homologous
to gut flora, while 2,000 sequences were classified as non-
homologous. A BLASTp search against the human genome
revealed 1,981 proteins with similarities to human proteins,
leaving 27 proteins (with an E-value of 10−5) as dissimilar to
the human genome. Additionally, a BLASTp search against DEG
identified 21 essential genes for the survival of S. pneumoniae

(with an E-value of 10−100), indicating their potential as effective
drug targets.

3.5 UniProt ID mapper analysis

The UniProt ID mapper was used to analyze the 21 essential
proteins, resulting in 168 mapped entries: eight were reviewed
(Swiss-Prot) and 160 were unreviewed (TrEMBL). This mapping
revealed that the reviewed proteins were associated with two S.

pneumoniae strains: serotype 4 (ATCC BAA-334/TIGR4; Williams
et al., 2012) and strain ATCC BAA-255/R6. Key proteins identified
included RNA polymerase sigma factor SigA, oligopeptide
transport system permease protein AmiD, fructose-bisphosphate
aldolase, and tryptophan—tRNA ligase. These proteins were found
in both S. pneumoniae serotype 4 and strain R6, indicating
their conservation across these strains. Valuable insights into
the molecular biology and potential therapeutic targets of this
important human pathogen are provided by the detailed data from
the ID mapping resource, as presented in Table 1.

3.6 Potential for drug development in
selected sequences

The potential for drug development targeting essential proteins
in S. pneumoniae was assessed, leading to the identification of eight
proteins that correspond to targets of FDA-approved drugs as listed
in the DrugBank database (Table 2). Based on literature evidence
(Williams et al., 2012) indicating the avirulence of strain ATCC
BAA-255/R6, serotype 4 (strain ATCC BAA-334/TIGR4) was
selected, and four proteins, including the RNA polymerase sigma

factor SigA, Oligopeptide transport system permease protein

AmiD, Fructose-bisphosphate aldolase, and Tryptophan—tRNA

ligase, were chosen for further investigation.
To identify and evaluate druggable proteins in S. pneumoniae,

the DrugBank database was utilized. Four unique, essential, and
non-homologous proteins were examined, with three proteins
associated with serotype 4 (strain ATCC BAA-334/TIGR4) and
one associated with strain ATCC BAA-255/R6. Table 2 provides
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TABLE 2 Findings from comparative sequence alignment evaluation.

Sl_no. Protein names Gene
names

S.
pneumoniae

Name of the organism
in which reported (from
DrugBank)

Identity
(in %)

Sub-cellular
localization
UniProt and
CELLO v.2.5

1 RNA polymerase sigma
factor SigA

sigA, rpoD,
SP_1073

S. pneumoniae

serotype 4 (strain
ATCC
BAA-334/TIGR4)

Clostridioides difficile (strain 630) 56.7 Cytoplasmic

2 RNA polymerase sigma
factor SigA

sigA, rpoD,
spr0979

S. pneumoniae

(strain ATCC
BAA-255/R6)

Thermus thermophilus (strain
HB8/ATCC 27634/DSM 579)

44 Cytoplasmic

3 Oligopeptide transport
system permease protein
AmiD

amiD,
SP_1889

S. pneumoniae

serotype 4 (strain
ATCC
BAA-334/TIGR4)

– – Cell membrane
multi-pass membrane
protein

4 Oligopeptide transport
system permease protein
AmiD

amiD, spr1705 S. pneumoniae

(strain ATCC
BAA-255/R6)

– – Cell membrane
multi-pass membrane
protein

5 Fructose-bisphosphate
aldolase

fba, SP_0605 S. pneumoniae

serotype 4 (strain
ATCC
BAA-334/TIGR4)

Plasmodium falciparum 7.7 Cytoplasmic

6 Fructose-bisphosphate
aldolase

fba, spr0530 S. pneumoniae

(strain ATCC
BAA-255/R6)

– – Cytoplasmic

7 Tryptophan—tRNA
ligase

trpS, SP_2229 S. pneumoniae

serotype 4 (strain
ATCC
BAA-334/TIGR4)

Geobacillus stearothermophilus 33.6 Cytoplasmic

8 Tryptophan—tRNA
ligase

trpS, spr2034 S. pneumoniae

(strain ATCC
BAA-255/R6)

– – Cytoplasmic

detailed information on drug targets identified, highlighting three
proteins with potential as drug targets. Of these, three proteins
are localized in the cytoplasmic region, while one is associated
with the cell membrane. Cytoplasmic proteins are often considered
favorable therapeutic targets (Khan et al., 2022).

3.7 Pairwise sequence alignment analysis

The sequence identity between S. pneumoniae proteins and
their homologs in other organisms (such as Clostridioides

difficile, Thermus thermophilus, Plasmodium falciparum, and
Geobacillus stearothermophilus) represents the percentage of
identical amino acids in aligned regions of their protein
sequences. In this study, sequence identity values ranged
from 7.76% to 56.7% (Table 2), reflecting varying evolutionary
and functional diversity among the proteins. Higher identity
values indicate conserved regions crucial for protein function,
while lower values suggest divergence and potential functional
differences. Despite their presence in other organisms, the low
sequence identity makes these proteins suitable candidates for
further investigation.

The identified target was re-evaluated applying the BRENDA
enzyme database (https://www.brenda-enzymes.org; Chang et al.,

2021). Among the three targets of interest, Fructose-bisphosphate
aldolase was found inHomo sapiens. The results showed a sequence
identity of only 14.4% (Table 3). This confirms that these targets
are viable for drug development. Additionally, the low sequence
identity implies minimal cross-reactivity, reducing the risk of off-
target effects. Further studies will explore the therapeutic potential
of these targets.

The RNA polymerase sigma factor SigA in S. pneumoniae

was selected due to its critical role in bacterial transcription
regulation. Unlike fructose-bisphosphate aldolase, which shares
22.7% sequence similarity with its human homolog, SigA and
tryptophan-tRNA ligase (TrpS) do not exhibit such similarity.
Transcription initiation is critically dependent on SigA, which
directs RNA polymerase to specific promoter sequences and
facilitates the transcription of housekeeping genes essential for
cellular growth and maintenance (Kazmierczak et al., 2005; Paget,
2015). Insights into SigA’s structure and function are crucial for
developing targeted antibacterial therapies (Feklístov et al., 2014).

Although TrpS plays a vital role in protein synthesis by
charging tRNA with tryptophan, its impact is narrower compared
to SigA. The focus on SigA underscores the importance of targeting
bacterial transcription mechanisms. Expression of various crucial
genes can be impaired by the inhibition of SigA, potentially
resulting in more effective antibacterial strategies (Murakami and
Darst, 2003).
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TABLE 3 Summary of sequence similarity.

Sl_no. Protein names Organisms (Brenda and UniProt) Seq identity Seq similarity

S. pneumoniae Homo sapiens

1 RNA polymerase sigma factor SigA POA4I9 No – –

2 Fructose-bisphosphate aldolase POA4S1 P05062, P04075 14.4% 22.7%

3 Tryptophan–tRNA ligase P67595 No – –

The primary sigma factor, σ70 (SigA), is encoded by the rpoD
gene in bacteria. Essential for initiating transcription, SigA binds
to RNA polymerase (RNAP) and recognizes promoter sequences
(Große et al., 2022; Miura et al., 2015). The transcription of
housekeeping genes necessary for bacterial growth and survival
is facilitated by SigA. Additionally, the expression of horizontally
acquired genes, including those related to antibiotic resistance
and virulence, is regulated by SigA. Multiple critical genes can be
disrupted simultaneously by targeting SigA, making it a promising
target for broad-spectrum antibacterial strategies. In contrast, trpS
is involved in tryptophan biosynthesis (Martins et al., 2024), which
is a more specific function. Therefore, the importance of targeting
bacterial transcription mechanisms is highlighted by focusing on
rpoD (SigA), as interfering with SigA can impact a wide range
of essential genes, making it a more significant target compared
to trpS.

3.8 Structure of protein-protein interaction
networks

Interactions among proteins (Schwartz et al., 2009), including
RNA polymerase sigma factor SigA, fructose-bisphosphate
aldolase, and tryptophan-tRNA ligase, were obtained from
the STRING database with a confidence score of 0.007. These
interactions were used to construct a protein-protein interaction
network, as illustrated in Figure 2. The network was analyzed to
examine the relationships between the proteins. The oligopeptide
transport system permease protein AmiD was not included in the
STRING database, so it was omitted from the analysis, leaving the
remaining three proteins for further study.

3.9 Assessment of crucial genes

The Protein-Protein Interaction network was displayed and
examined with Cytoscape (Figure 3). To pinpoint hub genes,
or proteins with the highest connectivity in the network, the
CytoHubba plugin of Cytoscape version 3.7.2 was utilized.
These hub genes were considered critical components of the
S. pneumoniae genome, indicating their potential as targets for
selective antibacterial therapies. As illustrated in Figure 3, the top
20 core targets identified were gpi, fba, rpoD, trpS, gapA, tpi, eno,
gpmA, tktA, gapN, pgk, thrS, metS, pfKA, rpoB, rpoA, tyrS, and
pheT. Four genes—gpi, fba, rpoD, and trpS—were identified as
key hub genes due to their high connectivity, which is determined
by the number of nodes associated with each protein. Of these

four hub genes, fba, rpoD, and trpS were selected for further
investigation due to their significant involvement in relevant
pathways, whereas gpi was excluded, as it was not detected in the
UniProt ID analysis.

3.10 Gene ontology evaluation and
pathway exploration

The GO evaluation was performed with ShinyGO version
0.80 (Ge et al., 2020; Ramesh Babu, 2023) revealed significant
insights into gene pathways associated with the studied genes.
Various sorting criteria were employed to identify the most
relevant pathways, including fold enrichment, false discovery rate
(FDR), the average of FDR and fold enrichment, the number
of genes, and a combined metric of FDR and fold enrichment.
Notably, pathways were identified by sorting with Avg_rank
(FDR and fold enrichment), resulting in a total of 211 pathways,
indicating a comprehensive range of BP, MF, and CC. In contrast,
sorting by rpoD yielded only 41 pathways, highlighting a more
focused selection based on specific gene associations as shown in
Supplementary Table 2.

These results underscore the effectiveness of ShinyGO in GO
analysis, as significant biological insights were derived through
customizable sorting and filtering capabilities tailored to the
research objectives. The findings also illustrate the potential for
ShinyGO to enhance data visualization and facilitate integration
with other bioinformatics tools, thereby establishing it as a valuable
resource for diverse genomic studies.

Figure 4 displays the results of an enrichment analysis of
various BP, MF, and CC with their statistical significance and
the number of associated genes highlighted. The X-axis is used
to indicate fold enrichment, reflecting the frequency of each BP
in the dataset compared to what would be expected by chance.
The fold enrichment value is represented by the length of each
bar, and BP are depicted on the Y-axis. The colors of the bars,
ranging from blue to red, represent –log10 (FDR) values, with
red hues indicating higher statistical significance. The number of
genes linked to each process is indicated by the size of the circles
at the end of the bars. High fold enrichment and significance
are observed for processes such as “RNA metabolic process,”
“Carboxylic acid metabolic process,” and “Oxoadic acid metabolic
process,” as indicated by long red bars with large circles. In contrast,
lower fold enrichment and significance are exhibited by processes
like “Catalytic activity” and “Metabolic process,” represented by
shorter blue bars with smaller circles. A detailed summary of the
BP most prominently represented in the dataset is provided by this
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FIGURE 2

Merged PPI of RNA polymerase sigma factor SigA, fructose-bisphosphate aldolase, and tryptophan–tRNA ligase.

FIGURE 3

Displaying the significant hub genes along with their rank scores, with red indicating the most important hub genes, orange signifying moderate

importance, dark orange representing average importance, and yellow denoting the lowest importance.

visual depiction, which aids in understanding gene functions and
their interactions.

The hierarchical clustering dendrogram is used to visualize
relationships among BP, MF, and CC identified through gene
enrichment analysis (Figure 5). Each process is represented by a
node marked with a blue circle and labeled accordingly. The degree

of relatedness is indicated by branch lengths, with shorter branches
representing closer associations. Statistical significance is denoted
by p-values in scientific notation adjacent to each node (Ramesh
Babu, 2023). A p-value of 3.6× 10−6 for the “Heterocycle metabolic
process” indicates strong enrichment. Closely related processes,
such as “Heterocycle metabolic process,” “Nucleobase-containing
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FIGURE 4

Functional enrichment analysis using ShinyGO ontology.

FIGURE 5

A hierarchical clustering tree illustrating the correlation among

significant pathways of the top 20 genes was generated in ShinyGO.

Pathways with numerous shared genes were clustered, with larger

dots representing more significant p-values.

compound metabolic process,” and “Cellular aromatic compound
metabolic process,” are grouped on shorter branches, while
less related processes, like “Catalytic activity” and “Metabolic
process,” are connected by longer branches. The use of this
dendrogram is significant as enriched processes are identified
and highlighted, gene functions and interactions are clarified,
and hypotheses are generated. It also supports the discovery of
novel biological connections and guides research toward potential
therapeutic targets.

Pathway analysis was conducted on the top 20 hub genes
using ShinyGO (version 0.80; Zhuang et al., 2022). An overview
of the most enriched pathways and their associated genes is
presented in Figure 6, which displays the enriched pathways and

their associated genes from a given gene set. Pathways are ranked
by the number of genes involved, with those having the highest
counts emphasized. Most input genes are linked to metabolic
pathways, including nucleobase, heterocycle, aromatic compound,
and organic substance metabolism, each involving about 14–
15 genes. Biosynthetic pathways, such as organic substance
biosynthesis and general biosynthesis, are highlighted with ∼11
genes. Cellular localization pathways are also shown, with 13 genes
related to intracellular processes and 10 to the cytoplasm. The
Figure details specific genes in these pathways, providing insights
into their roles and relationships within the biological context.

3.11 Homology modeling of the identified
target

In S. pneumoniae, the RNA polymerase sigma factor SigA
(rpoD) is crucial for transcription, yet its crystal structure is not
present in the Protein Data Bank (PDB). Despite the availability of
an AlphaFold-predicted structure on UniProt, a homology model
was constructed using Swiss Model (Supplementary Figure 1) to
facilitate additional analysis and validation (Rajkhowa et al., 2017).
From the UniProtKB database, the primary sequence of SigA,
which comprises 369 amino acids, was retrieved (sequence ID:
POA4I9, entry WP_000201898.1). The modeling was focused on
the sigma-70 factor domain-2, specifically targeting amino acid
residues fromM1 to I206. This approach was informed by literature
and bioinformatics tools, which identified several domains in
rpoD, but domain 2 (Region-2; Guo et al., 2018; Lonetto et al.,
1992) is defined as conserved binding site so we have considered
domain 2 but as the stretch is very small so we have considered
from residue no 1–206 to design our model. Structural insights
into the conserved domains of the sigma factor, particularly
the binding site, are offered by the homology model, which is
considered essential for understanding its interactions within the
transcription machinery.
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FIGURE 6

Pathway analysis using ShinyGO 0.80.

3.12 Modeled structure validation

In this study, the structural models of the target protein
were optimized using the GALAXY refinement tool (Ko et al.,
2012), leading to notable improvements across several evaluation
metrics. The initial model showed a RMSD (Root Mean Square
Deviation) of 0 Å, but refinement quality was lacking. Following
the refinement, the lowest RMSD of 0.708 Å was achieved by
MODEL 4, indicating a closer alignment with the reference
structure. The MolProbity score improved from 0.984 in the initial

model to 0.755 in MODEL 4, reflecting enhanced stereochemical
quality. The clash score decreased from 1.2 to 0.8, indicating a
reduction in steric clashes, and the number of poor rotamers
was eliminated, demonstrating optimal side-chain conformations
in MODEL 4. The proportion of residues situated in favorable
regions of the Ramachandran plot was elevated to 99.5%, and
the GALAXY energy decreased to −5794.77, indicating enhanced
stability. Therefore, MODEL 4 was identified as the most refined
and accurate structure, making it the preferred candidate for
further studies, as shown in Table 4.
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TABLE 4 Selection of the optimal model after refinement.

Model RMSD MolProbity Clash score Poor rotamers Rama favored GALAXY energy

Initial 0.000 0.984 1.2 1.2 97.5 −3433.22

MODEL 1 0.853 0.814 1.1 0.6 99.5 −5813.14

MODEL 2 1.502 0.866 1.4 0.0 99.5 −5807.18

MODEL 3 0.829 0.755 0.8 0.6 99.0 −5799.21

MODEL 4 0.708 0.755 0.8 0.0 99.5 −5794.77

MODEL 5 0.846 0.755 0.8 0.0 99.5 −5787.65

MODEL 6 0.739 0.814 1.1 0.0 99.5 −5787.58

MODEL 7 0.800 0.866 1.4 0.6 99.0 −5783.87

MODEL 8 0.736 0.814 1.1 0.6 99.5 −5783.26

MODEL 9 0.881 0.755 0.8 0.0 99.5 −5782.61

MODEL 10 0.862 0.866 1.4 0.0 99.5 −5782.48

Values of MODEL 4 has been made bold to show the best values as compared to the other models.

The structure verification process is described in the
subsequent sections, following the employment of various
tools for model validation.

3.13 Protein confirmation using PSIPRED

Figure 7 shows that a higher prevalence of alpha helices
compared to beta sheets was indicated in the RNA polymerase
sigma factor SigA by the PSIPRED analysis (Ashraf et al., 2022).
Further validation of the predicted secondary structural elements,
including the formation of alpha helices and beta sheets, was
performed through modeling with the Modeler tool.

3.14 Validation of the modeled protein
using PROCHECK, ERRAT, and verify 3D

Protein models were assessed using ERRAT, Verify 3D, and
Ramachandran plot analyses (Ashraf et al., 2022). The evaluation
identified MODEL 4 as the most optimal. ERRAT scores were
consistently close to 100, reflecting minimal errors in atomic
interactions and confirming high structural reliability. In the Verify
3D analysis, compatibility percentages were observed to range
from 67.48% to 100%, with MODEL 4 achieving full compatibility
at 100%, demonstrating complete consistency between its three-
dimensional structure and one-dimensional sequence. According
to the Ramachandran plot analysis, the percentage of residues
in favored regions was found to range from 67.48% to 100%,
with ∼3%−4% located in allowed regions and few or no residues
identified as outliers. Notably, 100% of residues in MODEL

4 were found in favored regions, suggesting that all residues
adopted energetically favorable conformations, indicative of a
highly refined structure. Collectively, these metrics confirm that
the refined models, particularly MODEL 4, exhibit high quality
and structural integrity, rendering them suitable for further

analysis and potential experimental validation, as presented in
Table 5.

3.15 Active site identification

The protein analysis identified key domains, including the
Sigma-70 factor domain-2 (residues 135–205), a conserved binding
site, and additional domains involved in transcriptional regulation
and DNA binding. Annotations on domain structures and
functional sites were obtained from UniProt, and motif search
tools identified conserved sequences and motifs, allowing precise
characterization of the protein’s interactive regions and regulatory
elements, as detailed in Supplementary Tables 1A, B.

Domain 2 of the sigma factor σA was found to be essential
for transcription initiation (Guo et al., 2018; Lonetto et al., 1992).
Specific promoter sequences, particularly the−10 region (Pribnow
box), are recognized and bound by this domain, facilitating
the formation of the RNA polymerase-promoter complex. The
transcription complex is stabilized byDomain 2, ensuring that RNA
polymerase remains bound to the promoter. The transition from
the closed to the open complex, allowing DNA strand unwinding
for RNA synthesis, is promoted by this domain. Interactions
with regulatory proteins are mediated by Domain 2, influencing
transcriptional responses to environmental changes and regulating
gene expression.

Using the FTMap server, key amino acid residues in the protein
involved in both hydrogen-bonded and non-bonded interactions
with the ligand were identified, as shown in Figures 8A, B (Pagare
et al., 2021). Residues involved in high-frequency hydrogen-
bonded interactions include LYS_23, ARG_54, GLN_56, ASP_57,
GLY_67, ASN_76, GLU_77, GLU_78, GLU_79, ARG_149,
TYR_150, GLN_193, GLN_202, and THR_205, which are crucial
for stabilizing the ligand-protein complex and determining binding
specificity. Non-bonded interactions, including hydrophobic
contacts and van derWaals forces, are mediated by residues such as
ALA_16, ILE_19, ARG_54, GLN_56, ASP_57, ALA_58, GLY_59,
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FIGURE 7

This sequence plot provides a comprehensive overview of the secondary structure elements and functional annotations of the protein, which is

valuable for both structural biology studies and functional analysis.

TABLE 5 PROCHECK, ERRAT, and verify 3D analysis.

Model_no. ERRAT Verify 3D (%) 3D−1D Ramachandran plot

Favored (%) Allowed (%) Outliers (%)

MODEL 1 100 70.39 >=0.1 96.80 3.20 0.00

MODEL 2 100 67.48 >=0.1 95.70 3.70 0.00

MODEL 3 99.49 70.39 >=0.1 96.30 3.20 0.50

MODEL 4 100 70.87 >=0.1 96.80 3.20 0.00

MODEL 5 100 69.90 >=0.1 95.70 4.30 0.00

MODEL 6 100 70.39 >=0.1 96.30 3.20 0.00

MODEL 7 100 69.42 >=0.1 96.30 3.20 0.50

MODEL 8 100 70.39 >=0.1 96.30 3.20 0.00

MODEL 9 100 70.39 >=0.1 96.30 3.20 0.50

MODEL 10 100 68.93 >=0.1 96.80 3.20 0.00

ASN_76, GLU_77, GLU_78, GLU_79, ASP_86, LEU_87, ARG_149,
TYR_150, PHE_157, TRP_189, TRP_190, ARG_192, THR_205,
and ILE_206. These residues are identified as significant contact
points that contribute to the enhancement of binding affinity.
Interactions of moderate and low frequency also contribute to the
overall stability of the binding. Valuable insights into the binding
mechanism are provided by this detailed analysis, which also
serves as a foundation for designing molecules that target these
specific interactions.

To elucidate the surface topology and functional regions of
the protein structure, the CASTp (Computed Atlas of Surface
Topography of Proteins) tool was utilized for analysis. A
three-dimensional representation of the protein is provided in
Supplementary Figure 2, with the backbone displayed in a ribbon
format, and various surface pockets are highlighted by colored
spheres. Different active sites are marked by these spheres,
which identify key binding pockets essential for the protein’s
function. Four distinct pockets were identified, each characterized
by its solvent-accessible surface area (SA) and volume, as
shown in Supplementary Figure 2 and Supplementary Table 3. The
measurements of solvent-accessible surface area indicate that

Pocket 1 has the largest area and volume, suggesting a prominent
role in ligand binding or enzymatic activity, while Pocket 4, despite
being smaller, may still have functional significance.

3.16 Molecular dynamic simulation of the
native protein

All-atom MD simulations were conducted on the native SigA
protein model for 100 ns to evaluate its structural changes
and dynamics using root-mean-square deviation (RMSD) analysis
(Jairajpuri et al., 2021; Rajkhowa et al., 2017, 2022). Insights
into the structural stability of the SigA protein over time were
provided by the RMSD graph. An initial rapid increase in RMSD
from 0 to ∼0.4 nm indicated significant conformational changes
as the protein underwent equilibration. Following this phase, the
RMSD values fluctuated between 0.4 and 0.6 nm, as shown in
Figure 9A, suggesting that various conformations were explored
while the protein remained relatively stable. After 50 ns, a
mean RMSD value was stabilized, with no significant upward or
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FIGURE 8

Figure showing the key amino acid residues in the modeled protein using FTMap (A) H-bonds; (B) non-bonded interactions.

downward trends detected, indicating that an equilibrium state
was reached and a stable conformation was maintained for the
remainder of the simulation. The final RMSD values, ranging
from 0.5 to 0.6 nm, were observed to indicate that substantial
deviation from the reference structure was not present after
the initial equilibration phase. This stability suggests that the
functional conformation of the SigA protein was preserved under
the simulated conditions, which is essential for its biological role in
S. pneumoniae. Understanding the structural stability of SigA helps
provide insights into its potential interactions with other molecules
and its overall function in the bacterial cell.

Insights into the structural dynamics of the SigA protein were
provided by the root mean square fluctuation (RMSF) analysis,
with values ranging from ∼0.5 to 1.5 nm observed across different
residues. Moderate fluctuations (0.5–1.0 nm) were observed in the
first 50 residues, indicating relative stability with some flexibility.
Higher fluctuations, peaking at around 1.5 nm, were seen in
residues 50–100, suggesting increased dynamics likely associated
with flexible loops or functional sites. In contrast, residues 100–
150 exhibited lower RMSF values (0.5–1.0 nm), indicating greater
stability, while residues 150–200 showed slight increases (around
1.0 nm), suggesting some flexibility that may be relevant for
interactions, as illustrated in Figure 9B. Overall, these results
suggest that while most of SigAmaintains a stable structure, certain

regions exhibit significant dynamics, which may be important for
its biological function and interactions.

The radius of gyration (Rg) plot illustrated how the protein’s
structure evolved during the 100 ns simulation period. Rg values
fluctuated between ∼1.8 and 2.05 nm, with most values stabilizing
around 1.95 nm, as presented in Figure 9C. These fluctuations
indicate that the protein underwent conformational changes,
reflecting its dynamic nature. Compact structure retention,
essential for the protein’s biological activity, was indicated by
the stable Rg values. Overall, the plot demonstrates a balance
between flexibility and stability in the protein’s conformation,
indicating that although some degree of motion was present,
a predominantly compact and functional structure was retained
throughout the simulation.

3.17 Virtual screening of the ligands

To determine safety and non-carcinogenic potential,
compounds from the DrugBank database were evaluated based on
their ADMET (absorption, distribution,metabolism, excretion, and
toxicity) characteristics and their carcinogenicity profile. Detailed
ADMET profiles and toxicity predictions for these compounds
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FIGURE 9

Structural behavior and density of the native protein. (A) RMSD plot; (B) RMS fluctuation plot; and (C) Radius of gyration with time evolution plot.

are provided in Supplementary Table 4. Out of 2,509 compounds
retrieved, 2,328 were eliminated based on toxicity predictions.
Additionally, 1,303 compounds were selected according to
hydrophilicity criteria, as detailed in Supplementary Table 5. The
protein was determined to be hydrophilic, with a hydropathy
index of −0.307; thus, compounds with higher lipophilicity were
excluded, while those with hydrophilicity values ranging from +3
to−2 were considered for further analysis.

LibDock (Alam and Khan, 2018) molecular docking
was applied to refine the selection process, resulting in the
identification of the 471 top-scoring compounds, detailed in
Supplementary Table 6. Density Functional Theory (DFT) analysis
was performed on these compounds, revealing that 22 had negative
binding energies, as determined using the Discovery Studio
module. Six compounds—Famotidine, Nitrendipine, Proguanil,

Ceforanide, Bromfenac, and Ceftibuten-were identified through
further DFT analysis as having the smallest HOMO-LUMO energy
gaps, as presented in Supplementary Table 7 and Figures 10A–F.

Following the evaluation of hydrogen bond interactions, as
detailed in Figure 11 and Supplementary Table 8, Bromfenac (Lee
et al., 2023; Ye et al., 2020) and Ceftibuten (Karlowsky et al.,
2022; Wiseman and Balfour, 1994) were selected for further
analysis. Due to the formation of three hydrogen bonds and
the presence of unfavorable steric interactions, Famotidine was
excluded. Nitrendipine and Proguanil were dismissed because of
insufficient experimental evidence. Additionally, Ceforanide was
eliminated for forming only a single hydrogen bond.

3.18 Molecular dynamics simulation of the
protein-ligand complex

Bromfenac and Ceftibuten, when bound to the RNA
polymerase sigma factor SigA, underwent 50 ns of all-atom
MD simulations. To evaluate the stability and dynamics of the
SigA-Bromfenac and SigA-Ceftibuten complexes, systematic and
structural parameters were computed (Rajkhowa et al., 2022).
Stability was assessed using the RMSD plot, with Bromfenac
and Ceftibuten depicted by green and purple lines, respectively.
Both complexes exhibited an initial rise in RMSD, with SigA-
Bromfenac reaching around 0.2 nm and SigA-Ceftibuten reaching
∼0.25 nm. During the mid-phase (10–30 ns), stabilization around
0.3 nm was noted for the SigA_Bromfenac complex, while greater
fluctuations were exhibited by the SigA_Ceftibuten complex,
reaching up to 0.4 nm. In the final phase (30–50 ns), the RMSD
of the SigA_Bromfenac complex was maintained at ∼0.3–0.4 nm,
whereas the SigA_Ceftibuten complex increased to about 0.5 nm.
This indicated greater stability for the SigA_Bromfenac complex,
suggesting a more stable interaction with SigA compared to
Ceftibuten, as shown in Figure 12A.

The residue flexibility within the two SigA complexes, bound
to Bromfenac (depicted by the red line) and Ceftibuten (depicted
by the blue line), was illustrated using a plot of root-mean-square
fluctuation (RMSF). A lower degree of flexibility was noted in the
SigA_Bromfenac complex, indicating a more rigid conformation.
Increased flexibility was observed around residues 40–60 and
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FIGURE 10

Showing HOMO-LUMO of the six compounds with lowest Eg. (A) Famotidine; (B) Nitrendipine; (C) Proguanil; (D) Ceforanide; (E) Bromfenac; (F)

Ceftibuten.

FIGURE 11

H-bond interaction of (A) Bromfenac and (B) Ceftibuten with the receptor.

90–110 in both complexes, with higher peaks recorded in the
SigA_Ceftibuten complex. Enhanced fluctuations were also noted
around residues 120–140 in the SigA_Ceftibuten complex. These
results indicated that a more stable structure was maintained by the
SigA_Bromfenac complex, reinforcing that Bromfenac interacted
more stably with SigA, as depicted in Figure 12B.

During the 50 ns MD simulation, the compactness of the
SigA complexes with Bromfenac (indicated by the purple line)

and Ceftibuten (indicated by the green line) was demonstrated
through a plot of the radius of gyration (Rg). Initial Rg values
of ∼1.95 nm were recorded for both complexes, suggesting
similar compactness. Over time, stabilization around 1.9 nm was
observed for the SigA_Bromfenac complex, indicating increased
compactness. In contrast, fluctuations between 1.85 and 1.95 nm
were exhibited by the SigA_Ceftibuten complex, indicating less
consistent compactness. Overall, the findings demonstrated that
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FIGURE 12

(A) RMSD plot of SigA with Bromfenac and Ceftibuten; (B) RMS fluctuation plot of SigA with Bromfenac and Ceftibuten; (C) Radius of gyration (Rg)

plot of SigA with Bromfenac and Ceftibuten.

a more stable and compact structure was maintained by the
SigA_Bromfenac complex compared to the SigA_Ceftibuten
complex, further supporting that Bromfenac formed a more stable
interaction with SigA, as presented in Figure 12C.

3.19 Assessment of binding energy

The binding interactions of Bromfenac and Ceftibuten
were evaluated using MM-PBSA (Molecular Mechanics Poisson-
Boltzmann Surface Area) analysis based on data from MD. The
van der Waals energy for Bromfenac was measured at −80.983
± 20.129 kJ/mol, while Ceftibuten was found to be −99.688 ±

26.800 kJ/mol, indicating favorable interactions with a stronger
affinity observed for Ceftibuten. The electrostatic energy values
were recorded as −75.863 ± 40.066 kJ/mol for Bromfenac and
−199.464 ± 43.954 kJ/mol for Ceftibuten, suggesting attractive
interactions, with significantly stronger electrostatic interactions
attributed to Ceftibuten.

The polar solvation energy for Bromfenac was determined to
be 141.547± 54.370 kJ/mol, whereas Ceftibuten exhibited a higher
value of 325.643 ± 62.032 kJ/mol, indicating unfavorable solvation
effects for Ceftibuten. The solvent-accessible surface area (SASA)
values were measured for Ceftibuten −11.036 ± 1.771 kJ/mol for
Bromfenac and −15.474± 2.672 kJ/mol for Ceftibuten, suggesting
favorable interactions regarding surface exposure.

The binding energy for Bromfenac was calculated as −26.335
± 29.105 kJ/mol, indicating favorable binding, while a positive
binding energy of 11.016 ± 26.392 kJ/mol was observed for
Ceftibuten, suggesting reduced binding efficacy. Overall, it was
concluded that while stronger interaction energies were exhibited
by Ceftibuten, Bromfenac was identified as better candidate for
effective binding, as shown in Table 6. Although antimicrobial
activity is not directly exhibited by Bromfenac alone, antibacterial

TABLE 6 Binding free energy calculation of the protein and ligand

complexes.

Energy SigA_Bromfenac
(kJ/mol)

SigA_Ceftibuten
(kJ/mol)

van der Waals −80.983± 20.129 −99.688± 26.800

Electrostattic −75.863± 40.066 −199.464± 43.954

Polar solvation 141.547± 54.370 325.643± 62.032

SASA −11.036± 1.771 −15.474± 2.672

Binding −26.335± 29.105 11.016± 26.392

and anti-inflammatory effects are demonstrated when it is
combined with nanoparticles. For example, endophthalmitis can
be treated by AuAgCu2O-bromfenac sodium nanoparticles (Ye
et al., 2020; AuAgCu2O-BS NPs) through the combination of
antibacterial and anti-inflammatory actions. MRSA (methicillin-
resistant Staphylococcus aureus) is eradicated by these nanoparticles
through photodynamic effects and the release of metal ions, with
the bacterial membrane being disrupted and cell death being
caused. Therefore, the potential of Bromfenac as a repurposed drug
against S. pneumoniaemay be explored experimentally.

4 Discussion

High rates of meningitis, lobar pneumonia, otitis media,
and bacteremia are caused by S. pneumoniae. The potential
increase in pneumococcal infections is suggested by the rising
resistance to penicillin and the limited availability of pneumococcal
vaccines, highlighting the urgent need for the identification of new
therapeutic targets. The subtractive genomics method is employed
in bioinformatics to identify pathogen-specific targets. This in

silico approach involves a thorough examination of the pathogen’s
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genome to identify key proteins involved in the disease, with the
host genome excluded from consideration.

Although previous studies have explored subtractive genomics
in S. pneumoniae (Khan et al., 2022; Sheoran et al., 2022; Wadood
et al., 2018), the TIGR4 strain remains highly prevalent. Over the
past decade, this specific serotype has been the leading cause of
childhood meningitis, pneumonia, and bacteremia in developing
countries. Sequencing and publication of the complete genome
for the virulent serotype 4 strain TIGR4 were accomplished by
The Institute for Genomic Research (TIGR) in 2001. Despite its
identification over 20 years ago, the TIGR4 strain still shows
significant virulence in murine models (Tettelin et al., 2001) and
continues to be a key focus in pneumococcal pathogenesis research.
Thus, the current study is directed at identifying new drug targets
within the S. pneumoniae TIGR4 strain.

Analysis was conducted on 2,027 proteins from the complete
proteome of S. pneumoniae. To improve computational efficiency
and resource management in large datasets, paralogous sequences
were identified and removed. Using the CD-HIT tool with a 90%
similarity threshold, 11 paralogous sequences were filtered out,
leaving a final dataset of 2,016 proteins.

Given that many antibiotics inadvertently target beneficial
human gut microbiota alongside pathogens, the exclusion of
pathogen proteins homologous to gut flora proteins from the drug
target pool could mitigate adverse side effects. The evolutionary
relationship with gut flora was assessed by querying the entire
genome of S. pneumoniae against gastrointestinal flora reference
genomes using BLASTp via the mBodyMap Database. Of the
2,087 gut bacterial sequences, 87 showed homology with gut flora,
whereas 2,000 were non-homologous. A BLASTp search against
the human genome identified 1,981 homologous proteins, leaving
27 proteins (E-value ≤ 10−5) that did not exhibit similarity to the
human genome. Through a BLASTp search against DEG, 21 genes
essential for the viability of S. pneumoniae (E-value≤ 10−100) were
identified, suggesting their potential as drug targets.

Genes essential for cellular survival cannot sustain bacterial life
if they are disrupted or degraded. Therefore, a strategic approach
for bacterial eradication and disease treatment is provided by
targeting these vital proteins, which are considered excellent
candidates for the development of vaccines and antibiotics. A total
of 69 essential proteins were identified, with 48 shared between host
and pathogen and 21 specific to host gut bacteria and pathogen.
However, it should be noted that therapeutic applications may not
be suitable for all essential genes due to their potential involvement
in host metabolic pathways.

Subcellular localization prediction provides a cost-effective
means to infer protein function and guide therapeutic
development. Since proteins may localize in multiple cellular
compartments, localization data are critical for the rational
design of therapeutic agents. Due to the challenges associated
with purifying and studying membrane proteins, drug targets are
generally selected from cytoplasmic proteins.

For drug screening purposes, the DrugBank database was
queried using BLASTp to compare all essential non-homologous
proteins involved in distinct bacterial pathways. This comparison
led to the identification of four proteins with potential for
drug targeting: RNA polymerase sigma factor SigA, Oligopeptide

transport system permease protein AmiD, Fructose-bisphosphate
aldolase, and Tryptophan-tRNA ligase. The primary focus was
placed on RNA polymerase sigma factor SigA (Große et al., 2022;
Martins et al., 2024), while the other proteins were excluded based
on the reasons outlined in the manuscript.

The Swiss-Model was utilized to predict the three-dimensional
structures of the selected target proteins through a homology
modeling approach. For molecular docking analysis, which is
essential in drug discovery for predicting interactions between
proteins and ligands, compounds fromDrugBank (FDA-approved)
were employed. Molecular docking using LibDock identified 471
compounds with the highest docking scores. Density Functional
Theory (DFT) analysis further refined this list to 22 compounds
with negative binding energies. Of these, six compounds-
Bromfenac, Ceftibuten, Famotidine, Nitrendipine, Proguanil, and
Ceforanide- exhibited the smallest HOMO-LUMO energy gaps.
Bromfenac and Ceftibuten were prioritized for further analysis
based on favorable hydrogen bonding interactions. Famotidine was
excluded due to unfavorable steric interactions, Nitrendipine and
Proguanil were removed due to insufficient experimental evidence,
and Ceforanide was excluded due to limited hydrogen bonding
(one bond). The stability and dynamics of these interactions over
time were assessed through MD simulations.

For ensuring effective metabolism and therapeutic efficacy, the
absorption and distribution of an ideal drug candidate throughout
the body should be readily achieved. High costs can be incurred
when drug candidates are rejected during clinical trials due to
adverse side effects. Therefore, ADMET (absorption, distribution,
metabolism, excretion, and toxicity) profiling, an essential phase
in drug discovery, was carried out using Discovery Studio,
which showed favorable pharmacokinetic properties for specific
compounds. Of 2,509 compounds screened, 2,328 were excluded
based on toxicity. Compounds with hydrophilicity values between
+3 and−2 were retained for further analysis, given the hydrophilic
nature of the target protein (hydropathy index−0.307).

The MM-PBSA method was used to calculate the binding free
energies of the docked complexes, offering quantitative assessments
of interaction strength.More stable and compact binding with RNA
polymerase sigma factor SigA was demonstrated by Bromfenac

compared to Ceftibuten among the compounds tested, indicating
its potential as a promising drug candidate.

The time and cost associated with drug development can be
significantly reduced through drug repurposing. In this study,
existing drugs were screened for interactions with identified
targets, and Bromfenac, a non-steroidal anti-inflammatory drug,
was recognized as a potential candidate for repurposing against
S. pneumoniae. Although no reports have indicated antimicrobial
activity for Bromfenac, some studies propose that it possesses
antibacterial and anti-inflammatory properties, supported by
experimental evidence. While Bromfenac does not exhibit direct
antibacterial action, antibacterial and anti-inflammatory effects
relevant to our research are observed when it is combined
with nanoparticles.

For instance, AuAgCu2O-bromfenac sodium nanoparticles
(AuAgCu2O-BS NPs; Ye et al., 2020) are utilized to combine
antibacterial and anti-inflammatory effects for the treatment of
endophthalmitis after cataract surgery. The ability to eradicate
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methicillin-resistant Staphylococcus aureus (MRSA) is attributed
to these nanoparticles due to their photodynamic properties
and the release of metal ions. It should be noted that the
antibacterial effect of AuAgCu2O NPs is not directly influenced
by Bromfenac sodium alone. However, a bactericidal function
is demonstrated by AuAgCu2O-BS NPs through the disruption
of the bacterial membrane, leading to its shrinkage. Interaction
with the cell membrane occurs via the nanoparticles, which may
affect its permeability, while metal ions are released that penetrate
the bacteria.

Significant antibacterial effects in the treatment of
endophthalmitis have been observed in studies involving
AuAgCu2O-BS NPs used alongside laser treatment. Investigating
the efficacy of Bromfenac against S. pneumoniae would be
worthwhile. Therefore, it can be suggested that Bromfenac
might serve as a potentially effective repurposed drug against
S. pneumoniae.

The identification of key hub genes and their associated
pathways offers significant insights into the molecular biology of
S. pneumoniae and establishes a foundation for novel therapeutic
strategies. The structural integrity and reliability of the refined
protein models further support their potential for experimental
validation. The speed of discovering new drug targets for drug-
resistant pathogens is enhanced by the use of bioinformatics
tools, as demonstrated by the results of this study. The potential
for addressing bacterial infections through both new drug
development and drug repurposing is emphasized.

5 Conclusion

The drug discovery process has been significantly advanced
through the utilization of genome and proteome sequence analysis
of various pathogens with bioinformatics tools. The use of in

silico methods has been prompted by the increasing incidence
of drug resistance to identify therapeutic targets that are not
homologous with the host proteome. To enhance this process,
a subtractive genomics approach has been employed to identify
essential proteins that are non-homologous and not part of gut
flora, which can be explored for developing new therapeutic
agents against S. pneumoniae. The targeting of strain-specific, non-
homologous essential bacterial proteins is anticipated to facilitate
disease eradication while minimizing adverse effects on the host.
The impact of these targets on the survival and pathogenicity of S.
pneumoniae is required to be evaluated through additional in vivo

and in vitro studies.
Despite its many benefits, this approach has limitations due

to the predictive nature of the tools used. The tools are based
on algorithms, and errors may occur, as these algorithms are
designed and coded by humans and may have limited specificity
for certain tasks.
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