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Agricultural ponds are essential irrigation resources, though may also serve as 
reservoirs for pathogens and antimicrobial resistance (AMR) genes. While monitoring 
microbiological water quality is critical for food safety, the influence of sampling 
factors (e.g., when and where to collect samples) in making risk assessments and 
potential applications for using environmental covariates as indicators remain unclear. 
Here, we explored the hypothesis that metagenomes of agricultural waters change 
with spatiotemporal shifts in physicochemical water quality, i.e., across water depths 
over time. Water samples and underlying sediments were collected at a model pond 
at the surface and within the water column (0, 1, 2 m depths) throughout one day 
(i.e., 9:00, 12:00, 15:00). All samples were processed for shotgun metagenomic 
sequencing analysis and enumeration of various water quality parameters (e.g., 
temperature, nutrient concentrations, turbidity, pH, culturable Escherichia coli). At 
the pond surface, Microcystis aeruginosa and members of Cyanobacteria, along with 
genes encoding pathways related to photosynthesis and nucleotide biosynthesis, 
were enriched throughout the day. In contrast, within the water column (1–2 m 
depths) and sediments, diverse members of Proteobacteria and Actinobacteria were 
more dominant, along with encoded pathways related to respiration and amino 
acid biosynthesis. Various aspects of water quality (i.e., chlorophyll dissolved organic 
matter, ammonia, E. coli concentrations) correlated with water metagenome diversity, 
albeit not with any specific AMR genes or virulence factors. Nevertheless, de novo 
assembly of sequenced reads uncovered 22 unique strains encoding several AMR, 
virulence, or stress response genetic elements, thus linking metagenome functional 
potential to key taxa. Overall, our findings highlight distinctions in agricultural pond 
water metagenomes at the surface and in the water column and demonstrate the 
potential for metagenomic surveillance in water quality monitoring to support 
food safety.
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1 Introduction

Aquatic microbiomes contain diverse planktonic and sediment-resuspended bacteria, 
viruses, algae, and fungi that collectively play important roles in nutrient biotransformation 
and cycling, decomposition of organic matter, and transmission and degradation of biological 
and chemical contaminants, among other ecosystem functions (Andreote et al., 2018; Escalas 
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et  al., 2019; Rout et  al., 2024a). Abiotic factors (e.g., temperature, 
nutrient availability, salinity) vary spatially and temporally in surface 
waters, including gradients along different depths or flow channels 
(Neneng et al., 2020). The water quality properties and the intrinsic 
microbiota both fluctuate at broad and fine spatial and temporal 
scales, such as between seasons or even within a given day (Newton 
et al., 2011; Mayr et al., 2020; Stocker et al., 2024; Zhao et al., 2024). 
Changes in temperature, dissolved oxygen, and nutrient influx in salt 
marshes have been attributed to restructuring of the aquatic microbial 
community (Kearns et  al., 2016). Likewise, populations of 
cyanobacteria among the broader water microbiome have been 
reported to respond to diurnal changes in UV light intensity at 
different depths within lakes (Cameron et al., 2024). As such, key 
members of water microbiomes have been suggested as novel 
indicators for predicting pollution and other aspects of water quality 
(Wang et al., 2020; Stocker et al., 2024).

To date, most research on water microbiomes has applied 16S 
rRNA gene sequencing for taxonomic characterization or used more 
traditional culture-dependent approaches (Andreote et  al., 2018; 
Wang et al., 2020; Cameron et al., 2024; Stocker et al., 2024; Zhao et al., 
2024). Understanding relationships between water quality and 
microbiome functional potential remains largely unexplored. Shotgun 
metagenomic sequencing is a powerful tool that is increasingly used 
for microbiome taxonomic and functional profiling. Using deep 
metagenomic sequencing, He et al. (2024) discovered novel lineages 
of SAR202 bacteria and their encoded functions, which play important 
roles in global carbon cycling at different ocean depths. Another 
recent report on metagenomes in surface water samples in Chile and 
Brazil (n = 404 metagenomes) identified a variety of microbial 
contaminants (i.e., Escherichia, Listeria, Salmonella) and diverse 
antimicrobial resistance (AMR) genes spanning 25 antimicrobial 
classes (Huang et al., 2024). Advancements in molecular surveillance 
tools to monitor changes in water quality and for genetic elements 
involved in AMR, virulence, or even microbial production of toxins 
(e.g., cyanotoxins) in water resources warrant further investigation for 
applications to support public health (Escalas et al., 2019; Liguori 
et al., 2022; Linz et al., 2023).

The microbial quality of agricultural irrigation water is a critical 
factor for food safety. The U.S. Food and Drug Administration 
(FDA) recently released the final rule on pre-harvest water as part of 
the Food Safety Modernization Act Produce Safety rule, requiring 
farms to perform thorough water quality evaluations, as least on an 
annual basis, for risk management decision-making purposes 
(U.S. Food and Drug Administration, 2024). Nevertheless, the 
influence of water sampling factors (e.g., numbers and volume of 
samples, water depth, timing of collection) and analytical 
frameworks on predictive outcomes is not well understood. 
Moreover, agricultural ponds are an important component in the 
“one-health” narrative as a sink and source of foodborne pathogens 
and AMR genes from the environment to fresh produce for human 
consumption (Franklin et  al., 2024). While monitoring pond 
metagenomes has demonstrated seasonal or regional variations in 
microbial diversity, AMR, and functional profiles (Chopyk et al., 
2020; Malayil et al., 2022), understanding the relationships between 
microbiome functional potential and environmental covariates 
associated with water quality (e.g., nutrient concentrations, 
turbidity) hold potential as novel indicators and improving 
monitoring recommendations.

Our previous work that utilized 16S rRNA gene sequencing 
demonstrated that bacterial community taxonomic diversity 
exhibits variation throughout a model pond at different depths 
over the course of the day (i.e., 9:00, 12:00, 15:00), with implications 
for improving water quality monitoring strategies (Stocker et al., 
2024). Expanding upon these findings, the present study aimed to 
explore fine-scale spatial and temporal variations in the pond 
metagenomes to (1) determine differences at the surface and at 
depths in the water column over time to establish the impacts of 
sampling design on the observed microbiome diversity and (2) 
identify associations between metagenome functional potential 
(i.e., encoded pathways, AMR genes, virulence factors) and an 
array of water quality properties.

2 Methods

2.1 Sample collection, DNA extraction, and 
sequencing

Sampling was conducted at an agricultural pond at the 
University of Maryland’s Wye Research and Education Center on 
09/15/2022, as reported previously (Stocker et al., 2024). The pond 
that was sampled (38.916 N 76.141 W) had an approximate surface 
area of 4,000 m2 with average depth of 3 m. Here, we extended the 
original study by processing a subset of the water and sediment 
samples, which were collected at one site nearshore and two sites 
at the interior transect of the pond (i.e., L4, L5, and L11 in Stocker 
et al., 2024; Supplementary Figure S1), for shotgun metagenomics 
analysis. The sample selection enabled investigation of differences 
in pond water and sediment metagenomes as a factor of sampling 
location (n = 3 within-pond sites) and water metagenomes further 
as a factor of sampling depth (n = 3 gradient depths at L5 and L11) 
and time (n = 3 time points at all locations). Specifically, surface 
water samples were collected at all locations from boat at 9:00, 
12:00, and 15:00 using sterile 500 mL bottles with aseptic technique 
(n = 9 water samples taken at the surface, i.e., 3 locations × 3 
times). Gradient depth samples in the water column were also 
collected at these times at L5 and L11 at 1 m and 2 m depths 
(n = 12 water samples taken at depth, i.e., 2 locations × 2 depths × 
3 times). We used a weighted strainer attached to depth-marked 
vinyl tubing connected to a peristaltic pump to fill the bottles 
(SigmaMAX 900, Loveland, CO, United States) following an initial 
30 s flush. Sediment cores were then collected after the final 
timepoint at 15:00 at each location (n = 3 sediment samples taken, 
one at each location), i.e., to avoid microbial resuspensions during 
the water sampling events. The sediment was sampled at the bank 
site (L4) using sterile 50 mL conical tubes and at the internal sites 
(L5, L11) using an Eckman dredge.

DNA was extracted from the water and sediment samples using 
the DNeasy PowerWater Kit (Qiagen, Hilden, Germany) (Stocker 
et al., 2024). Water samples (50 mL) and mixed sediment samples 
(i.e., slurries prepared from 3 g sediment vortexed in 27 mL sterile 
DI water; 1:10 dilution) were passed through 0.45 μm filters using 
a manifold vacuum. DNA was extracted from the filters and 
quantified with a Qubit 4 Fluorometer (Invitrogen, Waltham, MA) 
(n = 24 samples, 20.0 ± 2.4 ng/μl, mean ± standard error). Negative 
controls included DNA extractions from DI water passed through 
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the same filters (n = 1) and reagent blanks (n = 3) that were 
processed alongside water/sediment samples, all of which yielded 
DNA below detection range. Metagenome libraries were prepared 
with the Illumina DNA Prep kit with UD Indexes (Illumina, San 
Diego, CA). Paired-end sequencing (300 cycles) targeting >15 
million reads per sample was performed on an Illumina 
NextSeq1000 at the Joint Institute for Food Safety and 
Applied Nutrition.

2.2 Metagenome analysis

Raw sequenced reads were processed to remove potential 
sequencing contaminants and low-quality reads using Kneaddata 
v.0.6.1 with default parameters.1 Microbiome taxonomic 
classification was performed with Kraken2 v2.1.2 (Wood et al., 
2019) with the option “–confidence 0.1” (Saheb Kashaf et al., 2022; 
Blaustein et al., 2023), followed by species-level read correction 
with Braken (Lu et al., 2017). Metagenome functional profiling was 
performed using HUMAnN2 v.0.11.1 (Franzosa et al., 2018) with 
default parameters, and MetaCyc pathway abundances were 
approximated based on copies per million (CPM) of mapped reads. 
AMR genetic element and virulence factor (VF) reads per kilobase 
per million reads (RPKMs) were determined with ShortBRED 
v0.9.5 (Kaminski et al., 2015) by running shortbred_quantify with 
shortbred_identify markers (length >15 amino acids) constructed 
from protein sequences of the Comprehensive Antibiotic 
Resistance Database (CARD) v3.2.7 (Alcock et al., 2020) (accessed 
08/11/2023) and the Virulence Factor Database (Liu et al., 2022) 
(VFDB; accessed 08/27/2023), each with reference to UniRef50 
(Suzek et al., 2015).

We further employed de novo assembly to recover metagenome-
assembled genomes (MAGs) as previously described (Blaustein 
et al., 2023). In brief, metaSPAdes v.3.15.0 (Bankevich et al., 2012), 
MetaWRAP v.1.2.2 (Uritskiy et al., 2018), and GUNC v1.0.5 (Orakov 
et al., 2021) were used, each with default parameters, for assembly, 
binning (with concoct, maxbin2, and metabat2), and prediction and 
removal of chimeric MAGs, respectively. For the latter, MAGs with 
contamination greater than 0.05, clade separation greater than 0.45 
and a reference representation score greater than 0.5 were considered 
chimeric and removed (Saheb Kashaf et al., 2022). We then used 
dRep v2.6.2 (Olm et  al., 2017) to dereplicate refined bins with 
predicted completeness greater than 50% and contamination less 
than 5% based on an average nucleotide identity (ANI) of 99% and 
minimum overlap of 30% (i.e., to approximate the strain level). The 
same parameters with 95% ANI were used to refine dereplicated 
MAGs to the species level. MAGs were given taxonomic assignment 
using GTDB-Tk v1.3.0 (Chaumeil et  al., 2022) and novelty was 
established based on relative evolutionary divergence (RED) score. 
The generated protein sequence alignments were used to construct 
a phylogenetic tree via FastTree v.2.1.10 (Price et al., 2010) that was 
visualized with ape (Paradis and Schliep, 2019). MAGs were then 
queried for genes encoding proteins with homology to AMR and 
virulence-associated features using AMRFinderPlus v3.12.8 

1 http://huttenhower.sph.harvard.edu/kneaddata

(Feldgarden et al., 2021) (database 07-22-2024) with settings for 50% 
amino acid alignment identity (i.e., since the MAGs are non-model 
organisms) and the flag “--plus” to return the comprehensive set of 
AMR, virulence, and stress response genes.

2.3 Water quality

Water quality properties associated with each sample were measured 
in situ and via laboratory analysis. In the field, a water sample collection 
strainer was attached to the sensor guard of a YSI EXO-2 multiparameter 
water quality sonde that was calibrated with manufacturer standards prior 
to field use (Yellow Springs Instruments, Yellow Springs, Ohio, 
United States). The sonde provided in situ measurements of temperature 
(°C), dissolved oxygen (DO) (mg L−1), specific conductivity (SPC) (μS 
cm−1), turbidity (NTU), phycocyanin (YSI-PC) (relative fluorescent unit; 
RFU), chlorophyll-a (YSI-CHL) (RFU), and fluorescent dissolved organic 
matter (FDOM) (μg L−1). At the lab, aliquots of the water samples were 
processed for Escherichia coli concentrations (CFU 100 mL−1) via 
enumeration using membrane filtration and modified mTEC agar 
(ECCFU) (BD Difco, Sparks, Maryland). The water samples were also 
processed to measure phycocyanin (PHYC) (μg L−1), chlorophyll-a (INV) 
(RFU), colored dissolved organic matter (CDOM) (μg L−1), and nutrient 
concentrations of orthophosphate (PO4) (mg L−1), nitrate (NO3) 
(mg L−1), dissolved ammonia (NH3) (mg L−1), total organic carbon 
(TOC) (mg L−1), total inorganic carbon (TIC) (mg L−1), and total nitrogen 
(TN) (mg L−1) using methods described in our previous study (Stocker 
et al., 2024).

2.4 Statistical analysis

All statistics and data visualizations were completed in R v.4.3.1. 
Vegan2 was used to compute α-diversity (Shannon index) and  
β-diversity (Bray–Curtis dissimilarity) for microbiome taxonomic 
profiles as relative abundances at the species level and functional 
profiles as relative abundances of MetaCyc pathway CPMs. The 
effects of sampling factors (i.e., sampling location, water column 
depth, time of day) on microbiome α -diversity and β-diversity  
were determined with ANOVA and PERMANOVA, respectively. 
Correlations with the measured water quality properties were 
evaluated with the Spearman’s rank test ( α -diversity) and 
PERMANOVA (β-diversity) as well. A linear mixed-effects (LME) 
model was employed to determine differential abundances of 
microbial species (i.e., those that were >0.1% abundant on averages 
across all samples), MetaCyc pathways, and AMR and VF genetic 
elements based on fixed effects for the sampling depth (i.e., water 
surface, water column, sediments) and random effects for sampling 
location (i.e., L4, L5, L11) and time of day (i.e., 9:00, 12:00, 15:00). 
p-values were adjusted with Benjamini-Hochberg correction and 
q < 0.05 was considered significant. The total number of genes per 
MAG with homology to AMR and VF genetic elements was 
compared for MAGs belonging to different bacterial phyla using the 
Dunn’s test with Benjamini-Hochberg correction.

2 https://github.com/vegandevs/vegan
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3 Results

3.1 Pond water and sediment metagenomic 
profiles correlate with sampling factors and 
water quality

Metagenomic sequencing of the water (n = 21) and sediment 
(n = 3) samples generated 302.8 M sequenced reads (or 200 Gb data), 
with 12.6 ± 2.6 M paired end reads per sample (mean ± standard 
deviation). After pre-processing, there were 8.8 ± 2.0 M high quality 
non-human paired reads per sample from which 1,303 microbial 
species representing 613 genera, 238 families, 134 orders, 70 classes, 
and 33 phyla were detected.

Pond microbiome α-diversity was lowest at the water surface, 
especially near shore (L4) compared to the interior sites (L5 and L11), 
and it was significantly higher within the water column and highest in 
the pond sediments (Figure  1A). At L5 and L11, the water 
microbiomes at the surface exhibited significantly lower α-diversity 
as compared to those at the 1 m (q = 0.002) and 2 m (q = 0.004) depths 
throughout the day, though there were no differences detected 
between the 1 m and 2 m depths (q = 0.977). Accordingly, microbial 
community profiles at the water surface (all sites) and those in the 
water column (i.e., L5 and L11 at depths of 1 m and 2 m) clustered 
apart (PERMANOVA R2 = 0.206, p = 0.008) (Figure  1B). On the 
contrary, the time of day (i.e., 9:00, 12:00, 15:00) did not appear to 

significantly associate with α-diversity (p = 0.669) or β-diversity 
(PERMANOVA R2 = 0.132, p = 0.228) of the water microbiota. Thus, 
the pond water microbiomes were substantially different between the 
surface and depths in the water column with variation that appeared 
to be consistent throughout the day.

The most abundant phyla within the water microbiomes were 
Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes, 
which comprised on average 55.4, 36.5, 5.6, and 0.7% of the microbial 
communities, respectively (Figure 1C). Members of Cyanobacteria such 
as dominant Microcystis aeruginosa were significantly more abundant 
at the water surface, while members of Proteobacteria, Actinobacteria, 
and Bacteroidetes were more abundant within the water column 
(q < 0.05 for each) (Figure 2A). In total, there were three microbial 
species (M. aeruginosa, Microcystis viridis, Halomonas sp. JS92-SW72) 
that were more prominent at the pond water surface and 36 microbial 
species (e.g., Synechococcus sp. CBW1004, Limnohabitans sp. 103DPR2, 
Magnetospirillum gryphiswaldense, Microcystis sp. MC19, 
Phenylobacterium parvum, Acidovorax sp. T1) that had higher relative 
abundances in the water column (q < 0.05; Supplementary Table S1).

The pond sediments harbored microbial communities with the 
highest α-diversity with comparable abundances of Proteobacteria to 
the water column microbiome, along with higher abundances of 
Actinobacteria and Firmicutes and lower abundances of 
Cyanobacteria, suggesting gradient ecological dynamics with 
microbial settling and resuspension (Figure 1C). There were 25 species 

FIGURE 1

Composition and diversity of pond microbiomes at different sampling locations or cross-sectional depths of the pond. (A) α-diversity of the water and 
sediment microbiomes (Shannon index). Letters indicate significant difference (p < 0.05) based on ANOVA and Tukey’s post-hoc test. (B) Compositional 
dissimilarity or β-diversity of the water microbiomes. Colors and shapes correspond to sampling location and time of day, respectively. (C) Relative 
abundances of microbial taxa in the water and sediment microbiomes. Color corresponds to phylum or genus.
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that were significantly more abundant in the water column than the 
in the sediments, such as M. aeruginosa and M. viridis, which were 
further dominant at the water surface. Alternatively, there were 11 
microbial species enriched in the sediment microbiome, including 
Serratia marcescens, Rhizobacter sp. AJA081-3, Shinella sp. XGS7, 
Methylocystis parvus, Rubrivivax gelatinosus, among others (q < 0.05; 
Supplementary Table S1).

As described in our previous report (Stocker et al., 2024), the set 
of studied water quality properties also exhibited spatial variation 
throughout the pond. Here, most of these measured water variables 
correlated with taxonomic profile α-diversity (Table 1), which may 
be attributed to confounded differences in both water quality and 
microbial diversity at the surface and within the water column 
(Figure 1A). For example, water temperature was lower at increasing 
depths and inversely correlated with water microbiota α-diversity 
(rho = −0.686, p = 0.001), perhaps reflecting microbial resuspensions 
around the underlying sediments. In addition, E. coli (CFU 100 mL−1) 
was more abundant in the water column than at the surface (p = 0.001) 
and correlated with α-diversity (rho = 0.519, p = 0.016) (Figure 3). 
Moreover, water properties linked to proliferation of algae or 
Cyanobacteria (e.g., chlorophyll and phycocyanin contents, colored 
dissolved organic matter), which was dominant at the surface 
(Figure 1C), were significantly associated β-diversity of the water 
microbiomes as well (Table 1).

3.2 Pond microbiome functional potential

In line with trends for the microbial taxa, the encoded 
metabolic profiles significantly differed between the surface and 
within the water column (PERMANOVA R2 = 0.196, p = 0.013; 
Supplementary Figure S2), though not at the different sampling times 
of day (PERMANOVA R2 = 0.101, p = 0.400). As water quality also 
differed across scale, particularly between the surface and deeper into 
the water column, the water metagenome functional profiles 

correlated with many of the measured variables (Table 1). In addition 
to significantly correlating with the same water properties as microbial 
taxonomic profiles, functional profiles further exhibited significant 

FIGURE 2

Microbiome taxa and functional features that were enriched at the pond water surface vs. within the water column. (A) Microbial species with average 
relative abundance >0.5% that were significantly different (q < 0.05) between the pond water surface and within the depths of the water column. 
(B) MetaCyc pathways with average relative abundance >1% that were significantly different (q < 0.05) between the pond water surface and within the 
depths of the water column.

TABLE 1 Metagenome correlations with pond water quality properties.

Water 
property

Microbial taxa 
α-diversity

Microbial 
taxa profile

Functional 
(MetaCyc) 

profile

rho P R2 P R2 P

Temp, °C −0.686 0.001 0.063 0.240 0.064 0.254

DO −0.757 <0.001 0.062 0.234 0.085 0.176

SPC 0.344 0.138 0.046 0.407 0.073 0.181

pH −0.760 <0.001 0.056 0.330 0.048 0.362

NTU −0.589 0.007 0.088 0.164 0.192 0.015

YSI-PC −0.749 <0.001 0.398 0.002 0.377 0.001

YSI-CHL −0.698 0.001 0.413 0.001 0.368 0.001

fDOM 0.674 0.001 0.193 0.015 0.213 0.012

PO4 0.205 0.371 0.054 0.293 0.026 0.693

NH3 0.745 <0.001 0.102 0.098 0.145 0.031

NO3 0.149 0.517 0.053 0.304 0.033 0.579

ECCFU 0.519 0.016 0.094 0.116 0.149 0.030

TC 0.243 0.287 0.030 0.627 0.028 0.628

TIC 0.469 0.033 0.046 0.382 0.060 0.259

TN 0.608 0.004 0.096 0.102 0.082 0.153

TOC −0.042 0.858 0.023 0.765 0.031 0.622

CDOM −0.679 0.001 0.291 0.003 0.259 0.002

INV −0.584 0.006 0.306 0.001 0.252 0.003

PHYC −0.808 <0.001 0.288 0.002 0.248 0.005

Significant associations (p < 0.05) are displayed in bold font.
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associations with NTU (PERMANOVA R2 = 0.192, p = 0.015), NH3 
(PERMANOVA R2 = 0.145, p = 0.031), and ECCFU (PERMANOVA 
R2 = 0.149, p = 0.030), suggesting that microbiome functional diversity 
may be  more tightly linked to water quality than microbial taxa 
composition and structure.

There were 41 and 40 total metabolic pathways that were enriched 
(q < 0.05) at the surface vs. within the water column (q < 0.05; 
Supplementary Table S2). At the pond surface, pathways involved in 
photosynthesis (e.g., photosynthesis light reactions, oxygenic 
photosynthesis, Calvin-Benson-Bassham cycle) and nucleotide 
biosynthesis (e.g., synthesis of pyrimidines, purines, adenosine and 
guanosine) were significantly more abundant (Figure  2B). 
Alternatively, pathways involved in respiration (e.g., pentose-
phosphate pathway, pyruvate fermentation, glycolysis) and amino acid 
biosynthesis (e.g., isoleucine, valine, branched amino acids) were 
more abundant in metagenomes in the water column (Figure 2B). 
These trends extended into water column-sediment dynamics. There 
were 46 pathways significantly more abundant in the water column 
(e.g., pentose-phosphate pathway, oxygenic photosynthesis, Calvin-
Benson-Bassham cycle, hydrogen production), while 27 were enriched 
in the underlying sediments (e.g., pyruvate fermentation, synthesis of 
pyrimidines, purines, adenosine and guanosine) (q < 0.05 for each; 
Supplementary Table S2).

We further identified 15 AMR and 18 VF genetic elements 
within the pond metagenomes. The AMR elements encoded 
resistance to aminoglycosides, carbapenems, rifamycin, 
tetracyclines, and multidrug efflux. Spatial distributions of certain 
genes were generally sporadic and there were several instances of 
detection in only one sample type (e.g., marR, qacL, or tet(A) at 
the 2 m water depth) (Figure 4A). Only four AMR genes were 
detected in water samples across all pond depths (i.e., rsmA, rpoB, 
rbpA, and rpsL) and most of these commonly occurring genes 
were largely housekeeping features that may be involved in AMR 
via antibiotic target alteration under specific mutations. Moreover, 
notable AMR genes that were detected in pond water and not 
sediments included qacE that is involved in resistance to 
disinfecting agents via efflux, ompK36 that can result in reduced 
permeability to carbapenems, and gyrB and vanXY, both of which 
are conferred via target alteration. On the other hand, AMR genes 
detected in sediment samples and not the water column were with 

MYX-1 and murA, which encode enzymatic inactivation 
(carbapenemase) and potential antibiotic target  alteration, 
respectively. Moreover, the VFs primarily consisted of flagellar 
machinery for motility, effector systems (e.g., T3SS, T6SS), and 
proteins involved in adherence (Figure  4B). In contrast to the 
metabolic pathways that were differentially abundant at the 
surface and within the water column, the relative abundances of 
AMR and VF genes detected were low and did not correlate with 
the sampling factors or the water quality properties measured in 
this study (q > 0.05 for each genetic element).

3.3 MAGs reflect dominant taxa carrying 
AMR and virulence traits

Processing the metagenomes with de novo assembly yielded 67 
MAGs with at least medium-quality (i.e., predicted completeness 
>50% and contamination <5%) that were recovered from the water 
microbiomes, with at least one MAG recovered from each sample. 
Dereplication at 99% ANI yielded 22 distinct strains spanning 
Actinobacteriota (n = 1; referred to as Actinobacteria in the built 
database for the Kraken2 analysis), Bacteroidota (n = 3; referred to 
as Bacteroidetes in the built database for the Kraken2 analysis), 
Cyanobacteria (n = 12), Proteobacteria (n = 5), and 
Verrucomicrobiota (n = 1) (Figure 5). These taxa comprised 12 
non-redundant species, all of which were considered novel taxa 
based on ANI and RED values, i.e., the strain for Microcystis 
wesenbergii in Figure  5 clustered with Microcycstis sp. at the 
species-level (>95% ANI). The frequency of Cyanobacteria and 
Proteobacteria strains among the recovered MAG was consistent 
with their dominance among the pond microbiomes (i.e., 54.6 and 
22.7% of MAGs and 55.4 and 36.5% in Kraken2/Bracken, 
respectively).

The various strains encoded several genes with homology to genes 
associated with AMR (n = 6), VFs (n = 2), and stress response (n = 18) 
(Supplementary Table S3). The AMR features identified among MAGs 
were involved in resistance to beta-lactams (blaOXA, blaPAU), 
tetracycline (tetA(58)), trimethoprim (dfrA3), pleuromutilin (taeA), 
or multidrug efflux (ranA). The VFs included bpsD and katP. The 
stress response features included biocide resistance via multidrug 

FIGURE 3

E. coli variation in pond water correlates with (A) sampling depth (p = 0.001) and (B) microbiome α-diversity (rho = 0.519, p = 0.016).
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efflux (e.g., ssmE, smr, qacE, qacF), heat shock (clpK), and a variety of 
genes involved in tolerance to metals such as nickel and copper 
(Supplementary Table S3). Thus, there were consistencies in key 
features identified with the more general read-based characterization 
of metagenomes with ShortBRED described earlier, such as dfrA5, 
acrH, tetA, qacE, and two genes associated with resistance to beta-
lactams or carbapenems (Figure  4A). At least one AMR genetic 
element was found to be  associated with 66.7 and 60% of strains 
representing Bacteroidota (n = 2/3 MAGs) and Proteobacteria 
(n = 3/5 MAGs), while for Cyanobacteria this was only 16.7% of 
strains (n = 2/12 MAGs) (Figure 5). Although specific gene RPKMs 
were not correlated with sampling factors, perhaps reflecting 
sequencing depth limitations as described earlier, the observed trends 
in MAGs suggested that AMR may be disproportionately associated 
with the Proteobacteria and other water column/sediment-enriched 
taxa. Nevertheless, we were able to link AMR, virulence, and stress 
response genes to the range of dominant strains throughout the 
agricultural pond.

4 Discussion

The physicochemical properties of agricultural waters fluctuate 
spatiotemporally, concurrent with shifts in microbial community 
dynamics (Stocker et al., 2024). While the US FDA has implemented 
recommendations for farm-scale monitoring of pre-harvest water quality 
to enhance applications for food safety (U.S. Food and Drug 
Administration, 2024), understanding how specific sampling strategy 
and design may impact observations is important for practical risk 
management decision-making frameworks. The present study aimed to 
characterize metagenomes of agricultural pond water as a factor of 
sampling location, water depth, and time of day. Microbial α-diversity 
was lowest at the water surface, where members of Cyanobacteria were 
most abundant, and increased in the water column toward the sediments. 
In line with the surface-enriched phytoplankton, we  observed 
correlations between microbiome β-diversity and phycocyanin, 
chlorophyll-a, and concentrations of fDOM and cDOM. Previous studies 
on lake microbiota have also demonstrated that DOM plays an important 

FIGURE 4

Antimicrobial resistance (AMR) genes (Panel A; row side colors indicate the antimicrobial class and mechanism associated with resistance) and 
virulence factors (Panel B; gene function in parenthesis) that were detected in the pond metagenomes. Heat color indicates relative abundance as 
log-transformed reads per kilobase per million reads (RPKMs).
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role in shaping microbial community composition (Crump et al., 2003; 
Kent et al., 2006; Amaral et al., 2016; Hengy et al., 2017). Moreover, shifts 
toward a more diverse microbiome within the water column, thereby 
being inversely proportional to DO, were consistent with previous 
reports for lakes (Bernard et  al., 2019). Overall, the pond water 
microbiota correlated with water quality properties that differed between 
the pond surface and within the water column.

Similarly, the pond water microbiome functional potential 
was depth-dependent and correlated with many of the measured water 
quality variables as well. This was somewhat expected, as a stratification 
within water bodies gives rise to distinct changes in light, temperature, 
DO, and pH (i.e., epilimnion at the surface and hypolimnion with 
depth) (Fenchel and Finlay, 2008). Metabolic pathways at the surface 
prominently featured photosynthesis and nucleotide biosynthesis, while 
those in the water column and sediments transitioned to increases in 
respiration, the non-oxidative branch of the pentose phosphate pathway 
(PPP), and amino acid biosynthesis. Cyanobacteria and other dominant 
water microflora can shift metabolic pathways in response to predation 
and environmental cues, which may follow diurnal patterns (Pattanayak 
et al., 2020; Selim et al., 2021; Grzesiuk et al., 2022). When oxygen 
becomes limited, bacterioplankton can perform anaerobic glycolysis via 
the PPP to produce NADPH and other metabolic intermediates 
(Mckinley, 1977; Bjerkas and Bjornstad, 1999). Phytoplankton also 
activate PPP under dark conditions (e.g., in the water column with 
increasing depth) when Photosystem II cannot be utilized (Stal and 
Moezelaar, 2006). The role of microbiome metabolism in mediating 
water quality changes warrants further investigation.

Microbial diversity increased with pond water depth and was 
greatest in the underlying sediments, which are a sink for settling 
organic matter. Consistent with our observations, Firmicutes have 

been reported to often comprise a major fraction of lake and pond 
sediment microbiota (Wang et al., 2019; Merino et al., 2023). These 
taxa degrade cellulose and lignin of decomposing plant matter and are 
involved in denitrification (Zhang et al., 2019). Accordingly, levels of 
ammonia (NH₃) in the water column were higher than at the surface, 
which likely reflected flux from bacterial activity in the sediments 
(Leoni et al., 2018). As a sink for nutrients and microbiota diversity, 
sediments can also become a source due to diffusion and resuspension 
(Hassard et al., 2016; Dadi et al., 2017) that may play an important role 
in the water quality dynamics throughout the pond.

Developing an effective water quality monitoring strategy 
requires consideration of variation across potential sampling 
locations. While the proportions of bacteria at the water surface 
were relatively stable throughout the day (i.e., 9:00, 12:00, 15:00) at 
the pond bank (L4), larger shifts at the surface were noted for the 
interior sampling sites (L5 and L11). This may be  related to 
Microcystis changing its vertical position in the water column via 
gas vacuoles in response to solar radiation, which was greater at 
surface-interior than surface-bank sites due to partial shading 
from vegetation at the perimeter of the pond (Smith et al., 2022). 
Limited water depths at the nearshore sites (e.g., approximately 
0.3–0.5 m maximum) also inherently reduced the capacity for 
vertical translocation. Thus, microbial water quality toward the 
interior of agricultural ponds may have been more influenced by 
diurnal changes in light than that at the shoreline due to both 
broader depths and relatively limited cover. Future research at 
additional ponds or along more sampling time points is needed to 
better understand within-site spatiotemporal variation in 
microbiome interactions with water quality.

Water metagenome diversity correlated with turbidity and 
E. coli concentrations, both of which were greater in the water 
column than at the surface. As E. coli is a routinely monitored 
indicator organism, the moderate, yet significant positive 
association with microbiome α -diversity may have implications 
for water quality monitoring for food safety risk analysis. The 
emergence of AMR and virulence features among environmental 
microbiota is also an emerging concern for public health. A variety 
of associated genes were identified in the pond microbiomes. For 
example, variants in rpsL, which can confer resistance to 
streptomycin and other aminoglycosides via key mutations, were 
detected at the highest abundance and frequency in the pond. 
These results are consistent with the study by Chopyk et al. (2020) 
that described rpsL to be the most prevalent resistance element 
among 33 detected AMR genes across 9 different irrigation water 
sources in the United  States. In addition, rpoB and Ef-Tu (i.e., 
genes also involved in resistance via potential mutations) were also 
widely detected in the water and sediments, respectively, which is 
consistent with previous reports on rivers, lakes, and subaqueous 
soils (Mittal et al., 2019; Zhao et al., 2019; Su et al., 2020). Whether 
these housekeeping genes that are implicated in potential AMR 
exhibited variants of clinical significance was outside of the scope 
of this work. While efflux pump rsmA was found in more than half 
of the samples collected in this work, which was also seen in other 
studies (Rout et al., 2024b), additional AMR genes associated with 
multidrug efflux and carbapenem or tetracycline resistance via 
enzymatic resistance mechanisms were detected sporadically in the 
pond and may have implications for food safety as well. Like most 
of the AMR features, the VFs identified (e.g., encoding adherence, 
flagellar motility, secretion system) were detected in a limited 

FIGURE 5

Phylogenetic tree for bacterial strains (distinguished by 99% ANI) 
recovered from pond water metagenomes based on core gene 
alignment. MAGs without species assignment are indicated with “sp.” 
and considered novel based on relative evolutionary distance (RED) 
score provided by taxonomic assignment with GTDB-Tk. Node size 
corresponds to numbers of genes encoding proteins with homology 
to AMR genes (indicated by total “*”), VFs, and additional stress 
response features. Node and font color indicates bacterial phylum.
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number of samples. Although the sources for these genetic 
elements remain unclear, emerging chemical contaminants (e.g., 
heavy metals, antibiotics and other antimicrobials) have gained 
attention for possible adverse impacts on environmental 
microbiomes, and even more in wastewater systems (Bueno et al., 
2021; Guruge et  al., 2021; Sharma et  al., 2025). Exploring how 
chemical drivers may associate with AMR in agricultural resources, 
especially under changing environmental conditions, is needed to 
inform strategies to mitigate potential risks.

While differences in AMR genetic elements across sampling 
locations and depths were not elucidated in the scope of this work, 
perhaps reflective of limited sample size and sequencing depth, 
we were able to link key features to dominant microbial strains 
within Cyanobacteria, Proteobacteria, and other phyla. There were 
a variety of AMR, virulence, and/or general stress response genes 
found in all MAGs recovered, which is consistent with other 
reports (Huang et al., 2024; Jiang et al., 2024). Notably, AMR genes 
were less frequently carried by strains of the surface-associated 
Cyanobacteria compared to other phyla. The greater microbial 
diversity within the sediments and water column (e.g., where 
Proteobacteria and Bacteroidetes were more dominant) suggests 
these sampling locations as more of a hotspot for genes encoding 
AMR and other stress responses. As bottom sediments of streams, 
lakes, rivers, and wastewaters have been reported as key reservoirs 
for AMR genes and the mobile genetic elements that mediate their 
transmission (Calero-Cáceres et al., 2017; Hess et al., 2018; Chen 
et al., 2020; Eramo et al., 2020), similar dynamics may occur in 
agricultural water systems. Employing long read metagenomics in 
future studies may help to better understand whether mobile 
elements are co-localized with AMR or virulence genes, as well as 
key metabolic pathways (e.g., PPP), and potentially enriched 
among taxa that exhibit pond depth variation.

We recognize several limitations to this study. While we focused 
on discerning the influence of sampling factors on observed water 
metagenome diversity, future studies collecting samples from various 
agricultural water sources known to differ in intrinsic properties 
would be  essential to better understand the relationship between 
water metagenomes and water quality. Moreover, although our 
metagenomic approach offered opportunity for non-targeted 
molecular surveillance, the sensitivity of AMR gene detection was 
limited, likely due to low abundances in the natural microbiomes. 
Deeper metagenomic sequencing is essential in future studies to 
determine whether AMR and virulence in agricultural waters may 
exhibit patterns across space and time. For example, a recent study 
that characterized broad diversity of 1,582 AMR genetic elements 
(representing 25 antibiotic classes) in 404 surface water samples in 
South America targeted >20 million metagenomic read pairs per 
sample (Huang et al., 2024), which was about two times greater than 
the reads obtained in this work. In addition, employing “quasi-
metagenomics” that involves some extent of culture enrichments prior 
to sequencing (Commichaux et al., 2021; Kocurek et al., 2023) may 
be necessary to enhance strategies that will help provide the systems-
level understanding between foodborne pathogens and water quality.

5 Conclusion

The microbiological and physicochemical quality of agricultural 
water has significant implications for food safety, including emerging 

concerns for transmission of genetic elements involved in 
AMR. However, correlations between specific biological and 
environmental parameters, which may concurrently exhibit spatial 
and temporal variation (e.g., changes with water depth and time of 
day), are not clear. We  addressed this gap by incorporating 
metagenomics into a comprehensive water quality assessment of an 
agricultural pond. Microbial taxonomic profiles and metabolic 
pathways largely varied between the water surface and at one and two 
meter depths in the water column, perhaps reflecting microbial 
exchanges with the underlying sediments. A variety of genetic 
elements encoding AMR, virulence, and other forms of bacterial stress 
response were identified throughout the pond, some of which were 
linked to specific bacterial strains within the water microbiome. 
Overall, our findings highlight key differences in water metagenomes 
throughout the pond that significantly correlated with dynamic water 
properties (e.g., concentrations of chlorophyll, DOM, ammonia, 
culturable E. coli). Spatiotemporal variation in water quality must 
be considered when developing applications for molecular surveillance 
in food safety risk assessment frameworks.
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SUPPLEMENTARY FIGURE S1

Map of sampling locations in Stocker et al. (2024). Water and sediment 
samples that were collected at locations 4, 5, and 11 (orange arrows) were 
processed for metagenomics analysis in the present study.

SUPPLEMENTARY FIGURE S2

Compositional dissimilarity or β-diversity of the relative abundances of 
MetaCyc pathways within water metagenomes. Colors represent sampling 
location/depth and shapes represent time of day.

SUPPLEMENTARY TABLE S1

Relative abundances of microbial species with an average abundance >0.1% 
across all samples at the water surface, in the water column, and in 
sediments of the agricultural pond. LME model statistics for differences 
between values in microbiomes at the water surface vs. in the water column 
and the latter vs. in sediments are displayed. Bold font indicates significance 
(q < 0.05).

SUPPLEMENTARY TABLE S2

Relative abundances of MetaCyc pathways encoded in the 
metagenomes at the water surface, in the water column, and in 
sediments of the agricultural pond. LME model statistics for differences 
between values in microbiomes at the water surface vs. in the water 
column and the latter vs. in sediments are displayed. Bold font indicates 
significance (q < 0.05).

SUPPLEMENTARY TABLE S3

MAG amino acid sequences with homology (>50% identity) to AMR, 
virulence, and stress response genetic elements.
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