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Introduction: Porcine deltacoronavirus (PDCoV) is an enteropathogenic coronavirus
that causes acute diarrhea, vomiting, dehydration, and even death in piglets,
resulting in serious economic losses to the pork industry worldwide. PDCoV has
received much attention owing to its broad host range, including humans, posing
a potential threat to public health. However, the prevalence, characteristics, and
host cellular gene expression of PDCoV remain poorly understood.

Methods: In this study, a new PDCoV strain (CHN/SX-Y/2023, GenBank number
PQ373831) was successfully isolated, identified, and subjected to phylogenetic
tree and transcriptome analysis in human hepatoma (Huh7) cells following
PDCoV infection.

Results: The results showed that the CHN/SX-Y/2023 strain belongs to the
Chinese lineage and causes cytopathic effects in canonical cell lines (LLC-PK1
and ST cells) and other cell lines (Huh7 and LMH cells). However, HEK-293T,
EEC, MDBK, and Vero-CCL81 cells were not found to be susceptible in this
study. Based on transcriptome analysis, 1,799 differentially expressed genes
(DEGs) were upregulated and 771 were downregulated during PDCoV infection.

Discussion: Among the upregulated genes, FCGRIA, VSIG1, TNFRSF9, and
PLCXD3 are associated with immunity, inflammation, and lipid catabolism.
Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that
the upregulated DEGs were significantly enriched in the MAPK, TNF, and NF-xB
signaling pathways and viral protein interactions with cytokines and cytokine
receptors. Protein—protein interaction networks showed that the upregulated
genes CXCL8, DUSP1, PTGS2, and IL15 were associated with inflammation and
immunity. In addition, the protein levels of p-IRF3, LC3-1l, and ACSL4 increased,
suggesting that PDCoV infection in Huh7 cells induces an intrinsic immune
response, cellular autophagy, and ferroptosis. Collectively, our findings provide
new insights into the characteristics and mechanisms of PDCoV infection.
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1 Introduction

Porcine deltacoronavirus (PDCoV), also referred to as coronavirus
HKUI15, is a member of the genus Deltacoronavirus of the family
Coronaviridae (Kikuti et al, 2024). PDCoV causes diarrhea,
dehydration, vomiting, and enteric damage in neonatal piglets, similar
to those caused by porcine epidemic diarrhea virus (PEDV) and
transmissible gastroenteritis virus (TGEV) (Bahoussi et al., 2022; Yin
etal, 2022). PDCoV was first reported in pigs in Hong Kong (Woo
et al,, 2012), and received significant attention after an outbreak in
Ohio, United States in 2014 (Wang et al., 2014; Shan et al., 2024).
Interestingly, a previous study reported that the PDCoV (CHN/
AH-2004) strain was isolated from Anhui Province, China, as early as
2004 (Dong et al., 2015). PDCoV has spread rapidly throughout the
United States, China, South Korea, Japan, Thailand, and Vietnam,
posing an enormous threat and economic loss to the commercial pork
industry (Zhao et al., 2019; Kong et al., 2022).

PDCoV is an enveloped, single-stranded, positive-sense RNA
virus that is pleomorphic, with a diameter of 60-180 nm (Ma et al.,
2015). The genome of PDCoV is appropriately 25.4 kb in length, and
encodes 15 mature nonstructural proteins, four structural proteins
and three accessory nonstructural proteins (Tang et al., 2021). Among
the structural proteins, S plays an important role in the binding of the
virus to host receptors (Liu et al., 2022). The E and M transmembrane
proteins are involved in envelope formation and viral release (Masters,
2006; Schoeman and Fielding, 2019). The PDCoV N protein is highly
conserved and binds to the viral RNA (Lee and Lee, 2015). Recent
studies have shown that PDCoV uses aminopeptidase N (APN) from
different species to enter host cells and exhibits a broad spectrum of
infectivity (Li et al., 2018; Yang et al., 2021). Notably, PDCoV strains
have been isolated from blood samples of Haitian children (Lednicky
etal, 2021). Furthermore, human hepatoma (Huh7) and HeLa cells
are susceptible to PDCoV, while human lung carcinoma cells (A549)
support PDCoV replication in the presence of trypsin (Fang et al.,
2021). These studies indicate that PDCoV poses a potential risk of
human infection, thereby posing a threat to public health (Li et al.,
2022; Alhamo et al., 2022).

In this study, we explore phylogenetics, infected characterization,
and transcriptome analysis of a new PDCoV strain, which are crucial
to provide information for the host response to PDCoV infection. Our
data enrich understanding of the epidemiology and pathogenesis of
PDCoV strains and provide important insights into their prevention
and control.

2 Materials and methods
2.1 Cells and main reagents

LLC Porcine Kidney Epithelial (LLC-PK1), Swine Testis (ST),
Baby Hamster Syrian Kidney-21 (BHK-21), African Green Monkey
Kidney (Vero-CCL81), Human Embryonic Kidney 293 cells stably
expressing the SV40 large T antigen (HEK-293T), Madin-Darby
Canine Kidney (MDCK), Goat enteroendocrine cells (EEC), Leghorn
Male Hepatoma (LMH) cells, and Huh7 cells were cultured in
Dulbeccos modified Eagle medium (DMEM) with high glucose
(Gibco, United States). Madin-Darby bovine kidney (MDBK) cells
were grown in RPMI 1640 medium (Gibco, United States). Ten percent
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fetal bovine serum (FBS, Gibco, United States) and 1% penicillin-
streptomycin solution (Gibco, United States) were added to the
medium. The cells were cultured at 37°C containing 5% CO,. The cell
information is shown in Supplementary Table S1. The cell culture
conditions used to infect different cells with PDCoV were as follows:
washing of cells (LLC-PK1, ST, Vero-CCL81, MDCK, EEC, LMH, and
Huh?7) with PBS two times, virus incubation for 2 h in fresh DMEM
containing 10 pg/mL trypsin (Sigma, United States), in fresh DMEM
containing 5 pg/mL trypsin (Sigma, United States) (in HEK-293T and
BHK-21), and in fresh RPMI 1640 containing 10 pg/mL trypsin
(Sigma, United States) (in MDBK). The mouse anti-PDCoV N
monoclonal antibody was preserved in our laboratory. GAPDH
antibody was purchased from Proteintech (Wuhan, China). Goat anti-
Mouse IgG (H + L) Highly Cross-Adsorbed Secondary Antibody, and
Alexa Fluor™ Plus 594 were purchased from Thermo Fisher Scientific
(China).

2.2 Clinical samples

Clinical intestinal samples were collected from Xianyang Regional
Wen’s Animal Husbandry Co., Ltd. in 2023. After three freeze-thaw
cycles, the samples were homogenized, vortexed, and centrifuged. The
supernatants were then filtered through a 0.22 pm sterile filter and
stored at —80°C.

2.3 Virus isolation and electron
microscopic observations

PDCoV was isolated from LLC-PK1 cells cultured in T75 flasks.
Briefly, after incubation of the filtered sample with 10 mL DMEM and
10 pg/mL trypsin (Sigma, United States) for 2 h, the cells were washed
and cultured in DMEM supplemented with 10% FBS and 1%
penicillin-streptomycin solution at 37°C in a 5% CO, incubator.
When an obvious cytopathic effect (CPE) was observed in
approximately 90% of the cell monolayers, the T75 flasks were frozen
and thawed three times at —80°C. The supernatants and cells were
then harvested and stored at —80°C.

The PDCoV-infected LLC-PK1 cell culture medium was clarified
by centrifugation. After filtration through 0.45 pm filters, the PDCoV
medium was ultracentrifuged (Beckman Coulter, United States). The
prepared samples were stained with an equal volume of 3%
phosphotungstic acid in 0.4% sucrose and applied to a 300-mesh
Formvar and carbon-coated copper grid. After blotting and drying,
the PDCoV grid was examined under a Talos L120C electron
microscope (Thermo Fisher Scientific).

2.4 TCIDs, assay

Briefly, viral titers were measured using 50% tissue culture
infectious dose (TCIDs,) assays in LLC-PKI1 cells in 96-well plates. The
cells were washed and PDCoV was inoculated inl0-fold serial
dilutions in 100 pL DMEM with 10 pg/mL trypsin. Next, the cells
were washed, 200 pL of DMEM with 10% FBS and 1% penicillin-
streptomycin solution was added after 2 h. CPE was observed for
3-5 days and analyzed using Reed—-Muench method.
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2.5 Western blotting assay

PDCoV at a multiplicity of infection of 1 was adsorbed onto cells in
DMEM containing 10 pg/mL trypsin for 2 h. The cells were washed and
DMEM with 10% FBS and 1% penicillin-streptomycin solution was
added. The cells were collected following PDCoV infection. The protein
extracts were prepared from cells by suspension in lysis buffer containing
protease inhibitor phenylmethylsulfonyl fluoride (Solarbio, Beijing) for
30 min on ice. The proteins were separated on 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis gels and transferred to
0.22 pm polyvinylidene difluoride membranes (Immobilon®, Merck,
China). The membranes were blocked with 10% nonfat milk and
incubated overnight with PDCoV N antibodies. After washing three
times, the membranes were incubated with a 1:10000 dilution of
horseradish peroxidase-labeled goat anti-mouse IgG (H + L) secondary
antibody (EASYBIO, Beijing) for 45 min. Protein bands were detected
using Pierce ECL Western Blotting Substrate (Thermo Fisher Scientific),
and the band density was quantified using Image] software (Version 1.38).

2.6 Immunofluorescence assay

Briefly, PDCoV-infected LLC-PK1 cells were fixed with 4%
paraformaldehyde (Solarbio, Beijing) for 30 min, washed three times,
and permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) for
10 min. The fixed cells were blocked with 10% (w/v) skim milk for 1 h
and incubated overnight with anti-PDCoV N antibody. The cells were
then washed and incubated with Goat Anti-Mouse IgG (H + L)
Highly Cross-Adsorbed Secondary Antibody (Alexa Fluor™ Plus
594) for 1h. Nuclei were visualized using 4’,6-diamidino-2-
phenylindole nuclear counterstaining (Sigma-Aldrich®, Merck,
China). Cell observation and imaging were performed using a
fluorescence microscope (Leica, Germany).

2.7 Whole-genome amplification and
sequencing

PDCoV-infected samples were centrifuged and TRIzol reagent
(Invitrogen) was added. The RNA samples were stored at
—80°C. Reverse transcription was performed using the PrimeScript
Ist Strand cDNA Synthesis Kit (Takara). The cDNA was amplified by
polymerase chain reaction (PCR) using Taq DNA Polymerase
(Takara). Nineteen overlapping primer pairs were designed to amplify
the complete PDCoV gene sequence (Supplementary Table S2). The
primers and positive recombinant plasmids were purchased from
Beijing Tsingke Biotech Co., Ltd. (Beijing, China). The raw genomic
sequence fragments were imported into SeqMan in DNASTAR for
assembly and annotation. Sequence alignment analysis was performed
using ClustalW. The PDCoV sequences obtained in this study have
been submitted to GenBank under accession number PQ373831.2.

2.8 Phylogenetic and amino acid sequence
analysis

All available full-length PDCoV genome nucleotide sequences
retrieved from the National Center for Biotechnology Information
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GenBank database were collected and analyzed. Sequences that
were (a) unverified, (b) truncated, or (c) laboratory hosts were
excluded. A dataset of 154 PDCoV strains is shown in
Supplementary Table S3, aligned by MUSCLE using the maximum
likelihood phylogenetic test in Mega-X software (Version 10.1.18).
Datasets, annotations, and interactive trees were created using the
Interactive Tree of Life and Adobe Illustrator 2020. Amino acid
sequences were aligned using ClustalW with MegAlign and JalView
software (Version 2.11.4.1).

2.9 cDNA library preparation and
sequencing

PDCoV-infected Huh7 cells were submitted to Beijing Novogene
Co., Ltd. The RNA integrity of the PDCoV-infected Huh7 cells was
assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100
System (Agilent Technologies). mRNA was purified using poly T oligo-
attached magnetic beads. The library fragments were purified using the
AMPure XP system (Beckman Coulter, United States). The clustering
of the index-coded samples was performed on a cBot Cluster
Generation System using TruSeq PE Cluster Kit v3-cBot-HS (llumia).
After cluster generation, the library preparations were sequenced on an
lumina Novaseq platform and 150 bp paired-end reads were generated.

2.10 Read quality control and mapping

All analyses were performed using the clean data. The index of the
reference genome was built and paired-end clean reads were aligned
to the reference genome using Hisat2 (Version 2.0.5). Feature counts
(Version 1.5.0-p3) were performed to determine the number of reads
mapped to each gene. Fragments Per Kilobase of exon model per
Million mapped fragments (FPKM) were calculated based on the gene
length and read count.

2.11 Differentially expressed gene analysis

Differentially expressed gene (DEG) analysis was performed using
the DESeq2 R package (Version 1.20.0). The resulting p-values were
adjusted using Benjamini and Hochberg’s approach to control for the
false discovery rate. Genes with p < 0.05, |log2FoldChange| > 1.0,
identified by DESeq2, were assigned as differentially expressed. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were performed using the Cluster Profiler
R package (Version 3.22.5). Statistical significance was set at p < 0.05.
The GO and KEGG datasets were used for Gene Set Enrichment
Analysis (GSEA). STRING was employed to build a protein—protein
interaction (PPI) network for DEGs using an interaction score
threshold of 0.40. The score threshold of up-regulated and down-
regulated genes are 0.90 and 0.60. PPI networks were visualized using
Cytoscape (Version 3.9.1). Reactome, Disease Ontology (DO), and
DisGeNET pathways with p < 0.05 were considered significantly
enriched using Cluster Profiler software.

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1534907
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Yang et al.

2.12 Quantitative real-time-PCR

Total RNA was extracted from PDCoV-infected Huh?7 cells using
a TRIzol Kit (Invitrogen) and subjected to reverse transcription using
a PrimeScript RT Reagent Kit (Takara). The cDNAs were used as
templates to determine the mRNA expression levels using TB Green
Premix Ex Taq II (Takara). The human GAPDH gene was used for
normalization, and the 2722¢T method was used to calculate the
relative amounts of the PCR products. The primers used for qRT-PCR
are listed in Table 1.

2.13 Statistical analysis

Data were analyzed using an independent-sample ¢-test and
expressed as the mean + standard deviation (SD) of at least three
independent samples using GraphPad Prism software (Version 8.0.2).
Ns, p > 0.05; %, p < 0.05; **, p < 0.01; ***, p < 0.001.

3 Results
3.1 Virus isolation and characterization

The clinical symptoms of PDCoV-infected piglets included
diarrhea, weight loss, and transparent and thin-walled intestines
(Figure 1A). The purified virus particles had crown-shaped surface
projections 100-120 nm  (Figure 1B;
Supplementary Figure S1A). The proliferation of PDCoV was

with diameters of
detected by TCIDs, and western blotting at different time points

(Figure 1C; Supplementary Figures S1B,C). The accumulation of
PDCoV N and TCIDs, appeared with large numbers at 24 hpi

TABLE 1 The primers of selected genes analyzed with qRT-PCR.

Genes Primer sequences (5'-3’)
PTGS2 Forward primer: GTTCCACCCGCAGTACAGAA
Reverse primer: AGGGCTTCAGCATAAAGCGT
CXCL8 Forward primer: GGTGCAGTTTTGCCAAGGAG
Reverse primer: TTCCTTGGGGTCCAGACAGA
ATG14 Forward primer: CGCTGTGCAACACTACCCG
Reverse primer: TTGCTTGCTCTTAAGTCGGC
MAP3K14 Forward primer: CCCATGCTACAGAGGGCAAA
Reverse primer: ATGAGCCAGGGACTTTGAGC
JAK2 Forward primer: TGCCGGTATGACCCTCTACA
Reverse primer: ACCAGCACTGTAGCACACTC
HSPA1B Forward primer: AGCTGGAGCAGGTGTGTAAC
Reverse primer: TCCTCAATGGTAGGGCCTGA
MAP2K6 Forward primer: TACGGGGTGGTGGAGAAGAT
Reverse primer: CACATCACCCTCCCGAAACA
LRP1 Forward primer: CTGGCGAACAAACACACTGG
Reverse primer: CACGGTCCGGTTGTAGTTGA
GAPDH Forward primer: GGAGCGAGATCCCTCCAAAAT
Reverse primer:
GGCTGTTGTCATACTTCTCATGG
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(Supplementary Figures 1B,C). The CPE, characterized by rounded,
clustered, and increased refraction of LLC-PK1 cells, was evident at
24h post-infection (hpi) (Figure 1D). Stronger specific red
fluorescence was observed in PDCoV-infected cells at 24 hpi
(Figure 1E). Meanwhile, western blotting revealed that the
accumulation of PDCoV N increased at 24 hpi (Figure 1F). These
data demonstrated that the isolated PDCoV strain could propagate
in LLC-PK1 cells and the virus titers has similar trends with other
PDCoV strain.

3.2 Phylogenetic analysis and genomic
characterization

Phylogenetic tree analysis of 154 full PDCoV genomes
demonstrated that the CHN/SX-Y/2023 strain belongs to the Chinese
lineage (Figure 2A). Interestingly, the Haitian strains were closely related
to some Chinese strains. PDCoV/Haiti/Human/0256-1/2015 (GenBank
ID: MW685623.1) formed an independent cluster, which formed a
different branch from the CHN/SX-Y/2023 strain. However, PDCoV/
Haiti/Human/0329-4/2015 (GenBank ID: MW685624.1), together with
PDCoV/Haiti/Human/0081-4/2014 (GenBank ID: MW685622.1),
showed 100% similarity to CHN/Tianjin/2016 (GenBank ID:
KY065120.1), which shares a common ancestor with the new PDCoV
strain. The phylogenetic tree based on the S gene revealed that the CHN/
SX-Y/2023 and HeN/Swine/2015 (GenBank ID: MN942260.2) strains
belong to the same branch (Figure 2B), whereas it clustered with the
HeN/Swine/2015 and SD (GenBank ID: MF431743.1) strains in the
N-based tree (Figure 2C). The results of M gene analysis indicated that
the CHN/SX-Y/2023 strain clustered with the SD and BN (GenBank:
MZ772936.1) strains (Figure 2D). Notably, phylogenetic trees
constructed using the entire genome and the S, N, and M gene sequences
showed different clustering patterns, suggesting that the genetic diversity
in PDCoV is geographically and temporally distributed.

The CHN/SX-Y/2023 strain contained 25,415 nucleotides (nt),
characterized by the following gene order: 5'-UTR-ORFlab-S-E-M-
NS6-N-3"UTR. The S protein ectodomain consisted of S1 and S2
subunits, with the receptor-binding domain (RBD, SI-CTD) located
in the S1 subunit (Figure 3A). Nonstructural gene 6 (NS6) was located
between M and N, and nonstructural gene 7 (NS7) was located within
the N gene (Figure 3A). The coding potential and putative
transcriptional regulatory sequences of CHN/SX-Y/2023 are listed in
Supplementary Table S4. To better understand the evolutionary
characteristics, we further investigated the sequence similarities of the
S, RBD, N, and M genes from China (GenBank: MF431743.1,
MF041982.1, and MN942260.2), Haiti (GenBank: MW685622.1,
MW685623.1, and MWe685624.1), United States/Minnesota
(GenBank ID: KR265864.1), Japan (GenBank ID: LC260038.1), and
Thailand (GenBank ID: KX361343.1) strains. The S amino acid
sequences of the CHN/SX-Y/2023 PDCoV strain were 98.7-99.2%
identical to those of the Chinese PDCoV strains, 98.0-98.3, 98.3, and
98.4% identical to the Haitian, Minnesota, United States, and Japanese
PDCoV strains, respectively, and shared the lowest homology (96.4%)
with the Thai strains (Figure 3B; Supplementary Table S5). Moreover,
the RBD amino acid sequence of CHN/SX-Y/2023 was 100% identical
to that of HeN/Swine/2015, and only had a mutation site (N396K)
different from other strains, including the Chinese, Haitian (GenBank
ID: MW685623.1), Minnesota, United States, and Japanese strains
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FIGURE 1

Isolation and characterization of PDCoV CHN/SX-Y/2023. (A) Clinical and intestines features of PDCoV-infected piglets were showed in white box.

(B) Electron microscopic images of purified virus particles in LLC-PK1 cells. Bar, 100 nm. The white arrows represent coronary spike protein outline.

(C) TCIDs, titration of LLC-PK1 cells were inoculated with PDCoV (MOI = 1). (D) Cytopathic changes of LLC-PK1 cells mock- and infected-PDCoV

(MOI = 1) for 6, 12 and 24 h. (E) Immunofluorescence of PDCoV was detected in mock- and infected-PDCoV (MOI = 1) for 12 and 24 h. PDCoV N
protein was strained red. Nuclei was strained blue with 4',6-diamidino-2-phenylindole (DAPI). All images were taken at x10 magnification. Bar, 100 nm.
(F) LLC-PK1 cells was infected with PDCoV (MOI = 1) and the expression levels of PDCoV N and GAPDH at 12 and 24 hpi were detected using western
blotting. Statistical significance is determined by t test (*p < 0.05, **p < 0.01).
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Maximum-likelihood phylogenetic tree based on genome sequences of 154 PDCoV strains. (A) Phylogenetic tree based on whole-genome sequences.
(B—D) Phylogenetic tree based on the S, N, M gene of 154 PDCoV strains, respectively. The different colors identifying the different countries are
explained in the legend. Isolated years were indicated by the different degrees of pink. All sequences are identified by GenBank ID. The CHN/SX-Y/2023

strain was marked by red triangle.
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(Supplementary Figure S2A; Supplementary Table S5). In addition,
the CHN/SX-Y/2023 PDCoV strain had mutation sites (A335V and
N396K) in common with Haitian strains (GenBank ID: MW685622.1
and MW685624.1), and L347M and R349T with Thai strains
(Supplementary Figure 2A). The N and M genes shared 98.8-100%
and 99.5-100% identities with other PDCoV strains, respectively
(Figure 3C; Supplementary Figure S2B). These results of N gene
showed that the CHN/SX-Y/2023 PDCoV strain was the same as the
Haitian isolate MW685623, except for E249D (Figure 3C). However,
it was also similar to that of the Haitian isolates MW685622 and
MW685624, except for T291P (Figure 3C). The M amino acid
sequences contained only three mutation sites, T49A, A57X, and I80T,

in  MN942260, KR265864, and KX361343, respectively
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(Supplementary Figure S2B). The PDCoV N and M proteins are
highly conserved compared with the S protein.

3.3 Cell type susceptibility

Cells from different species were used to determine their
susceptibility to PDCoV infection at 6, 12, and 24h. CPE,
characterized by rounded, clustered, and increased refraction of ST
and LMH cells, was evident at 24 hpi (Figure 4). PDCoV caused
significant cell lysis, shedding, enlargement, and membrane fusion in
Huh7 cells at 24 hpi (Figure 4). The apoptotic rates of these cells
increased in a time-dependent manner (Figure 4). However, no
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FIGURE 3
Genomic characterization and comparative analysis amino acid sequence of PDCoV CHN/SX-Y/2023. (A) Visualization of PDCoV complete genome
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SX-Y/2023 strain.
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FIGURE 4

Cytopathic changes of ST, Huh7, LMH, HEK-293T, MDBK, and EEC infected with mock- and infected-PDCoV (MOI = 1) for 6, 12 and 24 h. The black
arrows represent obvious cytopathic changes. Bar, 100 nm. All images were taken at x10 magnification.

obvious CPE was observed in HEK-293T, MDBK, or EEC cells at
24 hpi (Figure 4). Moreover, no detectable changes were observed in
PDCoV-infected BHK-21, MDCK, or Vero-CCL81 cells at 24 hpi
(Supplementary Figure S3A).

The immunofluorescence assay revealed specific red
fluorescence indicating that the PDCoV N protein was clearly
observed in ST, LMH, and Huh7 cells at 12 and 24 hpi
(Figures 5A-C). Minimal red fluorescence was observed in
HEK-293T, MDBK, EEC, and Vero-CCL81 cells following PDCoV
infection (Figures 5D-F; Supplementary Figure S3C). However, red
fluorescence was not observed in BHK-21 or MDCK cells
(Supplementary Figures S3B,D).

Western blotting indicated that the expression of the PDCoV N
protein was significantly increased in ST, LMH, and Huh?7 cells at
24 hpi (Figures 5A-C). PDCoV N protein was detected in HEK-293T,
MDBK and EEC cells, with no obvious changes at 12 and 24 hpi
(Figures 5D-F). Notably, PDCoV N protein expression was not
detected in MDCK cells (Supplementary Figure S3D).

In conclusion, the PDCoV CHN/SX-Y/2023 strain can infect and
proliferate in a wide range of cell lines, including ST, Huh7, and LMH

cells. However, HEK-293T, EEC, MDBK, and Vero-CCL81 cells were
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not found to be susceptible. BHK-21 and MDCK cells could not
be infected in this study.

3.4 Differentially expressed genes analysis

The screening strategy for the transcriptome libraries constructed
from mock- and PDCoV-infected Huh7 cells are shown in
Figure 6A. In this study, approximately 44.41 million clean reads
remained after screening, and the percentages of clean data for Q20
and Q30 were >98 and 95%, respectively. Moreover, the GC content
of the clean reads in each sample ranged from 46.76 to 48.99%
(Supplementary Table S6). These clean reads were of high quality and
suitable for analysis. Simultaneously, based on the distribution of gene
expression after quantification of gene expression levels as FPKM, the
samples in each group were repeatable and similar samples clustered
together (Figure 6B). Notably, 2,570 DEGs were identified in PDCoV-
infected Huh7 cells, of which 1799 were upregulated and 771 were
downregulated (Figure 6C). Cluster analysis revealed distinct trends
in the expression of genomic transcripts in PDCoV-infected Huh7
cells at 24 hpi compared to that in mock-Huh?7 cells (Figure 6D). The
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FIGURE 6 (Continued)

non-differentially expressed genes, red represents up-regulated DEGs and green represents down-regulated DEGs. (D) Clustering heat map of DEGs.
Expression levels in the heatmaps are color coded from green (low) to red (high). (E) Clustering heat map of top 50 DEGs, including 25 upregulated

and downregulated genes, respectively.

top 25 DEGs identified through clustering and heatmap analyses were
associated with inflammatory cytokines, lipid catabolic processes, and
immunity, including TNFRSF9, PLCXD3, DHRS9, SMMIIA,
FCGRIA, and VSIGI (Figure 6E). Notably, the ferroptosis-associated
PTGS2 was the top 50 DEGs
(Supplementary Table S7). These key genes may be closely associated
with PDCoV infection.

marker upregulated in

3.5 Enrichment analysis of the DEGs

GO analysis categorized genes into biological processes (BPs),
cellular components (CCs), and molecular functions (MFs). For BPs,
the upregulated DEGs were mainly enriched in cellular component
movement and cell motility, whereas downregulated DEGs were
mainly enriched in metabolic processes (Figure 7A). For CCs, the
upregulated DEGs were mainly enriched in the cytoplasmic region,
microtubules, and ubiquitin ligase complex, whereas downregulated
DEGs were related to the mitochondrial inner membrane (Figure 7A).
For MFs, the upregulated DEGs were related to Ras GTPase binding
and ubiquitin protein transferase, whereas downregulated DEGs were
related to cofactor binding and catalytic activity (Figure 7A). For all
GO analyses, positive regulation of cell motility in BPs, proteinaceous
extracellular matrix in CCs, and proximal promoter sequence-specific
DNA binding, transcription factor activity, and receptor regulator
activity in MFs were enriched (Supplementary Table S8). GSEA data
indicated that cell cycle arrest, enhancer binding, and phosphatase
activity were enriched (Figure 7B; Supplementary Table S9).

KEGG analysis indicated that DEGs were mostly involved in
canonical pathways, such as the MAPK, JAK-STAT, TNF, and NF-kB
signaling pathways, cellular senescence, and viral protein interactions
with cytokines and cytokine receptors (Table 2). The upregulated
DEGs were enriched in the MAPK signaling pathway, cytokine-
cytokine receptor interaction, TNF, and NF-kB signaling pathways
(Figure 7C). However, downregulated DEGs were mainly enriched in
diabetic cardiomyopathy, chemical carcinogenesis-reactive oxygen
species, and DNA replication (Figure 7C). GSEA of the KEGG results
revealed the AMPK, TGF beta, phospholipase D, autophagy, and
Table S10;
Figure 7D). These data suggest that PDCoV infection can induce a

endocytosis signaling pathways (Supplementary
response from the host immune system to resist viral invasion.

To gain a comprehensive understanding of the various reactions,
biological pathways, and disease-related genes in the human model
species, the Reactome, DO, and DisGeNET databases were used. Our
analysis revealed that the upregulated DEGs were related to the
inflammatory response and cellular programs, including signaling by
interleukins (IL-1 to IL-38), MAPK signaling, and PIP3 activation of
AKT signaling. Conversely, the downregulated DEGs were mainly
involved in DNA repair, the citric acid cycle, and respiratory electron
transport in the Reactome data (Figures 8A,B). Furthermore, DO
analysis indicated that DEGs related to the respiratory system,
hypersensitivity reaction type II, and lung disease were upregulated,

Frontiers in Microbiology

11

whereas those related to hypertension and hematopoietic system
disease were downregulated (Figures 8C,D). DisGeNET analysis
showed that upregulated DEGs were enriched in diabetic nephropathy,
colitis, and inflammation, while downregulated DEGs were related to
metabolic syndrome X and myocardial ischemia (Figures 8E,F). The
top 15 results from the Reactome, DO, and DisGeNET databases
implied that the DEGs were related to RAF-independent MAPK1/3
activation, interleukin-10 signaling, inflammation, and lower
respiratory system disease (Supplementary Table S11). The data from
the Reactome database were consistent with the KEGG analysis. These
findings provide novel insights into the disease-related reactions and
pathways associated with PDCoV infection in humans.

3.6 PPl network analysis

The network interaction diagram highlights CXCL8, IL15, PTGS2,
DUSPI, ATF3,and PPARGC], which are associated with inflammation,
immune responses, cellular stress responses, and lipid metabolism
(Figure 9A). The upregulated DEGs, including UBC, JUN, SQSTM1,
JAK2, PIK3CB, PLCG2, CXCL1, and PPARGCIA, were associated with
inflammation, autophagy, immune responses, and lipid metabolism
(Figure 9B). In contrast, the significantly downregulated genes were
EXO1I, CDC45, MCM10, FENI, NDUFBI, and POLR2F, which are
related to cell division, DNA reproduction, electron transfer in
mitochondria, and messenger RNA synthesis in eukaryotes
(Figure 9C). Moreover, PTGS2, CXCL8, ATG14, MAP3K14, JAK2,
HSPAIB, MAP2K®6, and LRPI were consistent with the sequencing
results, showing the same relative regulation patterns of DEGs
between the two methods. Numerous genes related to autophagy and
immune responses were significantly altered in response to
PDCoV infection.

Based on the data presented above, we analyzed the expression
levels of proteins related to ferroptosis, autophagy, and immune
responses in the context of PDCoV infection. Western blotting results
indicated that PDCoV infection increased the expression of proteins
related to ferroptosis, such as GPX4, FIH1, ACSL4, and XCT
(Figure 9D). Additionally, the levels of MFN1, Pakin, and LC3-II,
which are related to autophagy, increased following PDCoV infection,
but there were no detectable changes in ATGS5 levels (Figure 9D). The
expression levels of p-TBK1 and p-IRF3, which are related to the
interferon pathway, were increased (Figure 9D). These data indicate
that PDCoV infection induces changes in proteins related to
ferroptosis, autophagy, and immune responses in host cells.

4 Discussion

CoVs have repeatedly crossed the host barrier between various
animals, such as swine acute diarrhea syndrome coronavirus (SADS-
CoV) from bats to swine (Hassanin et al., 2024), and severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) from animal
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reservoirs to humans (Rakhmetullina et al., 2024). PDCoV, PEDYV,
TGEV, and PoRV epidemics are commonly accompanied by
co-infections and secondary infections, which contribute to increased
morbidity and mortality in herds (Yan et al., 2022; Zhu et al., 2021).
Three blood samples were found to be infected with PDCoV in
Haitian children (Lednicky et al., 2021), suggesting a risk to public
health. However, there are currently no effective treatments or
commercially available vaccines for the prevention and control of
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PDCoV infection (Miao et al., 2023; Zhu M. et al., 2023; Zhu
X. etal., 2023).

In this study, the PDCoV CHN/SX-Y/2023 strain caused diarrhea
and severe enteritis in piglets, similar to other PDCoV strains. The
CHN/SX-Y/2023 strain exhibited the typical genome organization
and structural characteristics of coronaviruses. Phylogenies showed
that, based on the S and N gene trees, our isolated PDCoV was
classified into the Chinese lineage, which belongs to the same branch

12 frontiersin.org
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TABLE 2 Top 20 of KEGG pathways analysis in PDCoV infected Huh7 cells at 24 hpi.

KEGG ID Description Gene ratio p value Gene name
hsa04010 MAPK signaling pathway 49/1003 0.000582 DUSP1/AREG/JUN/FGF19/
TGFBR2 et al.
hsa04060 Cytokine-cytokine receptor 39/1003 5.06E-05 CXCL5/BMP2/CXCL1/IL6R/
interaction TNFRSF11B et al.
hsa05167 Kaposi sarcoma-associated 35/1003 0.008068 ATG14/CXCL1/JUN/MAP2K6/
herpesvirus infection JAK1 et al.
hsa04360 Axon guidance 29/1003 0.018164 ABLIM3/SEMA3C/SEMAG6A/
NTN4/DPYSL2 et al.
hsa04218 Cellular senescence 28/1003 0.022746 CDKN2B/SQSTM1/CXCL8/
TGFBR2/CAPN2 et al.
hsa05202 Transcriptional misregulation 28/1003 0.031956 CDKN2B/SQSTM1/CXCL8/
in cancer TGFBR2/MAP2KG6 et al.
hsa04668 TNF signaling pathway 27/1003 0.000101 CXCL5/CREB5/CXCL1/
TNFAIP3/BIRC3 et al.
hsa04390 Hippo signaling pathway 27/1003 0.031811 AREG/BMP2/FZD5/BIRC3/
PRSS23 et al.
hsa05224 Breast cancer 26/1003 0.001498 FZD5/PRSS23/JUN/FRAT2/
FGF19 et al.
hsa05226 Gastric cancer 26/1003 0.002003 FZD5/CDKN2B/PRSS23/
FRAT2/FGF19 et al.
hsa04380 Osteoclast differentiation 24/1003 0.000574 JUN/SQSTM1/TGFBR2/
MAP2K6/JAK1 et al.
hsa04068 FoxO signaling pathway 24/1003 0.021135 CDKN2B/PLK2/TGFBR2/
SIRT1/CDK2 et al.
hsa04630 JAK-STAT signaling pathway 22/1003 0.024464 MCLI1/IL6R/JAK1/PIK3CB/
IL15 et al.
hsa04936 Alcoholic liver disease 21/1003 0.029143 CXCLI1/LPIN2/CXCL8/
CXCL2/MAP2KG6 et al.
hsa04550 Signaling pathways regulating 21/1003 0.04824 FZD5/PRSS23/FZD7/JAK1/
pluripotency of stem cells FGFR4 et al.
hsa04064 NF-kappa B signaling pathway 20/1003 0.001801 CXCLI1/TNFAIP3/BIRC3/
CXCL8/CXCL2 et al.
hsa04726 Serotonergic synapse 19/1003 0.017172 DUSP1/MAOB/HTR1B/
GNG2/SLC6A4 et al.
hsa04625 C-type lectin receptor signaling 18/1003 0.01747 JUN/PIK3CB/RELB/PLCG2/
pathway MAP3K14 et al.
hsa04061 Viral protein interaction with 16/1003 0.000607 CXCL5/CXCL1/IL6R/CXCL8/
cytokine and cytokine receptor CXCL2 et al.
hsa04610 Complement and coagulation 16/1003 0.007169 FGA/SERPINF2/FGB/
cascades SERPINAI1/F7 et al.

as the HeN/Swine/2015 strain. Furthermore, the amino acid sequence
of the RBD of CHN/SX-Y/2023 was identical to that of HeN/
Swine/2015. A previous study indicated that globally, PDCoV's consist
of the United States/Japan/South Korea, China, Vietnam, Laos, and
Thailand lineages (Yang et al., 2017). Both the Chinese and American
lineages are major genotypes worldwide (He et al., 2020; Guo et al,,
2024). The CHN/SX-Y/2023 strain was highly similar to the HeN/
Swine/2015 strain from Henan Province, China. Geographical
proximity may have facilitated PDCoV transmission between Henan
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and Shanxi Provinces. It is worth noting that Haitian human-infecting
strains (GenBank ID: MW685622.1 and MW685624.1) belonged to
the same branch as the CHN/SX-Y/2023 strain. This raises a
fundamentally interesting question regarding whether PDCoV spread
and infection increases the risk of viral transmission among humans.

A key step in cross-species transmission is the ability of the virus
to interact with host receptors via the spike protein in CoVs (Shang
etal, 2018; Li et al, 2019). The S gene of coronaviruses is associated
with tissue tropism and host specificity (Liu et al., 2021). In the present
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FIGURE 8 (Continued)

represents the enrichment GeneRatio and the ordinate represents the pathway. Expression levels in the maps are color coded from blue (low) to red

(high). Circles indicate numbers of enriched genes.

study, the amino acid residues Trp-395 (W), Lys-396 (K), and Tyr-397
(Y) were located in the RBD of the CHN/SX-Y/2023 strain. Previous
studies have shown that K396 mutations may alter receptor specificity,
and consequently, tissue tropism (Zhu et al., 2018; Ji et al., 2022), and
that Trp-396 (W) and Tyr-398 (Y) are important for the binding of
PDCoV S1 to pAPN (Liu et al., 2021). These sites represent key
residues for PDCoV replication that may enhance dynamic movement
and accelerate viral membrane fusion events and transmission.

Our findings indicated that the PDCoV CHN/SX-Y/2023 strain
can infect cell lines of different species. LLC-PK1, ST, Huh7, and LMH
cells were susceptible to our PDCoV strain. HEK-293 T, EEC, MDBK,
and Vero-CCL81 cells were non-susceptible, while BHK-21 and
MDCK cells were not infected. Previous studies have shown that
PDCoV infects piglets, calves, chickens, and mice and exhibits a broad
host range (Xia et al., 2023; Jung et al., 2017; Liang et al., 2019). PK15,
LLC-PK1, and ST cells are suitable for the steady multiplication of
PDCoV, but HEK-293T, BHK-21, and Vero cells are non-susceptible
(Jiang et al., 2024; Ma et al., 2024). LMH, DE-1, and Huh?7 cells appear
to be susceptible to PDCoV infection (Li et al., 2018). These results
suggest that the infection characteristics of the CHN/SX-Y/2023 strain
are comparable to those of other PDCoV strains; however, different
strains may exhibit variations in their interactions with host cells. In
addition, PDCoV strains have been isolated from blood samples of
Haitian children in 2021 (Lednicky et al., 2021). Recent reports have
indicated that human intestinal epithelial cells exhibit a more
pronounced response to PDCoV infection than porcine intestinal
epithelial cells (Cruz-Pulido et al.,, 2021). Huh7 and HeLa cells are
susceptible to PDCoV, while human lung carcinoma cells (A549)
support PDCoV replication in the presence of trypsin (Fang et al.,
2021). These observations illustrate that PDCoV not only causes
significant damage to pigs, but also poses a potential threat to
mammals because of its zoonotic characteristics. In our study, PDCoV
causes obviously cytopathic effects in Huh7 cells. So Huh7 cells was
selected as models in transcriptome analysis. However, only viral
infection was detected following the initial inoculation, and
verification is needed to determine whether the virus can be stably
passaged in EEC and MDBK.

In recent years, transcriptomics has been widely employed to
evaluate host cell responses to viral infections (Gao et al., 2020; Li
et al.,, 2023; Zhu M. et al,, 2023; Zhu X. et al., 2023). The role of
HSP90ABI1 was investigated using comparative transcriptome analysis
of PDCoV infection (Zhao et al., 2022). Integrated metabolomic and
transcriptomic analyses have revealed that deoxycholic acid promotes
TGEV infection by inhibiting the phosphorylation of NF-kB and
STAT3 (Zhou et al., 2024). The transcriptional landscape of LLC-PK1
cells infected with PDCoV showed that DEGs were enriched in
MAPK pathway (Liu et al., 2024). PDCoV infection in IPEC-J2 cells
regulates gene sets associated with cytokine-cytokine receptor
interactions and MAPK signaling pathways (Wang et al., 2024). The
research findings elucidated that the innate immune-associated genes
and signaling pathways in PK-15 cells could be modified by the
infection of PDCoV (Jiang et al., 2019). PDCoV infection activates
NF-kB signaling pathway and leads to the expression of inflammatory

Frontiers in Microbiology

15

factors in ST cells (Jin et al., 2021). Reported studies indicated that the
association between PDCoV infection and innate immunity. TGEV
induces inflammatory responses via the RIG-I/NF-xB/HIF-la/
glycolysis axis in intestinal organoids and in vivo (Zhang et al., 2024).
PDCoV infection remarkably inhibits Sendai virus-induced IFN-A1
production by suppressing the transcription factors IRF and NF-kB in
porcine intestinal mucosal epithelial cells (Liu et al., 2020). In this
study, TNFRSF9, PTGS2, FCGRIA, PLCXD3, and DHRSY, which are
associated with inflammatory cytokines, immunity, and lipid catabolic
process signals, were identified in PDCoV-infected Huh7 cells. The
significantly enriched pathways were related to immune and
inflammatory response-associated pathways, such as the MAPK,
JAK-STAT, and NF-kB signaling pathways. Moreover, It is imperative
to understand the molecular mechanisms underlying PDCoV-
induced immune and inflammatory responses. Our findings shed
light on the molecular underpinnings of PDCoV infection in
Huh?7 cells.

Notably, general difference analysis (GO and KEGG) often focuses
on comparing gene expression differences between two groups, which
may easily miss some genes that are not significantly differentially
expressed but have important biological significance. While GSEA
does not need to specify a clear differential gene threshold, its
algorithm was based on the overall trend of the actual data. In our
study, the results of the GSEA of the KEGG pathway indicated
significant enrichment in autophagy and endocytosis. Additionally,
PPI results indicated that SQSTM I, which is related to autophagy, was
upregulated. Meanwhile, the expression levels of autophagy-related
proteins such as MFNI, Pakin, and LC3-II increased following
PDCoV infection. These findings are consistent with those of previous
studies, indicating that PDCoV infection induces autophagy (Li et al.,
2024; Chen and Burrough, 2022). We also found that PDCoV
infection increased the expression of ferroptosis-related proteins such
as FIH1, ACSL4, and XCT. Exogenous addition of the ferroptosis
activator erastin significantly inhibits PDCoV replication (Wang et al.,
2024). Ergosterol peroxide suppresses PDCoV-induced autophagy by
inhibiting PDCoV replication via the p38 signaling pathway (Duan
et al.,, 2021). These data indicate that PDCoV infection induces
changes in the ferroptosis signaling pathway in host cells. Overall,
these findings support the credibility of our transcriptome analysis,
and highlight promising avenues for future antiviral research.
However, the mechanism by which different PDCoV strains
manipulates the autophagy- or ferroptosis-related pathway need to
be confirmed on different cells.

In this study, a PDCoV (CHN/SX-Y/2023) strain was successfully
isolated, identified, and used to infect different cell lines, and
transcriptome analysis was performed in Huh?7 cells. The upregulated
genes FCGRIA, TNFRSF9, and PLCXD3 are associated with immunity,
inflammation, and lipid catabolic processes. Notably, PDCoV
infection regulated MAPK, TNEF, and NF-kB signaling pathways, and
viral protein interaction with cytokines and cytokine receptors, and
may cause changes in autophagy-related and ferroptosis-related
pathways. Our research provides novel insights into the diversification,
evolution, characteristics, and interspecies transmission of PDCoV.
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FIGURE 9 (Continued)

using western blotting. f-actin was used as an internal reference. All PPl networks were based on STRING analysis. Each node represented a protein,
and each edge represented the interaction between proteins. The upregulated proteins are shown in red shadow, and the downregulated proteins are

shown in blue.
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