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Fats have been widely applied in aquaculture to promote growth performance

and substitute partial protein in fish feeds. However, excessive dietary fat

levels induce metabolic disorders harming the health of cultured fish.

Helminth infection in mammals was inversely correlated with metabolic

syndrome, but its effect in aquatic animals is unknown yet. Here, we

evaluated the impacts of Schyzocotyle acheilognathi infection on lipid

metabolism of grass carp fed with high-fat diet (HFD). By comparison

with the uninfected grass carp, helminth infection significantly increased

the concentration of high-density lipoprotein (HDL) and condition factor

(CF), and significantly decreased the concentration of low-density lipoprotein

(LDL), the activity of AST, perimeter ratio (PR) and the thickness of

muscularis mucosa (MM). Helminth infection also significantly lowered the

lipid accumulation in liver, which may attribute to the significant up-

regulated expression levels of apolipoprotein E (ApoE) and down-regulated

expression of peroxisome proliferator-activated receptor-gamma (PPAR-

γ) and lipoprotein lipase (LPL). Meanwhile in the grass carp infected

by tapeworm, there was significant down-regulated expression of pro-

inflammatory genes, interleukin-1beta (IL-1β) and tumor necrosis factor-

alpha (TNF-α), and significant up-regulated expression of anti-inflammatory

genes, transforming growth factor-beta 1 (TGF-β1) and interleukin-10 (IL-

10). 16S rDNA sequencing results showed that helminth infection didn’t

affect the α diversity of the intestinal microbiota, but increased the relative

abundance of Cetobacterium, and significantly changed the structure of

intestinal microbiota by PERMANOVA analysis. Correlation analysis showed the

relative abundance of Cetobacterium was significant positively correlated with

the helminth infection in grass carp fed HFD. PICRUST2 analysis indicated

that several lipid metabolism-related pathways were significantly altered after
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helminth infection. Consequently, the above results indicated that tapeworm

infection could ameliorate abnormal lipid metabolism through immune and gut

microbiota regulation.

KEYWORDS

Schyzocotyle acheilognathi, Ctenopharyngodon idella, high-fat diet, lipid metabolism,
gut microbiota

Introduction

Fat is one of the most important sources of nutrition for
aquatic organisms, providing essential fatty acids, cholesterol,
phospholipids and fat-soluble vitamins needed for normal
growth, development and maintenance of the health of
farmed fish (Malcolm, 2011). Previous studies indicated
that increasing dietary fat content within proper range (5%
for herbivorous fish, 8% for omnivorous fish and 10% for
carnivorous fish) can boost growth performance, improve
reproductive characteristics, exert a protein-sparing effect
and decreased feed and production expenses (Boujard, 2004;
Chou and Shiau, 1996; Li et al., 2012; Zhang et al., 2017).
Thus, high fat diet (HFD) has been extensively utilized in
intensive aquaculture. However, long-term excessively fat in
the diet induced many adverse implications on farmed fish,
increasing fat accumulation in liver, stimulation endoplasmic
reticulum stress, impairment the intestinal mucosal barrier,
triggering inflammatory responses, imbalance of microbiota
and disturbance of metabolism (Cao et al., 2019; Jia et al.,
2020a; Jia et al., 2020b; Jin et al., 2019; Tao et al., 2018; Yin
et al., 2021; Yu et al., 2020). Therefore, addressing the metabolic
imbalance and physiological disturbances induced by HFD will
greatly advance the sustainable and healthy development of the
aquaculture industry.

Parasitic helminths, mostly considered detrimental to host
health, are common macrobiota in gastrointestinal (GI) tract of
vertebrates (Peachey et al., 2017). However, several application
researches of helminth in some chronic inflammation-related
diseases demonstrated the positive effects of parasites on the
health of host in recent years (Sobotkova et al., 2019). Infection
with the nematode Heligmosomoides polygyrus has preventive and
therapeutic roles on obesity caused by HFD in mice (Shimokawa
et al., 2019). Transient infection with Nippostrongylus brasiliensis
(nematode) in mice long-lasting improved insulin sensitivity and
decreased adipose tissue mass in HFD obese mice (Wu et al., 2011;
Yang et al., 2013). Chronic infection with the digenean Schistosoma
mansoni or S. mansoni-soluble egg antigens (SEAs), a mixture
of helminth-derived molecules, both improved insulin sensitivity
and glucose homeostasis (Hussaarts et al., 2015). The above
studies suggested that helminth infection or products derived from
helminths promoted metabolic benefit for health of mammal hosts
(Guigas and Molofsky, 2015). However, it remains unclear whether
the protective effects of helminth against metabolic diseases also
exists in aquatic animals.

Grass carp (Ctenopharyngodon idella) is one of the most
important economic freshwater aquaculture species in China, and

its production reached 5.9 million tons, accounting for 21.8%
of the total annual production of freshwater farmed fish in
2023, according to the China Fishery Statistical Yearbook (Liu,
2023). Previous studies have suggested that a diet containing
4% lipids optimizes growth performance, feed efficiency, and
the protein-sparing effect in juvenile grass carp (Du et al.,
2005), while excess dietary fat level induced growth performance
reduction, lipid deposition in liver, muscle and mesenteric
tissue, damage of intestinal mucosal barrier and imbalance of
intestinal microbiota (Du et al., 2006; Liu et al., 2022; Liu et al.,
2023; Tang et al., 2019). Therefore, alleviating the detrimental
impacts caused by HFD is crucial for the health of grass
carp.

Schyzocotyle acheilognathi (syn. Bothriocephalus acheilognathi)
is a common helminth species harboring in foregut of grass
carp (Kuchta et al., 2018; Liao and Shi, 1956). In our previous
study, S. acheilognathi infection altered the composition of gut
microbiota (Fu et al., 2022). Studies in mammals have shown that
helminth improved metabolic diseases through gut microbiota.
The composition and diversity of the intestinal microbiota in
vertebrates are always altered by helminth infection (Peachey
et al., 2017). A limited number of consistent changes in the
composition of the host’s gut microbiota have been repeatedly
noted in animals infected with helminth (Peachey et al., 2017),
called helminth-modified microbiota, which affects host immunity
or metabolic capacity (Brosschot and Reynolds, 2018). The
H. polygyrus infection protected against HFD-induced obesity by
altering the composition of the gut microbiota, which led to an
increase in norepinephrine (NE) concentration (Shimokawa et al.,
2019), or elevated levels of short chain fatty acids (SCFAs) (Su et al.,
2020). Thus, this study aims to elucidate the roles and underlying
mechanisms of the protective effects of helminths against metabolic
diseases in aquatic animals, using grass carp infected with the
helminth S. acheilognathi, with the goal of offering novel strategies
for the treatment of metabolic diseases in aquatic species.

Materials and methods

Experimental animals

The fry of grass carp (11 ± 1 cm, 11.4 ± 0.5 g) was purchased
from an aquaculture pond in Jiangmen, Guangdong Province,
where the prevalence and intensity of S. acheilognathi in grass carp
were 40% and 3.2, respectively in previous survey. Grass carp were
kept temporarily for 3 days prior to the formal experiment.
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Feeding and samples collection

Grass carp were randomly divided into four buckets, fed with a
normal diet (ND) with 5% fat content or a high-fat diet (HFD) with
10% fat content (Huaian Tongwei Feed Co., Ltd., China; Table 1)
to apparent satiation twice daily (10: 00, 17: 00 oor ersity of se
mationertebradomesticated in 100 L plastic buckets under a natural
photoperiod (12 h light: 12 h dark), and kept at a water depth
of 60 cm and a water temperature of 29◦C. Following a 4-week
feeding trial, the grass carp (n = 63) were anesthetized with eugenol
(0.2 mL/L) before sampling.

The growth indices of the grass carp were measured,
and blood samples were drawn from the caudal vein. Liver
samples for gene expression analysis and oil red O staining
were stored at −80◦C and fixed in 4% paraformaldehyde
(PFA) solution, respectively. The intestine was aseptically excised
from visceral organs. The foregut and midgut were used for
parasites checking under a stereomicroscope (Leica, Germany) to
determine whether the host was infected with S. acheilognathi.
Hindgut contents, intended for 16S rDNA high-throughput
sequencing, were stored at −80◦C for DNA extraction, and
hindgut samples for hematoxylin and eosin (HE) staining were
fixed in 4% PFA.

Based on the helminth infection status and the fat content in the
feed, the samples were divided into four groups: ND (5% normal
fat diet with no S. acheilognathi infection), ND + SA (5% normal fat
diet with S. acheilognathi infection), HFD (10% high fat diet with
no S. acheilognathi infection) and HFD + SA (10% high fat diet with
S. acheilognathi infection). After dissection, it was recorded that the
mean intensity of S. acheilognathi in grass carp was 3.9 (2–7).

TABLE 1 Composition and nutrient level of feed (air-dry basis).

Ingredients (g/kg) Con HFD

Fish meal 120 120

Soybean meal 240 240

Rapeseed meal 300 300

Wheat meal 250 250

Soybean oil 8 50

Ca(H2PO4)2 20 20

Vitamin mixturea 10 10

Mineral mixtureb 10 10

Cellulose 42 0

Proximate composition (%)

Crude protein 30.0 30.0

Crude fat 5.0 10.0

Ash 15.0 14.8

Moisture 12.5 12.4

aVitamin premix (IU or mg/kg): vitamin A, 65,000 IU; vitamin D3 , 45,000 IU; vitamin
C, 1,200 mg; vitamin E, 250 mg; vitamin K3, 50 mg; vitamin B1, 125 mg; vitamin B2,
150 mg, vitamin B6, 150 mg; vitamin B12, 0.25 mg; niacinamide 500 mg; pantothenate
400 mg; inositol 750 mg; folic acid 250 mg; biotin 0.8 mg. Cellulose was used as a carrier.
bMineral premix (mg/kg): MnSO4·H2O 0.8; MgSO4 100; ZnSO4·7H2O 3.53; CuSO4·5H2O
0.40; CaCO3 150; NaCl 10; KCl 100; AlCl3·6H2O 0.6; KH2PO4 220; Ca(H2PO4)2·H2O 300;
CoCl2·6H2O 0.60; KIO3·6H2O, 0.03; ferric citrate 25.

Growth indices

The standard length (L) and body weight (W) of the grass
carp were measured to calculate the condition factor (CF). The
liver weight (Wl), viscera weight (Wv), and mesenteric fat weight
(Wm) were measured individually to determine the hepatosomatic
index (HSI), mesenteric fat index (MFI), and visceral index (VSI),
respectively. The formulas for calculation of these indicators were
shown as follows: CF = W/(L3) × 100%; HSI = Wl/W × 100%;
VSI = Wv/W× 100%; MFI = Wm/W× 100%.

Serum biochemical index analysis

Blood samples were centrifuged at 3,000 rpm for 10 min at
4◦C, after which the supernatant serum was carefully collected
and stored at −80◦C until used. The activity of alanine
aminotransferase (ALT), aspartate aminotransferase (AST), as well
as the concentration of high-density lipoprotein cholesterol (HDL),
low-density lipoprotein cholesterol (LDL), total triglycerides (TG),
and total cholesterol (TC) in serum were measured through a
biochemical analyzer, using commercially available reagent kits
(Seville Biotech Co., Ltd., Wuhan, China).

Histological analysis of intestine

Fresh hindgut tissues were immersed in 4% PFA solution
for 48 h, and then processed routinely. These tissues were
sectioned into 6 µm slices and stained with hematoxylin and
eosin for examination under a light-microscopic (Zeiss, Germany).
Photographs were analyzed using software ImageJ (National
Institutes of Health,Bethesda, MD, United States). The thickness
of muscularis mucosa (MM), the height of microvilli (MV) and
perimeter ratio (PR) were measured, respectively. The PR was
calculated using the following formulas: PR = the internal perimeter
(IP) of the intestine lumen (villi and mucosal folding length)/the
external perimeter (EP) of the intestine.

Oil red O staining

Liver samples from grass carp were excised and preserved in
4% PFA for 24 h. Subsequently, the tissues were trimmed to ensure
smoothness and then dehydrated in 30% sucrose solution at 4◦C
for 24 h. Once the surface liquid of the liver tissue was evaporated, it
was embedded in OCT embedding agent (SAKURA, United States).
After freezing at −80◦C, the tissue was then sectioned into 8
µm thick slices using a cryostat microtome (Leica, Germany) and
stained with oil red O. Photomicrographs were captured using a
light microscope (Zeiss, Germany). A total of six random fields of
view were chosen from each sample, and the areas of lipid droplets
were calculated using software ImageJ.

qPCR

RNAiso Plus Reagent (Takara Bio Inc., Beijing, China) was
used to extract total RNA. After being treated with RNase free
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DNase I (Promega, Wisconsin, United States), single-strand cDNA
was synthesized using One−Step gDNA Remover kit (Servicebio,
Wuhan, China). qPCR was carried out in a CFX96TM Real Time
Detection System (BIO-RAD Bio Inc., Shanghai, China) using TB
Green R© Premix Ex TaqTM (Beijing, China). Gene-specific primers
(Table 2) were used to amplify the target gene fragments. The
β-actin gene of grass carp (Accession No. M25013.1) served as
the reference gene. The qPCR cycle conditions were as follows:
an initial denaturation at 95◦C for 30 s, followed by 40 cycles of
denaturation at 95◦C for 5 s, annealing at 60◦C for 34 s, and a
final Melt Curve analysis. The Ct method (2−11CT) (Livak and
Schmittgen, 2001) was used to determine the relative expression
levels of immune and lipid metabolic related genes in liver of
grass carp.

DNA extraction, 16S rDNA amplification,
and Illumina high throughput
sequencing

The total bacterial DNA was extracted using the TGuide
S96 magnetic bead method for soil/fecal genome DNA (Tiangen
Biotech, Beijing, China), following the protocol provided by the
manufacturer. The purity and concentration of genomic DNA
were determined using the Qubit dsDNA HS Assay Kit and
Qubit 4.0 Fluorometer (Invitrogen, Thermo Fisher Scientific,
Oregon, United States). The extracted DNA was preserved at
−80◦C. The V3-V4 hypervariable region of the bacterial 16S
rDNA gene was amplified using the primers 338F (5′−ACT
CCT ACG GGA GGC AGC A−3′) and 806R (5′−GGA CTA

TABLE 2 Primers used for qPCR.

Gene Sequences of primers Accession no.

β-actin 5′-AAGGCCAACAGGGAAAAGAT-3′ XM_051889040.1

5′-CATCACCAGAGTCCATCACG-3′

TGF-β1 5′-GTGACGCCAGCATTGTATCTA-3′ XM_051877578.1

5′-GTCAGCGTTGCGGAATTTATC-3′

IL-lβ 5′-CCAAGTGCCACCCCGAATGC-3′ XM_051908147.1

5′-AGGGGAAGAACCATCCGACTCG-3′

TNF-a 5′-TGATGGTGTCGAGGAGGAAGGC-3′ XM_051871730.1

5′-TTGAGCGTGAAGCAGACAGCAG-3′

ApoE 5′-CTTAAGAGCTCCACGCTTATC-3′ XM_051865683.1

5′-GTGTAGTAGGACGCACATTTAT-3′

IL-10 5′- AATCCCTTTGATTTTGCC-3′ XM_051913375.1

5′-GTGCCTTATCCTACAGTATGTG-3′

CPT-1 5′-AATTCTGCTTGACTTATGAG-3′ XM_051898996.1

5′-CCTGTCCAAGGTACTTAGAC-3′

PPAR-γ 5′-CGCTCATCTCCTACGGTCAG-3′ XM_051913344.1

5′-ATGTCGCTGTCGTCCAACTC-3′

LPL 5′-AGTACGCAGATGCCCAAAG-3′ XM_051909470.1

5′-CTGGCCTCTGAATCCCAATAC-3′

CHV GGG TWT CTA AT−3′) (Mori et al., 2013). The PCR
amplification program was the same as previously reported
(Fu et al., 2019). PCR products were purified with Agencourt
AMPure XP Beads (Beckman Coulter, Indianapolis, IN) and
quantified with the Qubit dsDNA HS Assay Kit and Qubit
4.0 Fluorometer. Following individual quantification, equimolar
amounts of amplicons were combined into a single pool.
Sequencing was conducted by Biomarker technologies (Qingdao,
China) on the Illumina NovaSeq 6000 sequencing platform. The
raw 16S rRNA sequence data can be obtained in the NCBI SRA
database (Bioproject: PRJNA1045724).

Bioinformatics analysis of sequence data

The raw sequencing data were analyzed using the QIIME2
Pipeline, version 2021.4.1 The raw data were initially processed
using Trimmomatic 0.35 (Bolger et al., 2014) for quality
filtering, followed by the identification and removal of primer
sequences with Cutadapt version 1.9.1 (Martin, 2011). DADA2 was
subsequently employed to correct errors in the merged reads and
to identify amplicon sequence variants (ASVs) (Callahan et al.,
2016). The ASVs were then classified taxonomically using a native
Bayes classifier (Wang et al., 2007), pre-trained on the SILVA 138
(Balvočiūtė and Huson, 2017).

Alpha diversity (ACE, Chao1, Simpson and Shannon index)
of gut microbiota was calculated by QIIME2 and visualized in
software R version 3.5. Beta diversity was used to evaluate the
similarity between microbial communities across different samples
in QIIME2. PERMANOVA analysis, non-metric multidimensional
scaling (NMDS), Principal coordinate analysis (PCoA) and
unweighted pair group mean algorithm (UPGMA) were used
to visualize the beta diversity based on weighted Unifrac or
Bray-curtis distance. The Pearson correlation coefficient was
conducted using software PAST version 4.13 to examine the
linear correlation between helminth infection status and the
abundance of bacteria. Differences in taxa among groups were
tested with Venn diagram and linear discriminant analysis coupled
with effect size (Lefse). The metagenomic information of the
samples was predicted from the 16S rDNA gene sequence data
by employing PICRUST 2.0 in conjunction with the KEGG
database (Langille et al., 2013). STAMP version 2.1.3 was used
to perform all statistical analyses on the functional profiles
(Parks et al., 2014).

Statistical analysis

Data analysis among the four groups utilized the One-Way
ANOVA, supplemented by LSD post hoc testing. Students’ t-test
was used to perform statistically analysis between two groups. All
the statistical tests were performed in software SPSS 20 at the 0.05
significance threshold.

1 https://docs.qiime2.org/
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Results

Role of helminth infection in the effect of
HFD on growth indices of grass carp

The growth indices of grass carp were presented in Figures 1A–
D. Among the four groups, HFD + SA had the highest CF, MFI and
VSI (Figures 1A,C,D). The CF of HFD + SA group was significantly
higher than that of the HFD group (P = 0.015 < 0.05) and ND
group (P = 0.004 < 0.05) (Figure 1A); the MFI of HFD group was
merely higher than that of ND group (P = 0.039 < 0.05, Figure 1C);
and the VSI was only showed significant difference between the
HFD + SA group and the ND group (P = 0.025 < 0.05, Figure 1D).
The HSI did not exhibit any significant differences across the four
groups (P > 0.05, in all cases, Figure 1B).

Role of helminth infection in the effect of
HFD on serum biochemical indices

The serum biochemical indices of grass carp were shown
in Figures 1E–J. HFD significantly increased the activity of
ALT (Figure 1E, P = 0.012) and AST (Figure 1F, P = 0.004),
elevated serum levels of TG (Figure 1G, P = 0.005) and CHO
(Figure 1H, P = 0.045), and reduced serum concentration of
HDL (Figure 1I, P = 0.001) in comparison with normal diet.
but the concentration of LDL between ND and HFD showed no
significance (Figure 1J, P > 0.05). Comparing to HFD, helminth
infection significantly reduced the activity of AST (Figure 1F,
P = 0.044), decreased the concentration of LDL (Figure 1J,
P = 0.008), and elevated the serum HDL content (Figure 1I,
P = 0.006) in grass carp fed with HFD. The activity of ALT
and the levels of TG and CHO in the serum showed a slight
decrease in the HFD + SA group compared to the HFD group,
but the differences were not significant (Figures 1E,G,H, P > 0.05
in all cases).

Role of helminth infection in the effect of
HFD on intestinal structure and liver lipid
content

The results of the hindgut sections stained with H&E were
presented in Figures 2A–D. Helminth infection significantly
decreased the MM (Figure 2F, P = 0.015) and PR (Figure 2G,
P = 0.022) in grass carp fed on HFD, with no effect on MV
(Figure 2E, P > 0.05). In the normal diet, helminth infection had
no affection on the MM, MV, and PR (Figures 2E–G, P > 0.05 in
all cases).

The liver lipid content was determined using oil red O staining.
The results indicated that the lipid droplets in the HFD group
were larger and denser comparing with the other three groups
(Figures 2H–K). Helminth infection significantly decreased the fat
ratio value in liver of grass carp fed with HFD (P = 0.000, Figure 2L).
However, helminth infection significantly increased the fat ratio
value in grass carp fed normal diet (P = 0.025, Figure 2L).

Role of helminth infection in the effect of
HFD on relative expression of immune
and lipid metabolism related genes

The mRNA expression levels of immune and lipid metabolism
related genes were showed in Figure 3. Helminth infection
significantly promoted the expression of transforming growth
factor-beta 1 (TGF-β1) (Figure 3C, P = 0.004), interleukin-10
(IL-10) (Figure 3D, P = 0.000) and apolipoprotein E (ApoE)
(Figure 3G, P = 0.001), and significantly down-regulated the
expression of interleukin-1beta (IL-1β) (Figure 3A, P = 0.009),
tumor necrosis factor-alpha (TNF-α) (Figure 3B, P = 0.027),
peroxisome proliferator-activated receptor-gamma (PPAR-γ)
(Figure 3E, P = 0.003) and lipoprotein lipase (LPL) (Figure 3F,
P = 0.001) in grass carp fed on HFD, but no affection on the
expression of carnitine palmitoyltransferase 1(CPT1) (Figure 3H,
P > 0.05). Meanwhile, helminth infection significantly elevated
the relative expression levels of PPAR-γ (Figure 3E, P = 0.000),
and significantly reduced the expression levels of ApoE (Figure 3G,
P = 0.011) and CPT1 (Figure 3H, P = 0.007), but no impact on
the expression levels of IL-1β, TNF-α, TGF-β1, IL-10, and LPL
(Figures 3A–D,F; P > 0.05 in all cases) in grass carp fed with
normal diet.

Role of helminth infection in the effect of
HFD on the intestinal microbiota

Composition of intestinal microbiota
The composition of intestinal microbiota was altered by

helminth infection regardless of normal diet or high fat diet. At
the phylum level (Figure 4A), the dominant taxa of the hindgut
of grass carp were Fusobacteriota, Firmicutes, Proteobacteria
and Bacteroidetes. Compared with the ND group, the relative
abundance of Fusobacteria (72.59 ± 13.90% vs. 41.65 ± 29.51%)
in the ND + SA was significantly increased (P = 0.019 < 0.05),
and the relative abundance of Firmicutes (13.35 ± 6.73% vs.
25.75 ± 8.7%, P = 0.018 < 0.05), Proteobacteria (5.02 ± 2.61% vs.
11.84 ± 7.27%, P = 0.04 < 0.05) and Bacteroidetes (2.11 ± 1.06%
vs. 10.82 ± 10.88%, P = 0.039 < 0.05) was significantly decreased.
However, there was no significant difference in the relative
abundance of dominant phyla of gut microbiota group between
HFD and HFD + SA group in grass carp. Compared with HFD,
the relative abundance of Fusobacteriota (91.70 ± 6.10% vs.
79.83 ± 9.72%) increased but not significant (P = 0.30 > 0.05)
in HFD + SA group, and the relative abundance of Firmicutes
(2.45 ± 1.40% vs. 9.24 ± 8.38%), Proteobacteria (4.27 ± 3.02% vs.
6.32 ± 3.06%), Bacteroidetes (1.12 ± 1.97% vs. 1.44 ± 0.78%), and
Desulfobacterota (0.26± 0.26% vs. 2.62± 4.02%) in the HFD + SA
group was also lower, but differences were not significant (P > 0.05
in all cases).

At the genus level, Cetobacterium was the dominant taxa
in the hindgut of grass carp (Figure 4B). Compared with
ND, the relative abundance of Cetobacterium (72.58 ± 13.91%
vs. 41.46 ± 29.48%, P = 0.018 < 0.05, Figure 4B) in
ND + SA was significantly increased, the relative abundance of
Aeromonas, Lawsonia, and ZOR0006 slightly increased (P > 0.05
in all cases, Figure 4B), and slightly decreased the relative
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FIGURE 1

Effect of S. acheilognathi infection on growth performance and serum lipid parameters of C. idella fed on high-fat diet (HFD). (A) CF, condition
factor; (B) HSI, hepatosomatic index; (C) VSI, visceral index; (D) MFI, mesenteric fat index; (E) ALT, alanine aminotransferase; (F) AST, aspartate
aminotransferase; (G) TG, total triglycerides; (H) TC, total cholesterol; (I) HDL, high-density lipoprotein cholesterol (J) LDL, low-density lipoprotein
cholesterol. (A–D) Values were presented as mean ± SEM (ND: n = 15; ND + SA: n = 4; HFD: n = 35; HFD + SA: n = 9); (E–J) values were presented
as mean ± SEM (n = 3). a, bSignificant differences are indicated by different letters (P < 0.05). ND, 5% normal fat diet with no S. acheilognathi
infection; ND + SA, 5% normal fat diet with S. acheilognathi infection; HFD, 10% high fat diet with no S. acheilognathi infection; HFD + SA, 10% high
fat diet with S. acheilognathi infection.
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FIGURE 2

Effect of S. acheilognathi infection on intestinal morphology and liver lipid deposition of C. idella fed on HFD. (A–D) HE staining of intestine; (H–K)
oil red O staining of liver. (A,H) ND; (B,I) ND + SA; (C,J) HFD; (D,K) HFD + SA; (E) MV, the height of microvilli; (F) MM, the thickness of muscularis
mucosa; (G) PR, perimeter ratio; (L) Fat ratio. (E–G,L) Values were represented as mean ± SEM, (E) ND, n = 18; ND + SA, n = 23; HFD, n = 22;
HFD + SA, n = 22; F: ND, n = 17; ND + SA, n = 24; HFD, n = 24; HFD + SA, n = 24; G: ND, n = 3; ND + SA, n = 4; HFD, n = 4; HFD + SA, n = 4; L: n = 5
for each group. a,b,cSignificant differences are indicated by different letters (P < 0.05). ND, 5% normal fat diet with no S. acheilognathi infection;
ND + SA, 5% normal fat diet with S. acheilognathi infection; HFD, 10% high fat diet with no S. acheilognathi infection; HFD + SA, 10% high fat diet
with S. acheilognathi infection.

abundance of Streptococcus, Bacteroides and Erysipelatoclostridium
(P > 0.05 in all cases, Figure 4B). However, the relative
abundance of Cetobacterium (91.58 ± 6.17% vs. 79.65 ± 9.86%,
P = 0.30 > 0.05, Figure 4B) in HFD + SA group increased

and the relative abundance of Lawsonia, Bacteroides, Aeromonas,
and Erysipelatoclostridium all decreased comparing with HFD,
but the differences were not significant (P > 0.05 in all cases,
Figure 4B).
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FIGURE 3

Effect of S. acheilognathi infection on the mRNA expression of immune and lipid metabolism related genes in C. idella fed on HFD. (A) IL-1β,
interleukin-1beta; (B) TNF-α, tumor necrosis factor-alpha; (C) TGF-β1, transforming growth factor-beta 1; (D) IL-10, interleukin-10; (E) PPAR-γ,
peroxisome proliferator-activated receptor-gamma; (F) LPL, lipoprotein lipase; (G) ApoE, apolipoprotein E; (H) CPT1, carnitine palmitoyltransferase
1; (A–H) Values were represented as mean ± SEM (n = 3); a,b,csignificant differences are indicated by different letters (P < 0.05). ND, 5% normal fat
diet with no S. acheilognathi infection; ND + SA, 5% normal fat diet with S. acheilognathi infection; HFD, 10% high fat diet with no S. acheilognathi
infection; HFD + SA, 10% high fat diet with S. acheilognathi infection.

Diversity of gut microbiota
High fat diet significantly decreased the alpha diversity of

hindgut microbiota in grass carp in comparison with normal diet
(Figures 4C–F, P < 0.05 in all cases). However, helminth infection
did not affect the alpha diversity of hindgut microbiota in grass carp
fed on HFD (Figures 4C–F, P > 0.05 in all cases). Compared with
HFD group, the HFD + SA group displayed a lower α diversity,
but the differences were not significant (Figures 4C–F, P > 0.05 in
all cases).

For the beta diversity, cluster analysis indicated that all
samples were divided into two groups (Figure 4G), where almost
all intestinal microbiota samples of grass carp fed on HFD
clustered into one group, and samples that of feeding on ND
clustered into a separate group. PERMANOVA (Table 3) analyses
showed that the microbial communities of HFD + SA group was
significantly different from HFD (P = 0.016). However, helminth
infection had no affection on the microbial communities of
grass carp fed normal diet (P = 0.064 > 0.05). The analyses of
Principal coordinate analysis (PCoA) (Figure 4H) and non-metric
multidimensional scaling (NMDS) (Figure 4I) showed that the
microbial communities of the four groups could not be significantly
distinguished from each other.

Differences in taxonomic abundance among
groups

A total of 3,968 ASVs were obtained in this study. Venn plot
showed that total ASVs of ND, ND + SA, HFD and HFD + SA
groups were 3,352, 659, 474, and 299, respectively; unique ASVs in

four groups were 2,855, 284, 166, and 94, respectively; and the four
groups shared 96 ASVs (Figure 5A).

Lefse analysis at the genus level indicated that there were thirty-
six biomarkers between ND and ND + SA groups (Figure 5B),
and only three biomarkers between HFD and HFD + SA
groups (Figure 5C), including Cetobacterium, Megasphaera, and
SAR324_clade.

Association between helminth infection and
relative abundance microbiota in grass carp fed
on HFD

Pearson correlation analysis indicated that helminth infection
had a significant positive correlation with the relative abundance of
Cetobacterium (P = 0.042, r = 0.65) and Lactobacillus (P = 0.001,
r = 0.86), and three taxa, including Rhodobacter, Rhizobium, and
Eubacterium, existed a significant negative correlation with the
helminth infection (P < 0.05 in all cases; 0.63 ≤ |r| ≤ 0.71)
(Figure 5D) in hindgut of grass carp fed on HFD (Table 4).

Functional alteration of gut microbiota
The PICRUST2 prediction identified thirty-three KEGG

pathways at the L3 level with significant differences between
the ND and ND + SA groups. Among these, twenty pathways
pertained to metabolic processes, accounting for 60.6% (20/33),
of which one pathway was associated with lipid metabolism, two
with carbohydrate metabolism and one with energy metabolism
(Figure 5E). In the comparison between HFD and HFD + SA,
seventeen pathways exhibited notable differences. Of these, nine
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FIGURE 4

Effect of S. acheilognathi infection on the composition and diversity of intestinal microbiota in C. idella fed on HFD. (A,B) Microbiota composition;
(C–F) α diversity indices; G-I: β diversity; (A) phylum level; (B) genus level; (G) cluster analysis; (H) PCoA, principal coordinates analysis; (I) NMDS,
Non-metric multidimensional scaling; (A–I) ND, n = 5; ND + SA, n = 4; HFD, n = 5; HFD + SA, n = 5. a,b,cSignificant differences are indicated by
different letters (P < 0.05). ND, 5% normal fat diet with no S. acheilognathi infection; ND + SA, 5% normal fat diet with S. acheilognathi infection;
HFD, 10% high fat diet with no S. acheilognathi infection; HFD + SA, 10% high fat diet with S. acheilognathi infection.

TABLE 3 PERMANOVA analysis of different groups with the
Bray-Curtis distance.

Group ND ND + SA HFD HFD + SA

ND 3.255 1.529 3.663

ND + SA 0.064 4.478 0.659

HFD 0.192 0.018 4.455

HFD + SA 0.010 0.723 0.016

Pseudo-F-values from the PERMANOVA test are displayed in standard font, P-values are
presented in italics, and P-values < 0.05 are highlighted in bold.

pathways were linked to metabolism functions (52.9%: 9/17),
of which one KEGG pathway was related to lipid metabolism
(Figure 5F).

Discussion

The protective effect of helminth on metabolic diseases had
been reported in mammals including improved insulin resistance,
enhancing glucose tolerance, reducing blood lipids, inhibiting
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FIGURE 5

Differences and function of intestinal microbiota in C. idella fed on HFD. (A) Venn plot. (B) Lefse analysis between ND and ND + SA. (C) Lefse analysis
between HFD and HFD + SA. (D) Heatmap of significant taxa in the intestine of HFD and HFD + SA. (E,F) Changes in the KEGG pathways predicted by
PICRUST. (E) ND and ND + SA; (F) HFD and HFD + SA. (A–F) ND, n = 5; ND + SA, n = 4; HFD, n = 5; HFD + SA, n = 5. 0.01 < P < 0.05 values are
marked with “*.” ND, 5% normal fat diet with no S. acheilognathi infection; ND + SA, 5% normal fat diet with S. acheilognathi infection; HFD, 10% high
fat diet with no S. acheilognathi infection; HFD + SA, 10% high fat diet with S. acheilognathi infection.

proinflammatory response and M2 macrophage proliferation etc.
(Kang et al., 2021; Obi et al., 2020; Rajamanickam et al., 2020;
Shimokawa et al., 2019; Su et al., 2020; Su et al., 2018; Yang et al.,
2013), but the existence of such a protective effect in aquatic
fauna remains unknown. In this study, we attempted to explore
the role of helminth on metabolic diseases in aquatic animals.
From our experimental results, the role of helminth in metabolic
diseases in aquatic animals was similar to that in mammals.
Helminth infection effectively ameliorated the high-fat diet induced
metabolic imbalance in grass carp.

The effect of S. acheilognathi infection
on growth of grass carp fed on HFD

In growth performance, helminth infection with grass carp
fed on HFD pointedly increased the CF, and slightly increased
VSI and MFI. Numerous investigations on fish species, including
Micropterus salmoides (Guo et al., 2019; Yin et al., 2021), Nibea
japonica (Han et al., 2014), and Rachycentron canadum (Wang
et al., 2005), have revealed a positive correlation between the VSI
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TABLE 4 Analysis of correlation coefficient between helminth infection
and the taxonomic abundance of microbiota within the intestine of
grass carp fed with HFD.

Taxon P r

Lactobacillus 0.001 0.86

Cetobacterium 0.042 0.65

Rhodobacter 0.019 −0.72

Rhizobium 0.033 −0.67

Eubacterium 0.046 −0.64

and MFI and the level of dietary lipids. The rise in CF observed in
this study was associated with a concurrent upward trend in both
VSI and MFI. The level of dietary fat usually causes no change of
CF in fish (Guo et al., 2022; Han et al., 2014; Yin et al., 2021). Thus,
the significant increasing of CF in HFD + SA group indicated that
helminth infection boosted the growth of grass carp fed with HFD.

The effect of S. acheilognathi infection
on serum biochemical indices of grass
carp fed on HFD

Helminth infection with grass carp fed with HFD exhibited a
notable rise in LDL level, while AST level and HDL concentration
significantly declined. AST is primarily situated within hepatocytes,
and an increase in its serum level is a response to hepatocellular
damage and changes in plasma membrane permeability (Boone
et al., 2005). The high-fat diet led to an elevation in serum AST
level in grass carp, indicating potential damage to liver cells.
However, helminth infection could possibly decrease the liver’s
burden imposed by the high-fat diet and facilitate the recovery
of liver function. HDL and LDL are typically used as indicators
to reflect lipid metabolism in aquatic animals (Guo et al., 2019;
Li et al., 2016; Zhao et al., 2016) and mammals (Lu et al., 2022;
Teng et al., 2020). High serum LDL is always considered to be
risk factors related to fatty livers in fish (Guo et al., 2019; Li
et al., 2016; Zhao et al., 2016). HDL has been referred to as good
cholesterol, inversely proportional to cardiovascular risk in many
studies (Ertek, 2018). In present study, the increase in HDL and
decrease in LDL indicated that helminth infection reversed the
abnormal lipid metabolism in HFD of grass carp, which could
improve health condition of cultured C. idella.

The effect of S. acheilognathi infection
on lipid metabolism of grass carp fed on
HFD

PPAR-γ, LPL, ApoE, and CPT1 are the key regulatory enzymes
involved in lipid metabolism within the liver, playing roles in the
uptake, transport and oxidation of fatty acids. PPAR-γ is a ligand-
activated transcription factor that belongs to the nuclear hormone
receptor superfamily and fosters lipogenesis by enhancing the
expression of enzymes involved in lipid synthesis (Ahmadian et al.,
2013). LPL catalyzes the hydrolysis of intravascular triglycerides

contained within lipoproteins, such as chylomicrons and very low-
density lipoprotein (VLDL), then the released fatty acids can be
taken up by tissues for use in oxidation or for storage purposes (Wu
et al., 2021). ApoE is a soluble apolipoprotein primarily synthesized
in the liver and brain, and it has an important role in the
metabolism of triglyceride rich lipoproteins (TRL) due to its high
affinity binding to the LDL receptor (LDLR), the LDL receptor-
related protein 1 (LRP1) and the VLDL receptor (VLDLR),
which facilitates the hepatic clearance of remnant lipoprotein
particles (Huang and Mahley, 2014). LPL-mediated triglyceride
hydrolysis would reduce when ApoE concentration was high (Wu
et al., 2021). CPT1 is regarded as a pivotal regulatory enzyme
in mitochondrial fatty acid oxidation pathway. It catalyzes the
conversion of fatty acyl-CoAs into fatty acyl-carnitine molecules,
which are then transported into the mitochondrial matrix for
further oxidation (Kerner and Hoppel, 2000). In the present study,
helminth infection in grass carp fed with HFD resulted in a modest
elevation of CPT1 expression, and caused a significantly reduction
in the expression levels of PPAR-γ and LPL, while significantly
increased the expression level of ApoE. These results indicated that
helminth mainly regulate the expression of these lipid metabolism
genes to inhibit the absorption of fatty acids, thereby reducing the
deposition of lipid in the liver.

Additionally, the lipid content in the liver of the HFD + SA
group was significantly lower than that of the HFD group,
indicating that helminth infection mitigated the liver lipid
deposition induced by the high-fat diet. The protective effect of
helminth in grass carp was similar to that in mice (Su et al., 2018).
Most of the digested lipids are absorbed by intestinal epithelial
cells (Zhang et al., 2021). PR, one of the intestinal morphology
parameters, was significantly decreased by helminth infection in
this study, reducing the amount of lipid absorbed by intestine,
thereby to decrease lipid deposition in the liver.

The effect of S. acheilognathi infection
on immune response and gut microbiota
of grass carp fed on HFD

Similarity to the protective effects of helminth in mammalian
metabolic diseases, the primary regulatory pathways through which
helminths exert positive effects on metabolic diseases in fish may
include the following two aspects: (1) immune regulation, (2)
alterations of gut microbiota. The type 2 immune response induced
by helminth infection has been proved to ameliorate the side
effects of HFD in mice (Su et al., 2020; Su et al., 2018). The
intestinal nematode H. polygyrus could protect against obesity
by triggering the production of Th2-mediated cytokines, such as
IL-4, lL-10 and IL-13, and enhancing the anti-inflammatory M2
macrophages levels (Su et al., 2018). The increased M2 and IL-
10 responses resulted in a reduction of the pro-inflammatory
cytokine TNF-α expression, which has been shown to modulate
lipid metabolism (Khovidhunkit et al., 2004). Similarly, in our
study, helminth infection significantly elevated IL-10 levels while
concurrently reducing decreased TNF-α expression, indicating that
helminth infection protects against the HFD-induced abnormal
lipid metabolism via activation of immune responses in teleost.
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An increase of alpha diversity in intestinal microbiota is
generally associated with a “healthy” gut homeostasis (Peachey
et al., 2017). In this study, a high-fat diet significantly decreased
the α diversity of intestinal microbiota in grass carp (Figures 4C–
F), indicating that HFD disrupted gut microbial balance. Similar
disruptions caused by HFD have also been reported in Monopterus
albus (Peng et al., 2019). Additionally, there was no significant
difference in the α diversity of gut microbiota between the
HFD group and the HFD + SA group (Figures 4C–F), which
may be attributed to the regulatory effect of helminth on
intestine microbiota.

Microbiota and helminths occupy the same ecological niche
within the host’s intestine, where they can interact with each
other (Glendinning et al., 2014). Multiple investigations have been
carried out to examine the effects of helminth infection on the
gut microbiota in fish. Tapeworm and acanthocephalan infection
caused alteration in the composition of fish gut microbiota (Fu
et al., 2019; Fu et al., 2022; Jiang et al., 2019; Ling et al.,
2020). Studies in mammals have shown that helminth infection
protects against HFD-induced obesity through modifications
to the gut microbiota (Shimokawa et al., 2019; Su et al.,
2020).

helminth infection was found to enhance the relative
abundance of Cetobacterium in hindgut of grass carp fed with
HFD, and the proportion of Cetobacterium in the HFD + SA
group was 91.6%. According to Spearman’s correlation analysis,
Cetobacterium correlated positively with helminth infection.
Cetobacterium, identified as an anaerobic, gram-negative bacterium
(Finegold et al., 2003), constitutes a predominant member of
the intestinal microbiota in freshwater fish (Di Maiuta et al.,
2013; Fu et al., 2022; Larsen et al., 2014; van Kessel et al.,
2011). The significant proliferation of Cetobacterium could perform
fermentative metabolism of peptides and carbohydrates, resulting
in the production of acetate, which in turn modifies glucose
homeostasis (Wang et al., 2021). Additionally, this bacterium could
produce vitamin B12 (Larsen et al., 2014), thereby enhancing
the host couldsicrobioto pathogen infections (Qi et al., 2023).
Incorporating Cetobacterium fermentation products into fish feed
can effectively enhance intestinal and liver health and decrease liver
lipid accumulation (Xie et al., 2022). In zebrafish, cypermethrin
(CYP) exposure or CYP and microplastics (MPs) co-exposure
increased the abundance of Cetobacterium, which was found to
be positively associated with the majority of lipid metabolites (Xu
et al., 2024). Consistently, helminth infection may ameliorate the
lipid metabolism induced by HFD through increasing the high
relative abundance of Cetobacterium to regulate lipid and maintain
liver health of grass carp.

Lactobacillus, a group of gram-positive, facultative anaerobic
bacteria widely used as probiotics, has been shown to enhance
epithelial barrier function and modulate innate immune
responses as well as cytokine profiles (Amdekar and Singh,
2016). Strongyloides venezuelensis infection in mice induced
the increasing of Lactobacillus spp., which has a positive effect
on the glucose metabolism of the host (Pace et al., 2018). In
this study, helminth infection showed a significant positive
correlation with Lactobacillus. This result indicated that helminth
infection can improve host metabolic profile by regulating
probiotics.

In study of Caenorhabditis elegans, reactive oxygen species
produced by Rhizobium induce DNA damage, which caused
abnormal intestinal nuclei divisions (Kniazeva and Ruvkun, 2019).
Eubacterium, one of the main SCFAs-producing bacteria in
humans (Parada Venegas et al., 2019). Rhodobacter is a gram-
negative, purple non-sulfur photosynthetic bacteria. Orally given
the Rhodobacter sphaeroides in mice increased the content of
SCFAs (Yang et al., 2020). However, SCFA has a significant
negative influence on established Oesophagostomum dentatum
infection in pigs (Petkevicius et al., 2004). In this study, helminth
infection showed significant positive correlation with Rhodobacter,
Rhizobium, and Eubacterium, indicating that helminth may
improve its survival in the intestine by altering the relative
abundance of these three bacteria.

Conclusion

In conclusion, the findings of this study showed that helminth
infection can ameliorate the abnormal lipid metabolism caused by
a high-fat diet in grass carp. Helminth infection decreased the lipid
deposition in liver, the concentration of LDL and activity of AST in
serum, while increased the level of HDL. The synergistic effect of
IL-10 produced by helminth mediated Th2 immune response and
Cetobacterium alteration in intestine induced by helminth infection
upregulated the expression level of ApoE and downregulated the
expression level of PPAR-γ and LPL in liver of grass carp, thus
improving lipid metabolism.
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