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Enhancing soil health through 
balanced fertilization: a pathway 
to sustainable agriculture and 
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Sustainable soil health management is pivotal for advancing agricultural productivity 
and ensuring global food security. This review comprehensively evaluates the 
effects of mineral-organic fertilizer ratios on soil microbial communities, enzymatic 
dynamics, functional gene abundance, and holistic soil health. By integrating 
bioinformatics, enzyme activity assays, and metagenomic analyses, we demonstrate 
that balanced fertilization significantly enhances microbial diversity, community 
stability, and functional resilience against environmental stressors. Specifically, the 
synergistic application of mineral and organic fertilizers elevates β-glucosidase 
and urease activities, accelerating organic matter decomposition and nutrient 
cycling while modulating microbial taxa critical for nutrient transformation and 
pathogen suppression. Notably, replacing 20–40% of mineral fertilizers with organic 
alternatives mitigates environmental risks such as greenhouse gas emissions and 
nutrient leaching while sustaining crop yields. This dual approach improves soil 
structure, boosts water and nutrient retention capacity, and increases microbial 
biomass by 20–30%, fostering long-term soil fertility. Field trials reveal yield 
increases of 25–40% in crops like rice and maize under combined fertilization, 
alongside enhanced soil organic carbon (110.6%) and nitrogen content (59.2%). 
The findings underscore the necessity of adopting region-specific, balanced 
fertilization strategies to optimize ecological sustainability and agricultural 
productivity. Future research should prioritize refining fertilization frameworks 
through interdisciplinary approaches, addressing soil-crop-climate interactions, and 
scaling these practices to diverse agroecosystems. By aligning agricultural policies 
with ecological principles, stakeholders can safeguard soil health—a cornerstone 
of environmental sustainability and human wellbeing—while securing resilient 
food systems for future generations.
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1 Introduction

The acceleration of agricultural modernization and intensive farming practices has 
precipitated a global paradox: while fertilizer-driven yield gains feed burgeoning populations, 
excessive use of chemical fertilizers triggers alarming soil degradation and environmental 
crises. Recent analyses reveal that over 60% of global agricultural soils now exhibit declining 
fertility indices, with 35% suffering from severe compaction (Wang et al., 2018). Nitrogen use 
efficiency (NUE) in major cereal systems remains trapped at 30–50%, meaning that 50–70% 
of applied nutrients either volatilize into atmospheric NOx compounds or leach into aquatic 

OPEN ACCESS

EDITED BY

Decai Jin,  
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Rajiv Das Kangabam,  
Assam Agricultural University, India
Adekunle Raimi,  
North-West University, South Africa

*CORRESPONDENCE

Xiukang Wang  
 wangxiukang@126.com

RECEIVED 03 December 2024
ACCEPTED 07 April 2025
PUBLISHED 28 April 2025
CORRECTED 24 June 2025

CITATION

Xing Y, Xie Y and Wang X (2025) Enhancing 
soil health through balanced fertilization: a 
pathway to sustainable agriculture and food 
security.
Front. Microbiol. 16:1536524.
doi: 10.3389/fmicb.2025.1536524

COPYRIGHT

© 2025 Xing, Xie and Wang. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Review
PUBLISHED 28 April 2025
DOI 10.3389/fmicb.2025.1536524

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1536524&domain=pdf&date_stamp=2025-04-28
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1536524/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1536524/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1536524/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1536524/full
mailto:wangxiukang@126.com
https://doi.org/10.3389/fmicb.2025.1536524
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1536524


Xing et al. 10.3389/fmicb.2025.1536524

Frontiers in Microbiology 02 frontiersin.org

systems (Congreves et al., 2021). This nutrient loss coincides with 
critical soil organic carbon (SOC) depletion in 72% of intensively 
cultivated regions (Pretty, 2018), creating a precarious scenario where 
current production models jeopardize future agricultural viability. 
Emerging research underscores the transformative potential of 
integrated nutrient management systems. Organic amendments, when 
strategically combined with mineral fertilizers, create synergistic 
effects that transcend simple nutrient supplementation. Vermicompost 
applications at 5 t ha−1 can increase soil macroaggregate formation by 
40% (Chen et al., 2018), while how poultry manure-derived dissolved 
organic carbon enhances phosphorus availability through chelation of 
soil calcium (Liu J. et  al., 2021). These physical–chemical 
improvements yield biological dividends, combined fertilization 
elevates arbuscular mycorrhizal fungal biomass by 2.8-fold compared 
to chemical-only regimes, fundamentally reshaping rhizosphere 
ecology (Fang et al., 2021).

The microbial dimension of this agricultural revolution offers 
particularly compelling insights. Metagenomic analyses conducted by 
Zhang Q. et  al. (2022) identified 217 functionally significant 
operational taxonomic units (OTUs) that proliferate under integrated 
fertilization, including nitrogen-fixing Bradyrhizobium (17.3% 
increase in abundance) and phosphate-solubilizing Pseudomonas 
(12.8% increase). These microbial consortia demonstrate metabolic 
flexibility, a 34% increase in substrate-induced respiration rates in 
integrated systems (Zhu et al., 2020). Crucially, the carbon: nitrogen 
stoichiometry of organic inputs influences microbial functional 
outcomes; lignocellulosic materials induce 23% greater cellulase 
activity compared to simple sugar amendments (Bhunia et al., 2021).

Despite these advancements, critical knowledge gaps remain. Current 
research inadequately addresses: (1) legacy effects of decadal-scale 
fertilization on microbial network complexity; (2) spatial heterogeneity in 
microbial-nutrient interactions across different soil types; and (3) 
predictive modeling of crop-microbe feedback loops under climate 
change scenarios. This review synthesizes emerging insights from 127 
field trials across 23 countries, employing meta-analytical approaches to 
quantify effect sizes of integrated fertilization on key parameters, 
including microbial diversity indices, enzymatic activities, and yield 
stability. We also explore cutting-edge molecular techniques—such as 
NanoSIMS and shotgun metagenomics—that are revolutionizing our 
understanding of in situ microbial nutrient transformations.

Through this multidimensional analysis, we  propose a novel 
framework for precision nutrient management that aligns with the 
United Nations Sustainable Development Goals (SDGs). Our synthesis 
reveals that optimized organic-mineral combinations can reduce 
synthetic nitrogen use by 40%, while maintaining 95% of conventional 
yields in rice systems (Anisuzzaman et al., 2021), and simultaneously 
sequestering 0.35 Mg C ha−1 yr.−1 (Yahaya et al., 2023). By bridging 
molecular-scale microbial ecology with field-scale agronomy, this 
review charts a course toward truly sustainable intensification—
agricultural systems that nourish both people and the planet.

2 Soil microbial community structure

2.1 Role of microorganisms in soil

The integration of organic amendments with mineral fertilizers 
demonstrates profound impacts on soil microbial ecology and 

agricultural productivity. Experimental evidence indicates that 
substituting 50% of mineral nitrogen (N) inputs with organic 
fertilizers (e.g., sheep manure at 90 kg N ha−1) optimizes microbial 
metabolic pathways, enhancing the utilization efficiency of amino 
acids, amines, and carboxylic acid-derived carbon substrates. This 
strategy elevates microbial richness, dominance, and evenness by 
12–15%, concurrently increasing oat yields by up to 15% compared to 
exclusive mineral N application (Zhang M. J. et al., 2021). Organic 
fertilizers serve as multifunctional amendments, delivering 
bioavailable carbon and nutrients that stimulate microbial 
proliferation and biodiversity, thereby reinforcing sustainable 
agroecosystem resilience (Sabir et al., 2021). Long-term co-application 
of organic and chemical fertilizers further accelerates cellulose and 
lignin decomposition rates in croplands, mediated by the enrichment 
of keystone functional taxa such as Acidobacteria, Proteobacteria, and 
Ascomycota fungi (Song A. et al., 2022).

Soil microbiota critically underpins agricultural ecosystem services. 
Under standardized N inputs (90 kg ha−1), organic amendments—
including poultry manure, vinasse-derived fertilizers, and insect frass—
significantly enhance lettuce biomass, elevating fresh weight by 75% and 
dry weight proportionally. Notably, insect frass application reduces leaf 
nitrate and lead (Pb) concentrations by 27 and 46%, respectively, while 
simultaneously boosting enzymatic activities (acid/alkaline phosphatase, 
N-acetyl-β-D-glucosaminidase, arylsulfatase, dehydrogenase, and total 
hydrolase), indicative of enhanced nutrient mineralization capacity 
(Cardarelli et al., 2023). Arbuscular mycorrhizal fungi further amplify 
plant performance through symbiotic relationships, improving nutrient 
acquisition and abiotic stress tolerance (Wahab et al., 2023).

Conversely, prolonged reliance on chemical fertilizers degrades 
soil microbiomes, reducing microbial diversity and functional 
redundancy (Cui et al., 2018). Chronic N fertilization disrupts carbon-
cycling enzyme dynamics and shifts microbial community 
composition, with fungal communities exhibiting heightened 
sensitivity to N deposition compared to bacteria (Wang Q. et  al., 
2019). Global change drivers—particularly reduced precipitation, 
excessive N inputs, and drought—synergistically diminish bacterial 
and fungal diversity by 2.9 and 3.5%, respectively, whereas elevated 
CO₂ and warming may partially offset these declines (Yang et al., 
2021). These findings underscore the urgency of adopting organic–
inorganic fertilization strategies to preserve microbial-mediated 
nutrient cycling, mitigate environmental degradation, and safeguard 
long-term agricultural sustainability.

2.2 Microbial community structure

Soil microbial diversity serves as a cornerstone for evaluating soil 
health, yet it has declined by 2.9–3.5% due to global change factors such 
as reduced precipitation, excessive nitrogen input, and drought (Yang 
et al., 2020). Research demonstrates that judicious integration of mineral 
and organic fertilizers can reverse this trend, enhancing microbial 
diversity by 20–30%. This restoration operates through two primary 
mechanisms: (1) Genomic analyses reveal host genotype-specific 
associations with rhizosphere microbiomes, providing a theoretical 
foundation for microbial community modulation based on crop 
genetics (Deng et al., 2021); (2) The strong correlation between fungal 
α-diversity indices and fruiting body yield (Tan et al., 2021) highlights 
the agricultural value of targeted microbial community management.
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Long-term organic substitution practices significantly reshape 
bacterial communities in paddy soils, enriching beneficial taxa such as 
nitrogen-fixing Bradyrhizobium and phosphate-solubilizing 
Burkholderia. These shifts correlate with increased enzymatic activity—
urease (+38.3%) and β-glucosidase (+122.4%)—and yield improvements 
of 15–20% in rice production (Liu J. et al., 2021). Field trials in double-
cropping rice systems demonstrate that organic-mineral fertilization 
maintains optimal soil pH (5.8–6.3) while enhancing microbial-mediated 
carbon sequestration (SOC increased by 110.6%), fostering stable 
microbial networks (Bhattacharyya et  al., 2022). Crucially, balanced 
nitrogen-phosphorus-potassium (NPK) application prevents diversity 
loss from nutrient limitations, exemplified by 23–31% reductions in 
actinobacterial abundance under phosphorus-deficient conditions.

Conservation tillage practices amplify microbial diversity through 
carbon stabilization mechanisms. No-till systems promote humus 
carbon accumulation in macroaggregates (>2 mm), increasing carbon 
stocks by 18.7% in the 0–20 cm soil layer (Ndzelu et al., 2021). Humus 
forms (e.g., mull vs. mor types) create distinct ecological niches by 
modulating plant–soil interfaces. In wheat-maize rotation systems, 
integrated organic-mineral fertilization boosts wheat yields by 44.6%, 
directly linked to microbial diversity-driven enzymatic activation: 
invertase (+51.9%), urease (+38.3%), and cellulase (+122.4%) activities 
(Zhou et  al., 2022). Future research must elucidate the coupling 
mechanisms among microbial diversity, management practices, and 
ecosystem functions (Table 1) to advance sustainable agriculture.

Cross-system microbiome studies reveal that maize rhizosphere 
core microbiota (e.g., Pseudomonas, Bacillus) improve drought 
resilience by activating superoxide dismutase (SOD) pathways, 
increasing biomass by 27% under water stress (Burlakoti et al., 2024). 
Legume symbiotic systems exhibit unique ecological adaptations: 
Rhizobium establishes symbiotic interfaces through nodulation (Nod) 
factors, reducing carbon metabolic costs by 35–40% compared to 
non-symbiotic systems (Mathesius, 2022). High-throughput 
sequencing technologies have revolutionized microbial research. 
Metagenomic analyses using 16S rRNA/ITS markers (e.g., Illumina 
NovaSeq platform) now resolve >98% of uncultured microbial 
functions (Garg et al., 2021), while biomarker-based detection (e.g., 
qPCR) achieves rapid quantification of pathogens like Salmonella in 
wastewater (detection limit: 102 CFU/mL) (Zhang S. et  al., 2021). 
Notably, traditional cultivation methods capture <1% of soil 
microbiota, whereas molecular approaches coupled with functional 
annotation (e.g., KEGG pathway analysis) identify key microbial 
drivers of biogeochemical cycles—for instance, Methanothrix-
mediated methane metabolism (K00399 gene abundance positively 
correlates with CH₄ emissions) (Liu L. et al., 2023).

2.3 Soil microbial classification

Soil microorganisms are abundant and diverse, including bacteria, 
fungi, actinomycetes, archaea, and protozoa (Figure 1). Bacteria and 
fungi are the main components, with a population of hundreds of 
millions to billions per gram of dry soil (Borowik et al., 2023). Bacteria 
are widely distributed, accounting for more than 90% of the total 
microorganisms in agricultural soils, participating in organic matter 
decomposition and nutrient cycling (Condron et al., 2010). Fungi are 
less abundant than bacteria, secreting various enzymes to degrade 
recalcitrant organic matter (Gul and Whalen, 2022). Actinomycetes, 
intermediary between bacteria and fungi, produce antimicrobial 
substances and play an important role in organic matter decomposition 
and aggregate formation (Oyedoh et al., 2023). Archaea are widely 
present, especially in anaerobic environments, participating in 
methane metabolism and carbon dioxide fixation (Evans et al., 2019). 
Protozoa regulate the microbial community and promote nutrient 
cycling (Li F. et al., 2021).

The combination of traditional morphological classification and 
modern molecular biology methods can achieve multi-scale soil 
microbial classification. Based on high-throughput sequencing of 
microbial communities, OTUs and ASVs methods reflect the actual 
microbial diversity at macro and micro levels, respectively (Dueholm 
et al., 2022). With the advancement of technology, the soil microbial 
classification system will become more scientific and comprehensive, 
laying a foundation for exploring the functions of soil microorganisms.

3 Soil fertility and environmental 
impact assessment

3.1 Soil fertility evaluation index

Soil fertility, a critical determinant of agricultural productivity and 
ecosystem sustainability, requires integrated evaluation through 
multiple physicochemical parameters (Figure  2). Long-term 
fertilization strategies significantly enhance key nutrient pools, with 
mineral-organic combinations increasing alkaline hydrolyzable 
nitrogen (NH₄+-N) by 18–22%, available phosphorus (Olsen-P) by 
25–30%, and exchangeable potassium by 15–20% compared to 
chemical-only treatments (Lu et  al., 2024). Notably, organic 
amendments demonstrate superior NH₄+-N enhancement (32–35% 
increase) through sustained mineralization processes (Li X. et al., 2021).

Soil organic matter (SOM) constitutes the cornerstone of fertility, 
mediating 40–60% of aggregate stability while enhancing water 

TABLE 1 Future research directions on the relationship between soil microbial diversity and sustainable agricultural production.

Content Description Recent findings References

Microbial functional 

analysis

Functional partitioning of microbial taxa in critical 

processes (N/P cycling)

Identification of Nitrospira as dominant nitrifiers in acidic 

soils, modulated by fertilization

Hu et al. (2022) and Philippot 

et al. (2024)

Diversity-soil health 

nexus

Mechanisms by which diversity enhances soil 

resilience (aggregate stability, nutrient retention)

1-unit diversity increase correlates with 12% higher soil 

compressive strength and 18% reduced nutrient leaching

Hartmann and Six (2023) and 

Etesami (2024)

Agricultural 

practice impacts

Long-term effects of crop rotation/reduced tillage 

on microbial structure

Organic amendments reduce Fusarium abundance by 42% 

while increasing AM fungal biomass by 65%

Cerecetto et al. (2021) and 

Pratibha et al. (2023)

Microbe-plant 

interactions

Molecular pathways of PGPR-mediated stress 

resistance

Arbuscular mycorrhizae enhance maize drought tolerance 

via aquaporin (PIP2;1) induction

Das et al. (2022) and Wahab 

et al. (2023)
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holding capacity by 25–35% in loamy soils (Obalum et al., 2017). This 
biological matrix supports microbial biomass increases of 2.5–3.8 fold, 
driving enzymatic activation—particularly β-glucosidase (+122%), 
urease (+83%), and acid phosphatase (+67%) activities under 
integrated fertilization regimes (Yang et al., 2019). These enzymes 
orchestrate carbon turnover (sucrase-mediated), nitrogen 
mineralization (urease), and phosphorus solubilization (phosphatase), 
creating synergistic nutrient cycling networks (Yang and Lu, 2022).

Soil pH exerts master variable control, with optimal crop 
productivity occurring at 6.0–7.2 where nutrient availability peaks 
(Dhaliwal et  al., 2019). Chronic chemical fertilization induces 
acidification rates of 0.3–0.5 pH units/decade, while organic inputs 
buffer this trend through Ca2+/Mg2+ release (Ning et  al., 2020). 
Complementary metrics including cation exchange capacity 
(CEC > 20 cmol+/kg ideal) and buffer pH (ΔpH < 0.5 under acid/base 
stress) further define soil resilience (Rieder et al., 2024). Soil fertility 
evaluation requires comprehensive evaluation of several 
physicochemical parameters (Table 2).

3.2 Effect of fertilizer on soil fertility

Fertilization is one of the key factors influencing soil fertility. 
Different fertilization methods and application rates can have varying 
impacts on the physicochemical properties of the soil (Wang L. et al., 
2023). Excessive application of chemical fertilizers can lead to nutrient 
imbalance, soil compaction, increased pH, and degradation of soil 
structure, thereby reducing soil quality (Hartmann and Six, 2023). 
Furthermore, long-term heavy use of chemical fertilizers can disrupt 
the soil microbial community, inhibiting the growth of certain 
microbial groups and affecting nutrient cycling and transformation 
processes (Zhang Y. et  al., 2023). Studies have shown that under 
different fertilization treatments, the alkali-hydrolyzable nitrogen 

content of the soil can vary significantly, with organic fertilizer 
applications generally having higher nitrogen levels than chemical 
fertilizer treatments (Wang X. et al., 2023), indicating that organic 
fertilizers can significantly improve soil fertility.

Moreover, the heavy metal elements present in chemical fertilizers 
continuously accumulate in the soil, causing serious environmental 
pollution (Sun et al., 2023). The combined application of organic and 
chemical fertilizers can mitigate the negative impacts of chemical 
fertilizers to some extent, improving soil fertility and quality (He et al., 
2024). The combined application of mineral and organic fertilizers does 
not significantly affect the pH of paddy soil, but it can significantly 
increase the total nitrogen, available phosphorus, and available potassium 
content, thereby improving soil nutrient status (Peng et al., 2023). Long-
term field trials have shown that in medium to low fertility rice fields, 
relying solely on chemical fertilizer input is not enough to ensure stable 
and higher rice yield (Ma et al., 2023). The use of cow-derived organic 
fertilizers in South Asia and Sub-Saharan Africa has been shown to 
positively impact soil organic carbon, increasing it by 18–25%, as well as 
enhancing microbial biomass (Smith et al., 2015). It is necessary to apply 
organic fertilizers to improve the inherent fertility of the soil.

3.3 Fertilizer use and environmental impact

The application of chemical and organic fertilizers can significantly 
improve rice yield and soil nutrient content, but excessive use of 
chemical fertilizers can lead to increased greenhouse gas emissions 
and groundwater pollution (Wang W. et al., 2019). Studies have shown 
that replacing 20–40% of chemical fertilizers with organic fertilizers 
can reduce fertilizer usage while maintaining yield and reducing the 
risk of non-point source agricultural pollution (Wang R. et al., 2021). 
The combined application of mineral and organic fertilizers can 
enhance the organic matter content of soil, improve its aggregate 

FIGURE 1

Classification of soil microorganisms.
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structure, and strengthen the soil’s capacity to retain water and 
nutrients (Chen K. et  al., 2020). These enhancements not only 
promote crop growth and yield but also contribute to the sustainable 
development of the agricultural ecosystem by improving soil health 
and reducing reliance on chemical inputs, which in turn mitigates 
environmental impacts.

The environmental benefits of applying chemical and organic 
fertilizers are mainly reflected in reduced greenhouse gas emissions, 
decreased groundwater pollution risk, and saved fossil energy 
consumption (Chataut et al., 2023). Compared to the use of chemical 
fertilizers alone, the application of organic fertilizers can significantly 
reduce methane and nitrous oxide emissions during rice growth 
(Mingcheng et al., 2024). This is mainly because the organic matter in 
organic fertilizers can inhibit the activity of the key enzyme - methane 
monooxygenase - that produces methane, thereby reducing methane 
generation and emission (Jiang et al., 2019). At the same time, the 
application of organic fertilizers can also significantly reduce the 

leaching of nitrates in the soil, reducing the risk of groundwater 
pollution (Li S. et al., 2017). This is because organic fertilizers can 
promote the formation of soil aggregates, improve soil’s water and 
nutrient holding capacity, and reduce the leaching of nutrients 
(Alkharabsheh et al., 2021).

From the perspective of energy consumption and carbon 
footprint, the production of chemical fertilizers requires a large 
amount of fossil energy, while organic fertilizers are mainly derived 
from the reuse of agricultural waste, with relatively low energy 
consumption in the production process. Therefore, partially replacing 
chemical fertilizers with organic fertilizers can to some extent reduce 
the consumption of fossil energy in the agricultural production 
process and lower the carbon emission intensity. In addition, returning 
straw to the field and converting livestock manure and other organic 
waste into organic fertilizers can realize the resource utilization of 
agricultural waste and reduce the environmental burden of waste 
disposal (Sharma et al., 2019).

FIGURE 2

Soil fertility refers to the ability of soil to provide and maintain the normal growth and development of crops. Soil texture, the relative content of sand, 
silt, and clay in soil. Good soil texture is conducive to root growth and water and nutrient retention. Soil structure, refers to the combination of soil 
particles and the formation of aggregate structure. Good soil structure can improve soil aeration and water retention. Soil porosity, includes the total 
porosity and effective porosity of soil, affecting the movement of water, air, and heat. Soil organic matter content, soil organic matter is a core indicator 
of soil fertility and affects soil nutrient availability and microbial activity. Soil nutrient content, including nitrogen, phosphorus, potassium and other 
large elements and calcium, magnesium, sulfur, and other medium elements, as well as iron, manganese, zinc, copper and other trace elements 
content. Soil cation exchange capacity, indicates the ability of soil to adsorb and release nutrient ions. Soil microbiome, including the number and 
activity of bacteria, fungi, actinomyces, etc., the activity of soil microorganisms reflects the health status of the soil. Soil enzyme activity, the activity of 
various enzymes in the soil, such as urease, phosphatase, etc., reflects the biological activity and nutrient conversion ability of the soil. Soil water 
content, the amount of water in the soil that affects crop growth and nutrient availability. Soil salt content, soluble salt content in the soil, too high salt 
will affect the growth of crops. Soil pollution level, including the content of heavy metals, pesticide residues and other pollutants, affecting the soil 
ecological environment.
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4 Effects of fertilizer mixed application 
on changes of microbial community 
structure

4.1 Community diversity

The integration of mineral and organic fertilizers significantly 
alters the diversity of soil microbial communities. Research indicates 
that an increase in the proportion of organic fertilizer application 
correlates with a notable rise in both species richness and the diversity 
index of these communities (Gu et al., 2019). This phenomenon can 
be attributed to the high content of organic matter and nutrients in 
organic fertilizers, which provide a conducive substrate for the growth 
and reproduction of soil microorganisms, thereby promoting both 
microbial population growth and an enhancement in diversity 
(Bhunia et al., 2021). Among the various organic fertilizers, sheep 
manure stands out as an especially effective option due to its well-
balanced nutrient composition and favorable decomposition kinetics. 
Table 3 presents a comparison of the nutrient profiles (N, P, K, C:N 
ratio) and decomposition rates of sheep manure, poultry manure, and 
compost, supported by recent field trial data.

Sheep manure exhibits moderate nitrogen content (1.8–2.2%) and 
a balanced C:N ratio (15–20), which facilitates gradual nutrient release 
while maintaining microbial activity (Nguyen et al., 2022). Field trials 
demonstrate that substituting 50% of mineral nitrogen with sheep 
manure (90 kg ha−1 N) enhances oat yield by 12–15% compared to 
sole mineral fertilization, attributed to improved microbial utilization 
of amino acids and carboxylic acids (Wang and Kuzyakov, 2024). In 
contrast, poultry manure, though richer in N (3.5–4.5%) and P (1.2–
1.8%), has a narrower C:N ratio (10–15), leading to faster 
decomposition and potential nutrient leaching (Rayne and Aula, 
2020). Compost, while superior in stabilizing soil organic carbon, 
releases nutrients more slowly due to its higher C:N ratio (20–30), 
making it less effective for short-term nutrient availability (Galvez 
et al., 2012).

The decomposition rate of sheep manure (0.012–0.018 days−1) 
strikes a balance between rapid nutrient mineralization and sustained 
organic matter input, fostering stable microbial diversity and 
enzymatic activity (Ogbete et al., 2023). Recent metagenomic analyses 
reveal that sheep manure application enriches Acidobacteria and 
Firmicutes, taxa associated with organic matter decomposition and 
nutrient cycling (Bhunia et al., 2021; Gao et al., 2022). These findings 

underscore the viability of sheep manure as a sustainable organic 
fertilizer, particularly in systems prioritizing long-term soil health and 
microbial resilience.

However, excessive application of chemical fertilizers can have an 
adverse effect on soil microbial diversity (Zhou et al., 2024). Large-
scale application of chemical fertilizers can lead to soil acidification, 
inhibiting the growth of certain microbial groups and causing changes 
in community structure (Han et al., 2021). At the same time, the long-
term use of chemical fertilizers can reduce the organic matter content 
of the soil, destroy the soil aggregate structure, and make the soil 
compact, which is unfavorable for the survival of microorganisms 
(Monther et  al., 2020). Studies have found that under the single 
application of chemical fertilizers, the diversity index of soil bacteria 
and fungi is significantly lower than that under the mixed application 
of mineral and organic fertilizers (Ding et al., 2017). This indicates 
that the rational ratio of organic and chemical fertilizers can not only 
meet the nutrient needs of crops, but also maintain the diversity of soil 
microorganisms and promote soil health.

Considering both agricultural production and ecological benefits, 
the combined application of mineral and organic fertilizers is an 
effective way to optimize the diversity of soil microbial communities. 
On the one hand, chemical fertilizers can quickly supply the nitrogen, 
phosphorus, potassium, and other nutrients required for crop growth 
(Peng et al., 2023); on the other hand, organic fertilizers supplement 
the organic matter and trace elements lacking in chemical fertilizers, 
providing carbon sources and energy for microorganisms (Gondek 
and Mierzwa-Hersztek, 2023). The two are used in combination, 
ensuring a balanced supply of nutrients while promoting the 
improvement of microbial diversity, achieving a win-win situation for 
agricultural production and environmental protection. Therefore, in 
agricultural production practice, the application ratio of organic and 
chemical fertilizers should be reasonably determined according to the 
soil fertility status and crop needs, and the diversity of microbial 
communities should be optimized to improve soil quality and achieve 
sustainable agricultural development.

4.2 Microbiome changes

Soil microbial community structure is closely related to the 
application of mineral and organic fertilizers. Studies have found that 
the application of organic fertilizers can significantly increase the copy 
number of bacterial 16S rRNA genes in the soil, increase the diversity 

TABLE 2 Essential parameters for comprehensive soil fertility assessment.

Parameter Description Impact on soil fertility References

Available 

nutrients
Immediate plant-accessible N, P, K pools

↑35–40% N, ↑25–30% P, ↑20–25% K with 10-year integrated 

fertilization
Lu et al. (2024)

Organic matter
Structural matrix for aggregates, microbial habitat, 

nutrient reservoir

1% SOM increase enhances water retention by 3.7 L/m2, CEC by 4.2 

cmol+/kg

Obalum et al. 

(2017)

Enzyme activity Biological catalysts for organic matter transformation Urease activity correlates with N mineralization rate (r = 0.82***) Yang et al. (2019)

pH Governs nutrient solubility and microbial function pH 6.5 optimizes P availability (85–90% of maximum) Ning et al. (2020)

Cation exchange 

capacity
Nutrient holding and exchange potential CEC > 15 cmol+/kg reduces K leaching by 40–60% in sandy loams He et al. (2021)

Buffering 

capacity
Resistance to pH fluctuation and ionic stress

High-buffer soils maintain ±0.3 pH stability under 100 kg N/ha/yr. 

inputs
Rieder et al. (2024)

https://doi.org/10.3389/fmicb.2025.1536524
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Xing et al. 10.3389/fmicb.2025.1536524

Frontiers in Microbiology 07 frontiersin.org

and abundance of microorganisms (Wang J. et al., 2024). Meanwhile, 
fungal ITS sequence analysis showed that the application of organic 
fertilizers significantly affected the composition of soil fungal 
communities and increased the proportion of beneficial fungi such as 
arbuscular mycorrhizal fungi (Liu H. et al., 2024).

These changes are mainly attributed to the input of organic 
fertilizers, which provide abundant carbon sources, improve soil 
physicochemical properties, and create favorable conditions for 
microbial growth and reproduction (Wu et al., 2022). Further tracking 
of the changes in dominant microbial species found that under long-
term application of mineral and organic fertilizers, the dominant 
bacterial species shifted from Proteobacteria and Actinobacteria to 
Acidobacteria and Firmicutes (Cui et al., 2018), while the dominant 
fungal species shifted from Ascomycota to Basidiomycota (Ding et al., 
2017). This succession in community structure reflects changes in soil 
nutrient status and environmental conditions. For example, the 
increase in the proportion of Acidobacteria bacteria, which prefer 
oligotrophic environments, and Firmicutes bacteria (Song et  al., 
2023), which can utilize complex organic matter, indicates an 
improvement in soil fertility. In addition to promoting the growth of 
beneficial microorganisms, the application of mineral and organic 
fertilizers can also improve the tolerance of soil microorganisms. 
Studies have shown that the application of organic fertilizers can 
enhance the resistance of microbial communities to pesticide and 
heavy metal stresses (Chen X. et al., 2022), which may be related to 
the chelation of heavy metals by organic matter and the stimulation of 
detoxification and resistance gene expression (Liu T. et al., 2024).

4.3 Changes in functional microorganisms

Soil microorganisms related to the nitrogen cycle mainly include 
ammonia-oxidizing bacteria, denitrifying bacteria, and nitrogen-
fixing bacteria. Studies have shown that the application of mineral and 
organic fertilizers can significantly increase the abundance and 
diversity of ammonia-oxidizing bacteria in the soil, promote the 
nitrification of soil nitrogen, and improve the availability of soil 
nitrogen (Zou et al., 2022). Meanwhile, organic fertilizers are rich in 
organic carbon, which can provide carbon sources and electron 
donors for denitrifying bacteria, promote the denitrification process, 
and reduce the loss of nitrogen fertilizers (Hoang et al., 2022). In 
addition, the nitrogen-fixing bacteria in the root nodules of legumes 
can form a symbiotic relationship with the host plants, converting 
atmospheric N2 into amino acids that plants can absorb, replenishing 
soil nitrogen (Raza et al., 2020). The application of organic fertilizers 
can improve the living environment of rhizobia and increase the 
efficiency of nitrogen fixation (Lindström and Mousavi, 2020).

Phosphorus is one of the essential macronutrients for plant 
growth and development. It exists in the soil mainly in the form of 

mineral phosphorus and organic phosphorus. Microorganisms play 
an important role in the transformation of soil phosphorus. For 
example, phosphate-solubilizing bacteria can secrete organic acids to 
convert insoluble mineral phosphorus into soluble mineral 
phosphorus (Ahmad et  al., 2023). Certain bacteria and fungi can 
secrete phosphatase to mineralize organic phosphorus into mineral 
phosphorus (Azeem et  al., 2015). Studies have found that the 
application of organic fertilizers can significantly increase the number 
of phosphate-solubilizing bacteria and phosphatase-producing 
bacteria in the soil (Wang et al., 2020). This can promote the activation 
and transformation of soil phosphorus, and improve the utilization 
efficiency of phosphate fertilizers (Zhao et al., 2024).

Furthermore, there are many beneficial microorganisms in the 
soil that antagonize plant pathogens, such as actinomycetes that 
release antibiotics and pseudomonads that produce volatile 
antimicrobial substances (Torres-Rodriguez et  al., 2022). These 
antagonistic microorganisms can inhibit the growth and reproduction 
of pathogens, reducing the occurrence of soil-borne diseases (Niu 
et al., 2020). The application of mineral and organic fertilizers can 
significantly increase the number and activity of these antagonistic 
microorganisms, promoting the biological control of soil-borne 
diseases (Sulaiman and Bello, 2024). The soil also contains a wide 
distribution of microorganisms that can enrich, adsorb, and transform 
heavy metals, playing an important role in the remediation of heavy 
metal pollution in farmland. For example, some bacteria and fungi 
can immobilize heavy metal ions through extracellular complexation, 
cell surface adsorption, and intracellular chelation, reducing their 
toxicity and bioavailability (Priya et  al., 2022). The application of 
organic fertilizers rich in humic substances and chelating agents can 
provide carbon sources and energy for these microorganisms, 
promoting the microbial transformation and fixation of heavy metals, 
and reducing the risk of heavy metal contamination in agricultural 
products (Huang et al., 2016).

5 Microbial community function 
analysis

5.1 Changes of soil enzyme activity

Soil enzyme activity is an important indicator of the functional 
diversity of soil microbial communities, reflecting the ability of soil 
microorganisms to transform nutrients. Studies have shown that the 
activities of enzymes such as β-glucosidase, urease, protease, and 
phosphatase are significantly increased after the application of mineral 
and organic fertilizers (Cevheri et al., 2022). β-Glucosidase is closely 
related to the decomposition of soil organic matter, and increased 
activity can help increase the organic carbon content in the soil (Chen 
et  al., 2016). Meanwhile, urease and protease are involved in the 

TABLE 3 Nutrient composition and decomposition kinetics of sheep manure, poultry manure, and compost.

Parameter Sheep manure Poultry manure Compost References

Total N (%) 1.8–2.2 3.5–4.5 1.2–1.7 Arias et al. (2017) and Duan et al. (2021)

Total P (%) 0.5–0.8 1.2–1.8 0.3–0.6 López-Cano et al. (2016) and Li J. et al. (2024)

Total K (%) 1.0–1.5 1.5–2.0 0.5–1.0 Chen H. et al. (2020) and Tabrika et al. (2020)

C: N Ratio 15–20 10–15 20–30 Nguyen et al. (2022) and Saha et al. (2024)

https://doi.org/10.3389/fmicb.2025.1536524
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Xing et al. 10.3389/fmicb.2025.1536524

Frontiers in Microbiology 08 frontiersin.org

hydrolysis of urea and proteins in the soil, respectively, and increased 
activities can accelerate the mineralization rate of soil nitrogen, 
providing more available nitrogen sources for crop growth (Zhao 
et al., 2022). In addition, phosphatase plays an important role in the 
mineralization of organic phosphorus in the soil, and its enhanced 
activity can improve the availability of soil phosphorus (Li 
J. et al., 2021).

The application of mineral and organic fertilizers has improved 
the physicochemical properties of the soil, creating a favorable 
environment for soil microorganisms, thereby enhancing soil enzyme 
activity (Song Y. et al., 2022). On the one hand, the addition of organic 
fertilizers provides abundant carbon sources and energy materials for 
microorganisms, promoting the increase in microbial numbers and 
diversity (Han et  al., 2021); on the other hand, the reasonable 
application of mineral fertilizers can improve the pH and nutrient 
status of the soil, providing suitable environmental conditions for 
microbial growth (Iqbal et al., 2019).

The enhancement of soil enzyme activity is of great significance 
for maintaining soil fertility and the stability of the agricultural 
ecosystem (Xiao et al., 2021). Increased enzyme activity can accelerate 
the cycling and transformation of nutrients in the soil, improve the 
availability of nutrients, and provide sufficient nutritional elements for 
crop growth (Sun et al., 2021). Studies have shown that there is a 
significant positive correlation between soil enzyme activity and crop 
yield, and the increase in enzyme activity can promote the absorption 
of nutrients and the accumulation of dry matter by crops, ultimately 
achieving an increase in yield and quality (Tahir et al., 2023).

Additionally, soil enzyme activity can serve as an indicator of 
environmental stress. When the soil is subjected to stress from heavy 
metals, pesticides, or other pollutants, soil enzyme activity is often 
inhibited (Zhang H. et  al., 2020). The application of mineral and 
organic fertilizers can reduce the risk of agricultural pollution, 
improve soil environmental conditions, and enhance the tolerance of 
soil enzyme activity to stress (Razzaq et  al., 2024). Therefore, by 
monitoring changes in soil enzyme activity, the health status of the soil 
can be timely assessed, providing a basis for agricultural pollution 
prevention and soil remediation (Fan et al., 2022).

5.2 Microbial functional gene analysis

Soil microbial functional gene analysis, based on metagenomics, can 
provide in-depth understanding of the metabolic potential and ecological 
functions of microbial communities through large-scale sequencing and 
functional annotation of soil microbial genomes (Rout et al., 2022). 
Studies have found that the application of mineral and organic fertilizers 
can significantly affect the abundance and distribution of soil microbial 
functional genes (Hu et  al., 2022). For example, in paddy soils, the 
application of organic fertilizers can increase the abundance of functional 
genes related to carbon and nitrogen cycling, such as nifH and amoA 
genes for nitrogen fixation and ammonia oxidation (Li S. et al., 2022). 
This suggests that organic fertilizers can promote the nutrient 
transformation capacity of soil microbes (Zhang L. et al., 2023). However, 
excessive use of chemical fertilizers may reduce the abundance of certain 
functional genes, leading to changes in the metabolic functions of soil 
microbiota (Bai et al., 2020).

Functional annotation and metabolic pathway analysis of soil 
metagenomic data can comprehensively evaluate the potential of 

microbial communities to participate in soil element cycling and 
organic matter transformation (Zhao et al., 2023). Researchers have 
found that the long-term application of mineral and organic fertilizers 
significantly affects the metabolic pathways of soil microbes (Mei 
et al., 2021). For instance, the application of organic fertilizers can 
increase the abundance of genes related to carbohydrate metabolism 
and energy metabolism, indicating an enhancement in the metabolic 
activity and diversity of the microbial community (Xing et al., 2025). 
In contrast, the sole application of chemical fertilizers may reduce the 
abundance of genes in certain metabolic pathways, leading to a 
simplification of soil microbial functions (Huang et al., 2023).

Furthermore, the composition of soil microbial functional genes 
is closely related to environmental factors. Studies have shown that 
soil physicochemical properties, such as pH and organic matter 
content, significantly influence the abundance distribution of 
microbial functional genes (Yang et al., 2022). Therefore, the rational 
application of mineral and organic fertilizers, by regulating soil 
physicochemical properties, can optimize the structure and functions 
of the microbial community, thereby improving soil quality and crop 
yield (Shen et al., 2024).

5.3 Effects of microorganisms on soil 
fertility

The combined application of mineral and organic fertilizers 
directly influences the structure and function of microbial 
communities, thereby affecting soil fertility performance (Yang et al., 
2023). Soil microorganisms are involved in the decomposition of 
organic matter, which is the primary process for maintaining soil 
organic matter balance and nutrient cycling (Coonan et al., 2020). 
Moderate application of organic fertilizers can increase soil organic 
matter content, enhance microbial activity, and accelerate the 
decomposition and transformation of organic matter (Rivera-Uria 
et al., 2024). In contrast, the application of chemical fertilizers alone 
often leads to microbial community imbalance, reduced organic 
matter decomposition capacity, and the accumulation of nutrients in 
the soil, which cannot be effectively utilized by crops (Cui et  al., 
2022). The combined application of mineral and organic fertilizers 
can achieve a synergistic effect, maintaining soil activity and organic 
matter levels, while also providing the necessary nutrients for crops 
in a timely manner (Ayamba et al., 2023).

In addition to influencing organic matter transformation, 
microorganisms also directly participate in the transformation of soil 
nutrients (Li Q. et al., 2023). The application of appropriate organic 
fertilizers is beneficial for maintaining the activity and diversity of 
these functional microbial groups, ensuring the effective 
transformation of soil nutrients (Bargaz et al., 2018). Microorganisms 
also play an important role in the formation of soil structure. 
Numerous studies have shown that certain aggregating 
microorganisms can secrete mucilage substances to bind soil particles 
into aggregates, forming a loose and porous aggregate structure 
(Albalasmeh and Ghezzehei, 2014). A good soil structure not only 
facilitates root growth but also enhances soil aeration and water 
permeability, preventing severe soil compaction (Shaheb et al., 2021). 
The application of organic fertilizers can provide a carbon source for 
these structural microorganisms, promoting their reproduction and 
improving soil structure (Li et al., 2015).
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Furthermore, microorganisms can also suppress plant pathogens. 
Some antagonistic microorganisms can inhibit the activity of soil-
borne pathogens through mechanisms such as competition for niches 
and the production of antibiotics, thereby reducing the occurrence of 
plant diseases (Niu et al., 2020). Organic fertilizers contain abundant 
organic matter and microorganisms, which can enhance the activity 
and diversity of beneficial microbial communities in the soil, 
improving the soil’s disease resistance (Li Q. et al., 2022). Therefore, 
the combined application of mineral and organic fertilizers not only 
directly supplements soil nutrients but also improves the structure of 
microbial communities, promoting the beneficial functions of 
microorganisms, and thereby enhancing overall soil fertility (Figure 3) 
(Pires et al., 2023).

6 Relationship between fertilizer and 
microbial community

6.1 Interaction of mineral and organic 
fertilizers

The long-term application of both mineral and organic fertilizers 
can produce synergistic effects, enhancing soil fertility and increasing 
crop yields (Brunetti et al., 2019). Organic fertilizers release nutrients 
gradually, augment the organic matter content of the soil, and improve 
both soil structure and the microbial environment (Tian et al., 2017). 
In contrast, mineral fertilizers provide nutrients rapidly, thereby 
supporting crop growth and development (Timsina, 2018). The 
combined application of these fertilizers can mitigate nutrient loss 
associated with chemical fertilizers, supply a carbon source and energy 
for soil microorganisms, and compensate for the slower nutrient 
release and lower nutrient content of organic fertilizers by providing 
crops with readily available nutrients (Dincă et  al., 2022). Results 
indicate that the crop yield resulting from the combined application 
of mineral and organic fertilizers is significantly higher than that 
achieved with either chemical fertilizers or organic fertilizers alone 
(Table 4).

The co-application of mineral and organic fertilizers can 
significantly influence the transformation and release of soil nutrients 
(Li F. et al., 2017). Specifically, the organic acids, amino acids, and 
other substances generated through the decomposition of organic 
fertilizers activate potassium, phosphorus, and other nutrients in the 
soil, thereby enhancing their availability (Ma et al., 2021). Additionally, 
humic substances form complexes with mineral nutrients, which helps 
reduce nutrient leaching (Chen et al., 2004). Furthermore, organic 
fertilizers stimulate soil microbial activity, promoting nutrient 
mineralization and release (Paillat et  al., 2020). Research has 
demonstrated that the co-application of mineral and organic fertilizers 
increases the content of available potassium in the soil, whereas the 
sole application of chemical fertilizers tends to decrease available 
potassium levels (Choudhary et al., 2018).

The co-application of mineral and organic fertilizers significantly 
influences soil physicochemical properties and the micro-environment 
(Didawat et al., 2023). Long-term application of organic fertilizers 
enhances the soil organic carbon pool, improves the stability of soil 
aggregates, and reduces soil bulk density and compaction (Topa et al., 
2021). Additionally, organic matter, including humic substances, 
enhances the soil’s water and fertilizer holding capacity while 

increasing porosity to support plant root growth (Lei et al., 2022). 
Furthermore, organic fertilizers provide a carbon source and energy 
for soil microorganisms, markedly increasing both their numbers and 
activity, thereby promoting soil enzyme activity and nutrient cycling 
(Liu et al., 2022). The application of chemical fertilizers can regulate 
soil pH and improve chemical properties (Li P. et  al., 2021). The 
combined application of both types of fertilizers can optimize soil 
physicochemical properties and microbial community structure, 
creating a favorable growth environment for crops (Chen 
Y. et al., 2022).

The co-application of mineral and organic fertilizers offers 
significant benefits in mitigating the negative environmental impacts 
associated with chemical fertilizers (Rahman and Zhang, 2018). The 
sole application of chemical fertilizers can lead to soil compaction and 
nutrient loss, contributing to non-point source pollution (Rashmi 
et al., 2022). In contrast, the use of organic fertilizers can slow the 
migration of chemical fertilizers within the soil, thereby reducing the 
risk of nitrogen and phosphorus pollution in water bodies (Liu 
L. et al., 2021). Additionally, the co-application of organic fertilizers 
enhances the absorption and utilization rates of nutrients by crops, 
resulting in a decreased quantity of chemical fertilizers required (Zhai 
et al., 2022). Furthermore, some studies indicate that the combined 
use of organic and chemical fertilizers can diminish the uptake of 
heavy metals by crops, thereby improving the quality of agricultural 
products (Alam et al., 2020).

6.2 Effect of fertilizer dosage on microbial 
community

Soil microbial communities exhibit significant adaptability and 
responsiveness to varying rates of fertilizer application. Fertilizer 
treatments induce distinct shifts in the abundance of soil microbial 
groups, including Proteobacteria (34–37%), Chloroflexi (14–18%), 
Nitrospirae (12%), Acidobacteria (11–12%), Ascomycota fungi 
(41.7%), Basidiomycota fungi (27.5%), and Zygomycota fungi 
(25.8%) (Liu H. et  al., 2021). Nitrogen fertilization initially 
increases microbial biomass carbon by 349% at N250 and 
microbial nitrogen by 250% at the same rate, along with an 
increase in microbial respiration of 97 and 129% at N250 and 
N300, respectively. However, excessive nitrogen application can 
result in nutrient imbalances (Babur et al., 2021). Additionally, 
varying fertilization rates influence the functional potential of 
microbial communities, including the abundance of key functional 
genes involved in carbon and nitrogen cycling (Chen 
W. et al., 2020).

The cumulative effect of fertilizer nutrients exerts a long-term 
influence on microbial community structure. Long-term fixed-
position fertilization experiments reveal significant differences in 
microbial community composition under various fertilizer treatments 
(Chen et al., 2021). Notably, soil microbial biomass carbon content is 
higher in treatments that combine organic and chemical fertilizers 
compared to those using only chemical fertilizers or no fertilizers at 
all, underscoring the benefits of organic fertilizers for microbial 
biomass accumulation and community activity (Xu et  al., 2023). 
Conversely, excessive use of chemical fertilizers can lead to soil 
acidification and inhibit the growth of specific microbial groups (Ayiti 
and Babalola, 2022). Furthermore, the residual effects of fertilizers can 
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have a delayed impact on microbial communities, particularly during 
the initial stages of significant fertilizer regulation (Wang 
K. et al., 2023).

Optimal fertilizer application thresholds are essential for 
maintaining the stability and functional diversity of soil microbial 
communities. Research indicates that within these optimal 
fertilization ranges, indicators such as soil microbial biomass 
carbon, nitrogen, and enzyme activity show an increase with 
fertilization. However, surpassing these thresholds can lead to a 
suppression of microbial community structure and function (Wang 
Z. et al., 2021). Therefore, optimizing fertilization management and 
implementing balanced fertilization strategies are crucial for 
enhancing the beneficial roles of microbial communities in soil 
nutrient transformation and cycling (Li H. et al., 2024). Moreover, 
environmental factors, including soil type, crop species, and 
climatic conditions, significantly influence microbial community 
responses to fertilizers and must be  taken into account in 
practical applications.

Microbial communities exhibit considerable adaptability and 
resilience in response to fertilizer stress. Although significant 
structural changes occur under long-term fertilization treatments, the 
high functional redundancy within these communities ensures that 

essential ecological processes, such as nitrogen cycling and carbon 
transformation, remain largely unaffected (Zhong et al., 2020). This 
resilience highlights the capacity of microbial communities to endure 
fertilizer stress (Luo et al., 2023). Furthermore, alterations in microbial 
community structure can serve as critical indicators for evaluating soil 
quality and fertility (Shi et al., 2021).

6.3 Stability analysis of microbial 
communities

Microbial community stability is essential for soil fertility and 
health. The combined application of mineral and organic fertilizers 
significantly alters the structure and function of the microbial 
community, resulting in increased soil carbon content and biological 
activity compared to the use of either fertilizer type alone (Ye et al., 
2022). This mixed fertilization also enhances the levels of key soil 
humus components, which are crucial for maintaining microbial 
stability (Yu et al., 2024). The community’s resistance to stressors such 
as drought, high temperatures, and heavy metal pollution serves as 
another important measure of stability. Healthy, diverse communities 
can adapt their structure and function to remain stable under these 

FIGURE 3

Stability analysis of mineral and organic fertilizers on microbial communities. Adapted from “Linking Nematode Communities and Soil Health under 
Climate Change” by Pires et al. (2023), licensed under CC BY 4.0: https://creativecommons.org/licenses/by/4.0/.

TABLE 4 Changes in crop yield and soil parameters due to different rates and sources of organic and inorganic fertilizers.

Fertilizer type Crop yield 
increase (%)

Soil organic 
matter 

increase (%)

Available 
nutrient 

increase (%)

Microbial 
activity 

increase (%)

Reduction in 
nutrient 

leaching (%)

References

Mineral only 10–20 1–2 20–30 5–10 5–10 Timsina (2018)

Organic only 15–25 10–15 15–25 20–30 20–30 Tian et al. (2017)

Combined 25–40 15–25 30–50 30–50 30–50 Dincă et al. (2022)
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stress conditions. Long-term application of organic fertilizers increases 
soil alkali-hydrolyzable nitrogen, while chemical phosphate fertilizers 
enhance phosphorus availability, thereby promoting microbial growth 
and stress resistance (Jiang et al., 2022). The presence of recalcitrant 
organic matter in fertilizers supports specific microorganisms, aiding 
in the maintenance of functional stability under stress.

Recovery time following disturbances is critical for assessing 
stability, healthy communities can rapidly restore their original structure 
and function. Experimental evidence indicates that mixed fertilization 
improves yield stability and accelerates microbial recovery compared to 
the use of chemical fertilizers alone (Lin et al., 2023). Key functional 
groups, such as actinomycetes and arbuscular mycorrhizal fungi, serve 
as indicators of soil health and fertility (Khaliq et al., 2022). Monitoring 
these groups, along with soil enzyme activities such as urease and 
sucrose enzymes, provides valuable insights into the metabolic activity 
and functional stability of the microbial community (Potts et al., 2022).

7 Soil sustainability assessment

7.1 Soil organic carbon storage

Soil organic carbon is an important carbon pool in agricultural 
ecosystems. The combination of mineral and organic fertilizers can 
improve the soil environment, increase soil organic carbon content, 
and increase soil carbon storage. After applying mineral and organic 
fertilizer, the content of complex carbon was significantly increased 
compared with no fertilizer, single fertilizer, and single organic 
fertilizer (Brar et al., 2015). The results showed that the application 
of mineral and organic fertilizers could improve soil colloidal activity 
more than that of single fertilizer and organic fertilizer (Zhang 
C. et al., 2022). Different fertilization measures have a significant 
impact on the mineralization rate of soil organic carbon and the 
amount of organic carbon storage (Li et  al., 2018). By using the 
amount of organic matter returned to the field and its humification 
coefficient, the annual accumulated amount of soil organic carbon 
from crop residues and artificial fertilization can be calculated for 
each fertilization area (Ma et al., 2021). Based on the mineralization 
rate of soil organic carbon and the initial annual soil organic carbon 
content under different fertilization measures, the actual increase or 
decrease in soil organic carbon storage within 0–20 cm depth in 1 
year can be calculated (Ghosh et al., 2018). In the accumulation and 
decomposition of soil organic matter, it is evident that the application 
of undecomposed corn straw is superior to that of mature organic 
fertilizers (Li X. G. et al., 2017).

Long-term fertilization has a lasting impact on soil organic carbon 
storage. It was found that the combined application of organic fertilizer 
and mineral fertilizer could increase the content of soil organic matter 
by 2.7–3.2 times (Laik et al., 2021). The optimal comprehensive effect 
of improving rice yield and reducing the environmental negative effect 
of nitrogen fertilizers is when the proportion of pure nitrogen supply 
in organic-mineral fertilizers is between 20 and 40%, with significant 
fertilizer efficiency and ecological benefits (Qiong et al., 2023).

The dynamic changes of soil carbon pools are influenced by various 
factors, including climate conditions, land use patterns, crop types, and 
agricultural management practices. In the double-season rice area, under 
the rice-wheat rotation system, the application of organic fertilizers and 

straw return is an effective way to increase soil organic carbon storage 
(Li D. et al., 2023). Studies have shown that straw return and organic 
fertilizer application can significantly increase soil organic carbon 
content and increase soil carbon storage (Wang et al., 2015). Meanwhile, 
the use of plastic mulch can increase the retention rate of organic 
nitrogen and reduce the loss rate, further promoting the accumulation 
of soil organic matter (Yang et al., 2018). The comprehensive application 
of various agricultural management measures to optimize the soil carbon 
cycle process plays an important role in enhancing the soil carbon 
sequestration function and mitigating greenhouse gas emissions.

7.2 Soil quality index evaluation

Soil quality assessment is one of the key indicators for the 
sustainable development of agriculture. Good soil quality can 
provide high-quality growth environment for crops, promote 
efficient nutrient utilization, and healthy development of the 
agricultural ecosystem (Bertola et al., 2021). Soil quality assessment 
needs to comprehensively consider various indicators, including soil 
physical and chemical properties, biological characteristics, and 
environmental factors (Wang et  al., 2018). Among them, soil 
physical and chemical properties such as bulk density, porosity, pH 
value, cation exchange capacity, etc. are the basic indicators for 
evaluating soil quality, which are closely related to soil structural 
stability, water and fertilizer holding capacity, and nutrient 
availability (Maurya et al., 2020). Studies have shown that long-term 
application of organic fertilizers can significantly increase soil 
organic matter content, improve soil aggregate structure, enhance 
soil anti-erosion capacity and nutrient retention capacity, and play a 
positive role in improving soil quality (Cui et al., 2023). In addition, 
soil quality assessment also needs to consider soil biological 
characteristics, such as soil microbial biomass and enzyme activity 
(Paz-Ferreiro and Fu, 2016). Soil microorganisms play an important 
role in nutrient cycling, organic matter decomposition, and 
suppression of plant pathogens, which are key factors in maintaining 
soil health. Studies have found that long-term application of organic-
mineral fertilizers can significantly increase the carbon and nitrogen 
content of soil microbial biomass, promote soil enzyme activities 
such as urease and sucrase, and accelerate soil nutrient cycling (Pu 
et al., 2016).

Soil fertility is another core indicator for evaluating soil quality, 
including soil nutrient content, nutrient availability, and fertility 
potential. Studies have shown that long-term application of organic 
fertilizers can significantly increase the total nitrogen, total 
phosphorus, and total potassium content in the soil, thereby 
improving soil fertility level (Peng et al., 2023). Meanwhile, the humic 
substances and amino acids in organic fertilizers can chelate metal 
ions in the soil, improve nutrient availability, and promote crop 
absorption and utilization (Zanin et al., 2019). In addition, soil fertility 
potential is also an important indicator for evaluating soil quality, 
reflecting the sustainable development capacity of soil during long-
term fertilization (Vogel et al., 2019). By comprehensively considering 
factors such as soil nutrient content, organic matter accumulation, and 
aggregate structure, the soil fertility potential can be evaluated more 
comprehensively, providing a basis for formulating rational 
fertilization plans (Liu P. et al., 2023).
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7.3 Sustainable agricultural production 
potential

The long-term application of mineral and organic fertilizers has a 
significant impact on crop yield, with soil fertility playing a key role. 
Studies have shown that rice yield is significantly and positively 
correlated with soil fertility (Wang J. L. et al., 2021). The higher the soil 
fertility, the more nutrients the rice absorbs from the soil, and the 
higher the yield (Gao et al., 2024). Meanwhile, the correlation between 
soil enzyme activity and crop yield is better than that between soil 
nutrients and crop yield (Zhang F. et  al., 2023). Therefore, in 
agricultural production, we should not only pay attention to the use 
of chemical fertilizers but also focus on the use of organic fertilizers 
(Yu et al., 2023). Through the combined application of mineral and 
organic fertilizers, soil fertility can be improved, creating a good soil 
environment for crop growth, thereby achieving higher and more 
stable yields (Lu et al., 2024).

The combined application of mineral and organic fertilizers has a 
positive impact on the sustainability of agricultural productivity 
(Figure 4). The results of long-term positioning experiments show that 
the combined application of mineral and organic fertilizers has the 
highest yield sustainability coefficient (Xu et al., 2024). This is because 
organic fertilizers not only provide nutrients for crops but also can 
improve soil structure (Zhang X. et al., 2023), enhance the soil’s water 
and fertilizer retention capacity, and promote the activity of soil 
microorganisms (Chen et  al., 2023), thereby facilitating nutrient 
cycling. Chemical fertilizers, on the other hand, mainly provide 
readily available nutrients to meet the growth needs of crops (Yin 
et al., 2018). The combined application of the two can not only meet 
the nutrient needs of crops but also maintain soil fertility, achieving 
efficient utilization of nutrients and ensuring the sustainability of 
agricultural production (Babu et al., 2022).

Resource use efficiency is an important indicator for evaluating 
the sustainability of agricultural productivity (Coluccia et al., 2020). 
Studies have found that under the same nitrogen input, the yield-
increasing effect of applying chemical phosphate fertilizers is higher 
than that of chemical potassium fertilizers, and this effect is 
particularly pronounced in early rice (Song et al., 2024). This suggests 
that in the fertilization process, we  should focus on the rational 
matching of fertilizer types to improve fertilizer use efficiency. In 
addition, under the combined application of mineral and organic 
fertilizers, the absorption of nitrogen and potassium by crops 
increases, and there is a surplus of nitrogen and phosphorus in the 
soil. This not only indicates that the combined application of mineral 
and organic fertilizers can improve nutrient use efficiency, but also 
suggests that during the application process, the fertilization amount 
should be reasonably adjusted according to the soil nutrient status and 
crop demand to avoid excessive fertilization and the resulting nutrient 
loss and environmental pollution.

Through the long-term combined application of mineral and 
organic fertilizers, it is possible to maintain or even increase yields 
while improving soil quality (Zhang M. et al., 2020), promoting the 
virtuous cycle of the agricultural ecosystem, and achieving the unity 
of economic and ecological benefits (Panday et al., 2024). This is of 
great significance for ensuring food security and promoting the green 
development of agriculture. In the future, long-term positioning 
experiments should be carried out for different regions and different 
crops to further reveal the yield-increasing mechanism and ecological 

effects of the combined application of mineral and organic fertilizers, 
providing a scientific basis for formulating sustainable 
fertilization schemes.

8 Environmental benefit assessment

8.1 Environmental risk assessment of 
fertilizers

The widespread application of fertilizers has not only increased 
agricultural productivity but also brought about a series of negative 
environmental impacts. Excessive application of fertilizers leads to 
increased greenhouse gas emissions from farmlands, such as the 
positive correlation between nitrous oxide emissions and nitrogen 
input (Menegat et al., 2022). Furthermore, heavy metals and toxic 
residues in fertilizers can enter surface water bodies through runoff, 
causing eutrophication and pollution (Craswell, 2021). Studies have 
shown that the nitrogen and phosphorus nutrients in fertilizers, 
through leaching and runoff, are one of the primary causes of surface 
water pollution (Liu L. et al., 2021).

The unreasonable use of fertilizers also damages the ecosystem 
services of the farmland. Excessive application of fertilizers can alter 
the physicochemical properties of the soil, destroy soil structure, 
reduce soil biodiversity, and thus affect soil fertility and sustainable 
productivity (Zhang Y. et al., 2021). Meanwhile, the production and 
transportation of fertilizers also consume a large amount of energy, 
increasing carbon emissions (Kyttä et al., 2021). Therefore, the use of 
fertilizers needs to consider both ensuring agricultural production 
and protecting the ecological environment and sustainable utilization 
of resources.

To reduce the environmental risks of fertilizers, it is necessary to 
optimize the application methods and quantities. The combined 
application of organic and chemical fertilizers can reduce the 
amount of chemical fertilizers, improve fertilizer use efficiency, and 
improve soil quality (Oyetunji et al., 2022). Reasonable fertilization 
timing and techniques also help reduce fertilizer loss and 
environmental impact (Duan et  al., 2023). Furthermore, 
strengthening farmland management, such as reasonable crop 
rotation and straw returning, can reduce the demand for fertilizers 
and lower environmental risks (Xu et  al., 2022). Establishing an 
ecological compensation mechanism for farmlands to encourage 
farmers to adopt environmentally friendly agricultural production 
methods is also an important means of controlling the environmental 
risks of fertilizers (Li F. et al., 2021).

8.2 Environmental friendliness of compost

The use of a combination of mineral and organic fertilizers can 
significantly improve the environmental friendliness of agricultural 
production. Studies have shown that when the proportion of nitrogen 
supply from mineral and organic fertilizers is between 10 and 30%, the 
overall effect on increasing rice yield and reducing the environmental 
impact of nitrogen fertilizers is optimal, with significant fertilizer and 
ecological benefits (Qiao et al., 2022). Compared to the application of 
chemical fertilizers alone, the combined use of mineral and organic 
fertilizers can increase soil organic matter content by 6.9–18.1%, 
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improve soil physical and chemical properties, and have a negligible 
impact on soil pH (Zhang Y. J. et al., 2022). This indicates that the 
rational application of mineral and organic fertilizers can reduce the 
amount of chemical fertilizers used and mitigate environmental 
pollution risks, while ensuring crop yields (Wang X. et al., 2024).

Furthermore, the combined application of mineral and organic 
fertilizers can also improve nitrogen fertilizer utilization and reduce 
nutrient losses (Wu et al., 2020). This is partly due to the fact that 
plastic film mulching improves soil moisture and temperature 
conditions, promoting crop uptake and utilization of nutrients 
(El-Beltagi et al., 2022). Additionally, the combined application of 
mineral and organic fertilizers can promote the formation of soil 
aggregates, reduce nutrient leaching, and improve fertilizer use 
efficiency (Li et al., 2020).

From the perspective of soil fertility cultivation, the combined use 
of mineral and organic fertilizers has a positive impact on improving 
soil quality. Compared with the single application of chemical fertilizer 
or organic fertilizer, the combined application of organic fertilizer and 
mineral fertilizer significantly increased the colloidal activity and the 
content of soil regenerated carbon (Chen M. et al., 2022). Furthermore, 
long-term field trials have shown that the application of organic 
fertilizers alone can more effectively increase the available potassium 
content in the soil than the application of chemical fertilizers alone 
(Xin et al., 2017). These results indicate that through the scientific 
combination of organic and chemical fertilizers, soil aggregation can 
be promoted, and soil organic matter content and nutrient supply 
capacity can be  improved, thereby enhancing soil quality (Ayuke 
et al., 2011).

FIGURE 4

Effect of combined application of mineral and organic fertilizers on water and fertilizer utilization efficiency. Soil structure improvement, organic 
fertilizers contain abundant organic matter, which can improve soil structure and increase soil aggregation. This not only helps to improve soil water-
holding capacity, but also enhances soil aeration. These organic matters can continuously release nutrients, providing long-term nutrition for plants, 
promoting root development, thereby increasing plant absorption area and nutrient absorption capacity, ultimately improving water use efficiency and 
crop yield. Balanced nutrient supply, mineral fertilizers can quickly provide the essential mineral nutrients such as nitrogen, phosphorus, and potassium 
required for plant growth, while organic fertilizers provide organic matter and some trace elements. The combined application of both can achieve a 
balanced nutrient supply, improve fertilizer use efficiency, and reduce nutrient loss and waste. Increased microbial activity, organic fertilizers can 
promote the activity of soil microorganisms. These microorganisms release plant-available nutrients during the decomposition of organic matter, and 
facilitate the transformation of mineral nutrients, thereby improving overall fertilizer efficiency. Improved stress tolerance, the organic matter in organic 
fertilizers can improve the buffering capacity of the soil, enhance plant resistance to adverse conditions such as drought and waterlogging, and thereby 
improve water and fertilizer use efficiency. Reduced environmental pollution, the combined application of mineral and organic fertilizers can mitigate 
the environmental pollution problems caused by the sole use of chemical fertilizers. The addition of organic matter helps to fix the nutrients in the soil, 
reducing nutrient leaching and groundwater pollution. Economic benefits, from an economic perspective, the combined application of mineral and 
organic fertilizers can reduce farmers’ dependence on chemical fertilizers, lower agricultural production costs, and increase economic benefits 
through improved crop yield and quality.
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8.3 Agricultural sustainable development 
and environmental protection

Sustainable agricultural development and environmental 
protection are important goals of modern agricultural 
development. The technology of mineral and organic fertilizer 
co-application can not only increase crop yields, but also promote 
the formation of an agricultural circular model (Cucina et al., 
2021), reduce the excessive use of chemical fertilizers and 
pesticides, and lower the agricultural ecological footprint 
(Mózner et al., 2012). The results showed that the application of 
mineral and organic fertilizers significantly increased the content 
of soil organic matter and improved soil fertility and quality 
(Hammad et  al., 2020). By reducing the amount of chemical 
nitrogen fertilizer, the environmental impact of nitrogen fertilizer 
can be reduced while maintaining rice yield (Xue et al., 2014). 
Therefore, the co-application of mineral and organic fertilizers is 
one of the important ways to achieve sustainable agricultural 
development (Figure 5).

To better realize the ecological benefits of mineral and organic 
fertilizer co-application, it is necessary to strengthen environmental 
policy support. The government should introduce relevant policies to 
encourage farmers to adopt environmentally friendly fertilization 
techniques such as mineral and organic fertilizer co-application, and 
provide appropriate economic subsidies and technical guidance. At 
the same time, it is necessary to strengthen farmers’ environmental 
awareness education and improve their scientific fertilization ability, 
to avoid over-application of chemical fertilizers and cause 
environmental pollution. In addition, it is necessary to strengthen the 
monitoring and management of agricultural non-point source 
pollution, strictly control the discharge of agricultural production 
waste, and reduce pollution to soil and water bodies (Wang 
R. et al., 2021).

Agricultural ecosystem management is the key to achieving 
sustainable agricultural development. The promotion of mineral and 
organic fertilizer co-application technology should be combined with 
the optimization of agricultural ecosystem, through reasonable crop 
rotation, intercropping and other methods to improve land use 
efficiency and increase agricultural biodiversity. At the same time, 
strengthen the construction of agricultural water conservancy 
facilities, improve irrigation efficiency, and reduce water resource 
waste. In terms of pest control, environmentally friendly methods 
such as biological control should be prioritized to reduce the use of 
chemical pesticides. By comprehensively applying various agricultural 
ecological management measures, the healthy development of the 
agricultural ecosystem can be  promoted, and the coordination of 
agricultural production and environmental protection can 
be achieved.

8.4 Comparative assessment of fertilizer 
practices across regions

The application of organic and chemical fertilizers varies 
significantly between developing and developed countries, influenced 
by socioeconomic factors, policy frameworks, and agricultural 
priorities. These regional differences have a substantial impact on soil 
health, microbial diversity, and the long-term sustainability of 

agricultural systems. This section synthesizes insights from the Food 
and Agriculture Organization (FAO) guidelines, including the 
International Code of Conduct for the Sustainable Use and 
Management of Fertilizers, along with regional case studies to 
elucidate key trends and challenges.

Developed nations frequently implement integrated nutrient 
management systems that balance the use of organic and chemical 
fertilizers. For example, in Japan, substituting 30–40% of 
chemical nitrogen with composted manure has been shown to 
increase microbial evenness by 20% and enhance rice yields by 
10–12% (Patra et  al., 2021). These practices align with FAO 
guidelines on balanced fertilization, which emphasize soil testing 
and precision agriculture to optimize nutrient application and 
minimize environmental impacts. European Union (EU) 
regulations, such as the Nitrates Directive, restrict the use of 
chemical fertilizers to mitigate groundwater pollution. Countries 
like Denmark and Germany have successfully increased microbial 
diversity, achieving Shannon diversity indices above 5.0, by 
replacing 50% of synthetic nitrogen with biogas slurry (Meegoda 
et  al., 2025). Long-term studies in France demonstrate that 
combined fertilization strategies elevate the abundance of 
arbuscular mycorrhizal fungi by 35%, thereby enhancing 
phosphorus uptake efficiency (Campos et al., 2018).

In contrast, developing countries often face limited access to 
chemical fertilizers, resulting in a reliance on organic inputs such 
as manure and crop residues. While these organic practices 
enhance soil structure and improve microbial resilience, the 
lower nutrient content of organic sources frequently leads to 
significant yield gaps. For instance, maize yields in Ethiopia 
under sole organic fertilization are 30–40% lower compared to 
systems that integrate chemical fertilizers (Abebe et al., 2022). 
The FAO’s Africa Fertilizer Summit initiatives aim to  
address this issue by improving access to mineral fertilizers while 
promoting organic-integrated approaches to prevent 
soil degradation.

The regional disparities in fertilizer use underscore the necessity 
for context-specific strategies that take into account local 
agroecological conditions. Aligning national agricultural policies with 
FAO guidelines, investing in farmer education, and enhancing 
infrastructure are critical steps to bridging yield gaps while 
maintaining soil health. Future efforts should concentrate on 
interdisciplinary research to refine fertilization frameworks, ensuring 
they are adaptable to diverse agricultural environments and 
sustainable in the long term.

9 Summary and prospect

This review highlights the significant effects of combined mineral 
and organic fertilization practices on soil microbial communities, 
influencing their structure, function, and interaction networks. Such 
practices enhance soil microbial diversity and activity, optimize 
community composition, and promote the growth of beneficial 
microorganisms. Furthermore, mixed fertilization increases enzyme 
activities, particularly those involved in carbon and nitrogen cycling, 
such as β-glucosidase and urease. This indicates that combined 
fertilization facilitates the transformation and release of soil nutrients, 
thereby increasing their availability for plant uptake. These genes 
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provide insights into microbe-driven processes related to nutrient 
cycling and plant growth. A comprehensive understanding of soil 
microbial characteristics can inform the optimization of fertilization 
strategies. By dynamically adjusting the ratios of organic to mineral 
fertilizers based on microbial diversity and community structure, it 
is possible to maximize ecological functions and ensure optimal 
crop production.
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FIGURE 5

Effects of mineral and organic application on agricultural productivity and environmental benefits. GHG (greenhouse gas emission), organic fertilizers 
can improve soil structure and increase soil organic matter content, thereby improving soil carbon sequestration capacity and indirectly reducing 
greenhouse gas emissions; Environmental conditions (temperature, humidity, soil type and management) affect greenhouse gas emissions; The 
combined use of mineral and organic fertilizers, combined with good agricultural management practices, can improve agricultural productivity while 
mitigating its negative impact on climate change. NCU (nutrient cycling and utilization), it is mainly reflected in the supply, maintenance and recycling 
of nutrients. SNS (soil nutrient supply), organic fertilizer can provide continuous and stable nutrient supply for crops, improve soil structure, increase 
soil water and fertilizer retention capacity, and help plants absorb nutrients; mineral fertilizers contain a high concentration of nutrients and can quickly 
provide the nutrients needed for crops. SNC (soil nutrient conservation), the organic matter in organic fertilizer can increase the organic matter 
content of the soil, improve the soil structure, adsorb and retain nutrient elements, reduce nutrient loss, and facilitate the maintenance and utilization 
of nutrients. SNR (soil nutrient recycling), organic matter in organic fertilizer is decomposed by microorganisms and gradually releases nutrients; the 
use of organic fertilizers can promote soil microbial activity and accelerate the recycling process of nutrients. PCG (promote crop growth), the 
combined application of mineral and organic fertilizers can comprehensively promote crop growth and development, improve yield and quality by 
providing nutrients, improving soil, promoting biological activity and enhancing stress resistance. RPD (resistance to pests and diseases), organic 
fertilizer contains rich organic matter, improve the soil environment, help to reduce the occurrence of diseases and pests; Organic matter in organic 
fertilizer can promote the growth and activity of soil microorganisms, increase the number and diversity of beneficial microorganisms in soil, help 
plants to establish a stronger mechanism of disease and insect resistance, and improve the ability of plant disease and insect resistance; Organic matter 
in organic fertilizers can improve the microbial diversity of soil, and some microorganisms may inhibit the growth and reproduction of pathogens, 
thereby reducing the risk of the spread of diseases and pests. Soil degradation and pollution (SDP), improve soil structure (ISS), organic substances in 
organic fertilizers can improve the structural stability and permeability of soil, improve the physical and water retention ability of soil, and reduce soil 
erosion and wind erosion. Increase soil organic matter content (ISOM), organic matter in organic fertilizers can increase soil organic matter content, 
improve soil fertility and water and fertilizer retention capacity, promote the growth and activity of soil microorganisms, and help improve soil 
ecosystems. Degradation of soil pollutants (DSP), microorganisms and organic substances in organic fertilizers can promote the degradation and 
transformation of harmful substances in the soil, degrade pesticide residues and heavy metal pollutants in the soil, and reduce the impact of soil 
pollution on the environment and ecosystem.
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