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The gut microbiome has emerged as a potential factor in cancer pathogenesis, 
but its role in non-functioning pituitary neuroendocrine tumors (NF-PitNETs) 
remains unclear. This study aimed to elucidate gut microbiome and metabolomic 
alterations in NF-PitNETs by comparing microbial diversity, pathogenic bacteria, 
and serum metabolomic profiles between NF-PitNET patients and healthy controls. 
The gut microbiome was assessed through 16S rRNA sequencing, while serum 
metabolomics was analyzed using mass spectrometry. Correlation analyses 
identified potential links between microbial characteristics and metabolic markers. 
The results revealed that specific pathogenic bacteria, such as Bacteroides, 
were significantly enriched in NF-PitNET patients. Multi-omics correlations 
suggested that altered microbiota might contribute to NF-PitNET pathogenesis by 
modulating host metabolic pathways. These findings highlight the potential role 
of gut microbiome dysbiosis and its metabolic effects in NF-PitNET development, 
offering insights into possible therapeutic and diagnostic targets.
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Highlights

	•	 Identified distinct gut microbiome changes in NF-PitNET patients versus 
healthy controls.

	•	 Found significant enrichment of pathogenic bacteria, including Bacteroides, in 
NF-PitNETs.

	•	 Multi-omics correlations link gut microbiota alterations with NF-PitNET 
metabolic pathways.
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1 Introduction

Pituitary neuroendocrine tumors (PitNETs), formerly known as 
pituitary adenomas(PA), represent the third most common type of 
brain tumor in adults, comprising approximately 15% of all adult 
brain tumors (Miller et al., 2021; Ostrom et al., 2021; Melmed, 2020). 
These tumors are classified based on their hormonal activity into 
functional and non-functional types. Functional PitNETs often lead 
to overproduction of hormones, causing conditions such as 
acromegaly, Cushing’s disease and prolactinoma (Tritos and Miller, 
2023; Mehta and Lonser, 2017). Non-functional PitNETs 
(NF-PitNETs), which make up about 30% of these tumors (Daly and 
Beckers, 2020), do not secrete hormones and typically present with 
symptoms like headaches, visual field defects, and pituitary 
dysfunction due to the physical impact of the tumor on surrounding 
vital tissue (Tritos and Miller, 2023). Although many PitNETs can 
be  effectively managed with surgical intervention, some display 
refractory or aggressive behaviors that complicate treatment (Kolitz 
and Greenman, 2023; Di Ieva et  al., 2014; Whitelaw, 2019). 
Understanding the factors that influence the development and 
progression of PitNETs is crucial for improving diagnostic and 
therapeutic approaches for this diverse group of tumors.

The human intestinal microbiota, a complex ecosystem of 
bacteria, fungi, viruses, archaea, and other microorganisms, forms 
symbiotic relationships with the host that significantly impact various 
aspects of health (Sender et al., 2016; Kahrstrom et al., 2016). Previous 
studies have demonstrated a significant correlation between intestinal 
dysbiosis and the prevalence of neurological diseases (Aho et  al., 
2021), cancer (Helmink et al., 2019), gastrointestinal disorders (Jones 
and Neish, 2021), cardiovascular diseases (Zhu et al., 2023), and other 
conditions (Lou et  al., 2022). Extensive experimental data and 
epidemiological evidence further indicate that an imbalance in 
intestinal flora plays a key role in the progression of various cancers, 
including breast, lung, colorectal, prostate, gastric, and liver cancer 
(Liu et  al., 2024). Alterations in the composition of the intestinal 
microbiota and the modulation of associated metabolites have the 
potential to regulate cellular metabolism and immune function, 
establishing a scientifically sound connection between intestinal flora 
and cancer development (Nandi et  al., 2023; Li et  al., 2024). For 
instance, deoxycholic acid (DCA), produced by Clostridium, can cause 
DNA damage through enterohepatic circulation and induce a 
senescence-associated secretory phenotype (SASP) in hepatic stellate 
cells. This process is accompanied by the release of various 
inflammatory cytokines and growth factors, which may promote the 
development of inflammation-associated, obesity-related 
hepatocellular carcinoma (Yoshimoto et  al., 2013). Similarly, 
Bacteroides fragilis, through B. fragilis toxin (BFT), not only accelerates 
tumor growth and metastasis but also significantly enhances the self-
renewal ability of breast cancer cells by concurrently activating the 
β-catenin and NOTCH1 signaling pathways, providing new 
opportunities for tumor progression (Parida et al., 2021).

Despite significant advances, research on the gut microbiome’s 
role in PitNETs is limited. Existing studies indicate notable differences 
in the microbial compositions of patients with pituitary somatotroph 
tumors and NF-PitNETs compared to healthy individuals (Lin et al., 
2022; Hu et al., 2022; Hacioglu et al., 2021; Sahin et al., 2022; Nie et al., 
2022). However, these observations primarily focus on microbial 
characteristics at a single omics level, limiting a comprehensive 

understanding of the pathophysiological mechanisms underlying 
PitNETs. A deeper exploration of the systemic biological changes 
within the PitNETs microbiome and serum metabolome is essential 
to unravel the complex interplay between the gut microbiota and the 
development and progression of PitNETs.

This study recruited 23 patients with NF-PitNETs and 30 healthy 
controls (HC). By utilizing 16S rRNA gene amplicon sequencing and 
non-targeted metabolomics to analyze fecal and serum samples, 
we aimed to study the diversity and abundance of fecal microorganisms 
and serum metabolites in NF-PitNET patients, as well as their 
relationship with the clinical characteristics of PitNETs. This study 
provides new insights into the complex interactions between the gut 
microbiota and the development and progression of PitNETs.

2 Materials and methods

2.1 Ethical statement

This study received approval from the Ethics Committee of Peking 
Union Medical College Hospital (Reference: K5112), adhering strictly 
to ethical standards. In line with the principle of informed consent, all 
participants provided written consent after being fully informed about 
the study’s purpose and procedures.

2.2 Participants

Patients newly diagnosed with NF-PitNETs and treated 
surgically were recruited from the Department of Neurosurgery, 
Peking Union Medical College Hospital, between December 2022 
and March 2023. The diagnosis for all specimens was confirmed 
through pathological examination. Additionally, 30 healthy 
individuals from the eligible population in Beijing, China, were 
enrolled as controls. To minimize potential confounding factors, 
the following exclusion criteria were applied to both groups: (1) 
antibiotic and/or probiotic use within the past 6 months; (2) history 
of chronic gastrointestinal diseases or surgeries within the past year; 
(3) presence of malignant tumors, autoimmune diseases, or 
infectious diseases; and (4) significant dietary changes or new 
dietary supplements affecting intestinal flora within the past 
3 months. Comprehensive clinical data were collected, including 
demographic characteristics (age, gender, height, weight, and body 
mass index [BMI]); clinical features (symptoms and duration of 
illness); tumor characteristics (size, Knosp grade, and 
aggressiveness); and pathological parameters (Ki67 and P53 levels).

2.3 Sample collection

Fresh stool samples from each participant were collected, divided 
into two 50 mg portions, and stored in sterile cryogenic tubes. The 
tubes were immediately placed in ice boxes and transported to the 
laboratory, where they were stored at −80°C. Serum samples were 
obtained in the morning following an overnight fast of at least 8 h. 
Blood samples were collected into vacuum tubes; however, 13 of the 
30 healthy control participants declined blood sampling. After 
collection, the tubes were gently inverted to ensure proper mixing and 
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centrifuged at 3000 rpm for 10 min at 4°C. The resulting supernatant 
(serum) was transferred into 1.5 mL cryovials and stored at −80°C for 
future analysis. For NF-PitNET patients, all sample collections were 
completed prior to surgical intervention.

2.4 16S rRNA gene amplicon sequencing 
and analysis

Genomic DNA was extracted from fecal samples by Novogene 
Biotechnology Co., Ltd. The V4 region of the 16S rRNA gene was 
amplified using specific primers. After library construction, DNA 
quantification was performed using Qubit and qPCR, followed by 
PE250 sequencing on the NovaSeq 6000 platform. Sequencing data 
were demultiplexed based on barcode and PCR primer sequences. 
After trimming barcode and primer sequences, FLASH (Version 
1.2.11) was used to merge paired-end reads, generating raw tag 
sequences (Raw Tags). Cutadapt was used to remove residual primer 
sequences to avoid interference in downstream analyses. Fastp 
(Version 0.23.1) was applied to filter low-quality sequences, 
producing high-quality tags (Clean Tags). Chimeric sequences were 
identified and removed by comparing tag sequences against the 
SILVA database,1 resulting in high-quality effective tags (Effective 
Tags). The UPARSE algorithm (Version 7.0.1001) was used to cluster 
effective tags from all samples into operational taxonomic units 
(OTUs) at a 97% similarity threshold. Representative OTU sequences 
were selected based on the highest frequency within each cluster. 
Taxonomic classification was performed using the SILVA database 
and the Mothur algorithm.

Alpha diversity (Shannon and Simpson indices) and beta diversity 
(weighted UniFrac) were calculated using QIIME (Version 1.9.1) to 
assess microbial diversity. Principal coordinate analysis (PCoA) was 
performed and visualized using the ade4 and ggplot2 packages in 
R. ANOSIM, Adonis, and MRPP tests were applied to evaluate 
differences between groups. Rarefaction curves were generated in R 
using the plyr package.Venn diagrams were generated in R using the 
VennDiagram package. The top 10 most abundant taxa at different 
taxonomic levels (phylum and genus) were visualized using 
distribution histograms and chord diagrams, generated in Perl with 
the SVG function. PICRUSt2 (Version 2.3.0) was used to predict 
microbial functional profiles by normalizing 16S rRNA data, 
estimating gene family abundance, and mapping functional pathways 
to KEGG Orthologs. Functional differences between NF-PitNET 
patients and healthy controls were analyzed using the Wilcoxon 
rank-sum test, with FDR correction applied to adjust for multiple 
comparisons. BugBase was employed to predict the relative abundance 
of potentially pathogenic bacteria, and statistical differences between 
groups were assessed using the Wilcoxon rank-sum test with FDR 
correction. LEfSe was used to identify differentially abundant bacterial 
taxa between NF-PitNET patients and healthy controls through a 
three-step process: Kruskal-Wallis test for feature selection, Wilcoxon 
rank-sum test for pairwise comparisons, and Linear Discriminant 
Analysis (LDA) to estimate effect sizes, with results visualized using 
LDA score plots and cladograms.

1  https://www.arb-silva.de/

Differentially abundant bacterial taxa were analyzed using 
DESeq2, applying a negative binomial GLM to estimate log2 fold 
changes and p-values. A volcano plot was constructed to visualize 
significant taxa, with the x-axis representing log2 fold changes and 
the y-axis showing the -log10 p-values. Bacterial abundance 
differences were compared using violin plots, with Wilcoxon 
rank-sum determining statistical significance.

2.5 LC/MS non-targeted metabolomics 
analysis

This study employs liquid chromatography-mass spectrometry 
(LC–MS) for non-targeted metabolomics analysis. Raw data were 
preprocessed using Compound Discoverer 3.3 (CD3.3, Thermo 
Fisher Scientific, United States). Initial data screening was conducted 
based on retention time and mass-to-charge ratio (m/z), followed by 
peak alignment across different samples to enhance identification 
accuracy. Peaks were extracted based on predefined ppm thresholds 
and adduct ion information, with simultaneous quantification of 
peak areas.Metabolite identification was performed by comparing 
experimental spectra against high-resolution spectral databases 
(mzCloud, mzVault, and MassList). The molecular weight of each 
metabolite was determined based on the m/z ratio of the parent ion 
in the primary mass spectrum, and the molecular formula was 
predicted using mass deviation (ppm) and adduct ion patterns before 
matching with reference databases. Secondary metabolite 
identification was conducted by matching fragment ions, collision 
energies, and other spectral parameters with database records.
Metabolites with a coefficient of variation (CV) <30% in quality 
control (QC) samples were retained for subsequent analysis. 
Chromatographic peaks were integrated using CD3.3, with the peak 
area of each characteristic peak representing the relative abundance 
of the corresponding metabolite. Metabolite quantification was 
standardized using total peak area normalization to ensure 
data comparability.

Principal component analysis (PCA) was performed on the 
extracted peak data, and logarithmic transformation and 
standardization were conducted using MetaX software.To investigate 
metabolic and microbial differences between NF-PitNET patients and 
healthy controls, various statistical and visualization approaches were 
applied. A heatmap was generated using the pheatmap package in R 
to display the relative abundance of metabolites, with hierarchical 
clustering performed using Euclidean distance and Ward’s linkage 
method. Differential metabolite analysis was conducted using the 
Wilcoxon rank-sum test, and a volcano plot was created with the 
ggplot2 package to highlight significantly altered metabolites (|log2 
fold change| > 1, p < 0.05). KEGG pathway enrichment analysis was 
performed using MetaboAnalyst 5.0, with significant pathways 
(p < 0.05) visualized using bubble plots.A violin plot was used to 
compare key differential metabolite distributions, with statistical 
significance assessed by the Wilcoxon rank-sum test.

2.6 Multi-omics correlation analyses

Spearman correlations between important bacterial taxa, serum 
metabolites and clinical parameters were calculated in SPSS 
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software. Correlations between features were visualized using the 
pheatmap package.

2.7 Statistical analysis

Descriptive statistics, such as means, medians, and standard 
deviations, were utilized to encapsulate the study population’s 
characteristics. The normality of data distributions was evaluated 
using the Shapiro–Wilk test. For normally distributed continuous 
variables, t-tests were applied to determine statistical differences. The 
Mann–Whitney U test was employed for continuous variables not 
following a normal distribution. Categorical variables were analyzed 
using either the chi-square test or Fisher’s exact test, depending on 
the data’s suitability. Correlation between variables was assessed 
through Spearman’s rank correlation analysis. In all statistical 
evaluations, a p-value below 0.05 was deemed to indicate statistical 
significance. The analyses were performed using SPSS software 
version 26.0.

3 Results

3.1 Study population characteristics

This study included 23 patients with confirmed NF-PitNETs and 
30 healthy individuals as controls. Table  1 summarizes the 
demographic and clinical characteristics of all participants. The 

analysis revealed no significant differences in gender distribution, age, 
or BMI between the two groups (Supplementary Tables 1, 2).

3.2 Overview of gut microbiome across 
different groups

To compare the gut microbiota composition between patients 
with NF-PitNETs and healthy controls, we analyzed stool samples 
from 53 participants using high-throughput sequencing, 
specifically targeting the V3-V4 region of the 16S rRNA gene. The 
analysis generated 4,087,091 high-quality 16S rRNA sequences, 
with a median read count of 77,432 per sample (range: 63,321 to 
88,463). After denoising, we identified 1,461 OTUs. Rarefaction 
curves confirmed that the sequencing depth was adequate 
(Supplementary Figure S1A).

Of the identified OTUs, 723 were common to both groups, while 
341 were unique to the HC group and 224 were unique to the 
NF-PitNET group (Figure  1A). Analysis of bacterial community 
composition showed no significant differences in gastrointestinal 
microbial diversity between the two groups, based on the Shannon 
and Simpson indices (Figures 1B,C), indicating comparable alpha 
diversity, with no significant differences in species richness or 
evenness of the intestinal microbiota.

However, further investigation using weighted UniFrac distances 
and principal coordinate analysis (PCoA) revealed significant 
differences in beta diversity between the two cohorts (Figure 1D). 
These structural differences were statistically significant, as confirmed 
by Anosim analysis (R = 0.174, p = 0.001), Adonis analysis (R2 = 0.110, 
p = 0.001), and MRPP analysis (p = 0.001; Supplementary Figure S1B). 
These findings suggest that the differences between the gut microbiota 
of NF-PitNET patients and healthy controls are greater than the 
variations within each group.

3.3 Alterations in fecal microbiota 
composition associated with NF-PitNETs

Using the BugBase database, we predicted the phenotypic profiles 
of the gut flora in each group and found that the aggregate count of 
potentially pathogenic bacteria was significantly higher in the 
NF-PitNET group compared to the control group (p = 0.0003; 
Figure 2A).

The relative proportions of the dominant bacterial communities 
at both the phylum and genus levels were assessed. At the phylum 
level, Firmicutes and Bacteroidetes were predominant, with Firmicutes 
representing 58.3% of the microbiota in the control group and 52.6% 
in the NF-PitNET group, while Bacteroidetes accounted for 16.4% in 
the control group and increased to 33.6% in the NF-PitNET group. 
Other notable phyla included Actinobacteria, Proteobacteria, and 
Fusobacteriota (Figure 2B). At the genus level, the NF-PitNET group 
exhibited a distinct microbial composition, with Bacteroides (21.8%), 
Faecalibacterium (7.9%), and Bifidobacterium (5.4%) being 
predominant. In contrast, the most abundant genera in the control 
group were Blautia (12.5%), Bacteroides (10.8%), and Bifidobacterium 
(9.9%) (Figure 2C).

As illustrated in the volcano plot (Figure 2D), a total of 20 genera 
exhibited significantly different abundances between the two groups, 

TABLE 1  Characteristics of the study cohort.

Characteristic NF-
PitNETs 
(n = 23)

HC 
(n = 30)

p- value

Male/Female 12/11 8/22 0.058

Age (years) 57.5 ± 11.8 53.6 ± 9.1 0.175

BMI (kg/m2) 24.8 ± 2.6 23.4 ± 2.6 0.055

Symptom

Headache 10 (43.5%) NA NA

Visual field defects 12 (52.2%) NA NA

Pituitary dysfunction 3 (13.0%) NA NA

Tumor size(cm3) 11.3 ± 11.2 NA NA

Knosp grade

I-II 10 (43.5%) NA NA

III-IV 13 (56.5%) NA NA

Aggressive 14 (60.9%) NA NA

Pituitary apoplexy 8 (34.8%) NA NA

Pathological characteristics

Ki67

<3% 12(52.2%) NA NA

≥3% 11(47.8%) NA NA

P53(+) 6(26.1%) NA NA

Quantitative data are presented as mean ± standard deviation. Categorical data are presented 
as frequency and percentage. NA, Not available.
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with 9 genera upregulated and 11 genera downregulated in the 
NF-PitNET group. The Manhattan plot (Figure  2E) depicts the 
distribution of these 20 differential genera across the three most 
abundant phyla: Firmicutes, Bacteroidetes, and Actinobacteria.

Linear discriminant analysis (LDA) combined with effect size 
(LEfSe) identified 36 taxa that were significantly different in 
abundance between the groups, with 18 taxa dominant in 
NF-PitNET patients and 18 dominant in healthy controls. Among 
them, Bacteroidetes (LDA score 4.78, p = 0.001) and Parabacteroides 
(LDA score 3.97, p < 0.001) were the most significantly upregulated 
species with the highest LDA scores in NF-PitNET patients 
(Supplementary Figures S2A,B).

By combining the 20 differential genera identified in the volcano 
plot with those having LDA scores greater than 3  in LEfSe 
(Supplementary Figure S3), and excluding genera with an abundance 
of 0 in too many samples, we identified 6 upregulated (Figure 3A) and 
14 downregulated genera (Figure 3B) in NF-PitNETs.

To explore the potential relationship between intestinal 
microbial composition and the clinical characteristics of 
NF-PitNET patients, a Spearman correlation analysis was 

conducted on 20 differential bacterial genera in relation to tumor 
size, Knosp grade, and Ki-67 expression. Notably, among the 
upregulated genera in NF-PitNETs, Bacteroides showed a positive 
correlation with tumor size and Knosp grade, while 
Lachnospiraceae_UCG-004 was positively correlated with Ki-67 
expression. Among the downregulated genera, Blautia was 
negatively correlated with Ki-67 expression, and Subdoligranulum 
was negatively correlated with tumor size (Figure 4A).

The tumors were further divided into aggressive and 
non-aggressive groups, and the 20 differential bacterial genera were 
compared between these two groups (Supplementary Figures S4A,B). 
The results indicated that Bacteroides had significantly higher 
expression in the aggressive group compared to the non-aggressive 
group (Figure  4B), while Dorea, a downregulated genus, showed 
higher expression in the non-aggressive group than in the aggressive 
group (Figure 4C).

To investigate the functional contributions of gut microbiota in 
NF-PitNET patients, we  performed PICRUSt2-based 
predictions using 16S rRNA sequencing data. A total of 96 microbial 
pathways exhibited significant differences in abundance between the 

FIGURE 1

Diversity analysis of the gut microbiota. (A) A Venn diagram showing the unique and common OTUs in each group. (B) The Shannon index and (C) the 
Simpson index were used to estimate alpha diversity differences between the two groups. (D) Beta diversity analysis comparing the two groups.
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NF-PitNET and HC groups (p < 0.05, FDR < 0.2; 
Supplementary Figure S5), with 52 pathways enriched in the 
NF-PitNET group. The predicted functional shifts primarily involved 
carbohydrate metabolism, amino acid metabolism, nucleotide 
biosynthesis, lipid metabolism, and polyamine biosynthesis, 
suggesting potential alterations in microbial metabolic activity. 
Among the carbohydrate metabolism pathways, the superpathway of 
glycolysis and the Entner-Doudoroff pathway, gluconeogenesis I, and 
the superpathway of glucose and xylose degradation were significantly 
enriched in NF-PitNET patients, indicating potential microbial 

contributions to altered glucose utilization. Additionally, several 
amino acid metabolism pathways were highly expressed, including 
phenylalanine, tyrosine, and tryptophan metabolism, L-arginine 
biosynthesis III, L-histidine degradation I, the superpathway of 
arginine and polyamine biosynthesis, and the superpathway of 
polyamine biosynthesis I & II, reflecting microbial involvement in 
nitrogen metabolism. Furthermore, multiple nucleotide biosynthesis 
pathways were enriched, including the superpathway of purine 
nucleotides de novo biosynthesis I & II, superpathway of guanosine 
nucleotides de novo biosynthesis I  & II, and superpathway of 

FIGURE 2

Compositional differences in the gut microbiota between NF-PitNETs and HC groups. (A) Relative abundance of potentially pathogenic bacteria 
predicted using the BugBase database. ***p < 0.001, Mann–Whitney U test. (B) Dominant phyla in each group. (C) Dominant genera and their relative 
contributions to each group. (D) Volcano plot showing signature bacteria distinguishing the HC and NF-PitNETs groups. (E) Distribution of differential 
genera at the phylum level.
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pyrimidine ribonucleotides de novo biosynthesis, indicating 
increased microbial potential for purine and pyrimidine synthesis. 
Notably, lipid metabolism pathways, such as fatty acid 

elongation  – saturated, lipid IVA biosynthesis (E. coli), and Kdo 
transfer to lipid IVA, were also significantly elevated in the 
NF-PitNET group, suggesting shifts in microbial lipid processing.

FIGURE 3

Upregulated and downregulated genera in the NF-PitNETs group. (A) Six upregulated genera and (B) 14 downregulated genera in the NF-PitNETs 
group. *p < 0.05, **p < 0.01, ***p < 0.001.
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The Shannon and Simpson indices were used to evaluate the 
aggressive and non-aggressive groups. Bacterial community 
composition analysis revealed no significant difference in 
gastrointestinal microbial diversity between the two groups 
(Supplementary Figure S6A). Similarly, beta diversity analysis 
using weighted UniFrac distance and principal coordinate analysis 
(PCoA) showed no statistically significant differences in microbial 

community structure between aggressive and non- aggressive 
tumors (Supplementary Figure S6B).

Linear discriminant analysis (LDA) effect size (LEfSe) identified 42 
taxa with significantly different abundances between the two groups, 
with 14 taxa enriched in the aggressive tumor group and 28 taxa enriched 
in the non- aggressive tumor group. Notably, Bacteroides was 
significantly upregulated in the aggressive tumor group (LDA 

FIGURE 4

Flora-clinical correlation analysis. (A) The upregulated and downregulated bacterial genera in the NF-PitNETs group were associated with the severity 
of clinical symptoms in patients. *p < 0.05. (B) Difference in the abundance of Bacteroides between aggressive and non- aggressive NF-PitNETs. 
**p < 0.01. (C) Difference in the abundance of Dorea between aggressive and non- aggressive NF-PitNETs. *p < 0.05.
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score = 4.91, p = 0.008), whereas Dorea was significantly downregulated 
(LDA score = 3.86, p = 0.03). These findings were consistent with prior 
analyses (Supplementary Figure S7), further supporting the distinct 
microbial composition associated with tumor invasion.

3.4 Alterations in plasma metabolite 
profiles in NF-PitNET patients and 
identification of key metabolites

Metabolites and fermentation products produced by the intestinal 
flora can enter the bloodstream and significantly influence host 
physiological functions. To further investigate these microbe-host 
interactions, we  analyzed serum metabolic profiles. Principal 
Component Analysis (PCA) revealed distinct metabolomic profiles 
between NF-PitNET patients and HCs, indicating clear, group-specific 
metabolic alterations (Figure 5A).

A detailed examination of serum metabolites showed significant 
differences between the groups. Hierarchical clustering analysis 
provided an intuitive visualization of metabolite expression patterns 
and sample relationships (Figure 5B). We identified 57 upregulated 
and 97 downregulated metabolites in the NF-PitNET group compared 
to HCs (Figure 5C). These differentially expressed metabolites were 
primarily involved in pathways such as ‘Phenylalanine, Tyrosine, and 
Tryptophan Metabolism’, the ‘Pentose Phosphate Pathway’, and 
‘Alanine, Aspartate, and Glutamate Metabolism’ (Figure 5D).

Next, we  analyzed the associations between differentially 
abundant metabolites and clinical phenotypes. As shown in Figures 6, 
47 metabolites were linked to clinical features of the disease. Notably, 
three upregulated metabolites in the NF-PitNET group—6,7-
Dihydroxycoumarin, o-Cresol, and Hypoxanthine—were positively 
correlated with indicators of disease severity, with 
6,7-Dihydroxycoumarin and o-Cresol showing positive correlations 
with tumor Ki-67 expression, and Hypoxanthine correlating positively 
with tumor Knosp grade and aggression (Figures 6A,C). Among the 
downregulated metabolites, CAR 7:0, CAR 11:0, and Arachidic acid 
were negatively correlated with tumor Knosp grade. Additionally, 
LSD-d3, trans-10-Heptadecenoic acid, and tert-Butyl N-[1-
(aminocarbonyl)-3-methylbutyl] carbamate showed negative 
correlations with tumor Ki-67 expression (Figure 6B), while Capric 
acid was negatively associated with tumor aggression (Figure 6D).

3.5 Multi-omics analysis reveals distinctions 
between NF-PitNETs and HCs

Our comprehensive analysis examined Spearman correlations 
between microbial taxa and serum metabolites (Supplementary Figure S8). 
Bacterial genera more abundant in NF-PitNET patients primarily 
showed positive correlations with upregulated metabolites and negative 
correlations with downregulated metabolites. In contrast, less abundant 
genera displayed negative correlations with upregulated metabolites 
and positive correlations with downregulated metabolites. This intricate 
network of interactions underscores the bidirectional relationship 
between the gut microbiota and serum metabolites in 
NF-PitNET patients.

The Sankey diagram in Figure  7 visualizes the complex 
correlations between bacterial flora, metabolites, and clinical 

indicators, illustrating the interrelationships among these variables. 
Five bacterial genera associated with NF-PitNETs were significantly 
(p < 0.05) linked to seven metabolites, which, in turn, were associated 
with disease severity indicators. We observed that upregulated genera 
in NF-PitNETs were positively correlated with adverse clinical 
phenotypes, either directly or via intermediary metabolites. 
Conversely, downregulated genera were negatively correlated with 
adverse clinical phenotypes, also either directly or through 
metabolites. Notably, Lachnospiraceae_UCG-004 was positively 
associated with elevated tumor Ki-67 expression, mediated by 
o-Cresol and 6,7-Dihydroxycoumarin, while Blautia and 
Subdoligranulum were negatively associated with Knosp grade, 
mediated by Arachidic Acid. These findings highlight specific 
microbial and metabolomic features linked to tumor characteristics, 
offering new insights into the mechanisms of disease progression and 
potential therapeutic targets.

4 Discussion

Emerging research has revealed intricate interactions between the 
gut microbiome and serum metabolome, which significantly influence 
cancer risk and progression. In particular, metabolites such as bile 
acids (BAs) and short-chain fatty acids (SCFAs), produced by 
intestinal microbiota, are critical mediators at the host-microorganism 
interface, exerting complex effects that can either promote or inhibit 
tumor development (Sepich-Poore et  al., 2021; Stine et  al., 2022; 
Marcobal et al., 2013). These findings underscore the importance of 
integrating microbiome and metabolome analyses to uncover new 
insights into cancer mechanisms.

In our study, we observed alterations in the intestinal microbiota 
and serum metabolite profiles of patients with NF-PitNETs, 
identifying potential biomarkers for diagnosis and treatment. 
We  assessed the biodiversity of the intestinal flora between 
NF-PitNETs patients and healthy individuals. While alpha diversity 
showed no significant difference in the diversity and richness of the 
intestinal flora, beta diversity analyses revealed structural variations 
in the gut microbiota between the two groups, consistent with the 
findings of Hu et al. (2022). Using the BugBase database, we predicted 
an enrichment of potential pathogens in the NF-PitNETs group, while 
they were relatively absent in the healthy control group. These findings 
suggest that the intestinal flora may play a role in promoting the 
development of PitNETs.

Previous studies have found specific alterations in the gut 
microbiota of patients with NF-PitNETs. Notably, the relative 
abundance of Oscillibacter sp. 57_20 and Fusobacterium mortiferum 
is lower in patients with non-invasive NF-PitNETs, while Clostridium 
innocuum is upregulated in both invasive and non-invasive 
NF-PitNETs compared to healthy controls (Hu et al., 2022).

Our study revealed a significant increase in Bacteroides, 
Parabacteroides, Bilophila, and several genera within the 
Lachnospiraceae family in patients with NF-PitNETs compared to 
healthy controls. Bacteroides, for instance, has been associated 
with colorectal and breast cancers. Specifically, Bacteroides fragilis 
produces toxins that activate pathways such as NF-κB, SMO, 
Wnt/β-catenin, and Notch1, in addition to inducing reactive 
oxygen species (ROS) and DNA damage, all of which contribute 
to cancer progression (Parida et  al., 2021; Cheng et  al., 2020; 
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Sears et al., 2014). Bilophila generates hydrogen sulfide (H₂S), a 
compound known to damage DNA, stimulate inflammation, and 
promote cellular proliferation in the colon. This effect is 
particularly pronounced in individuals with high-protein, high-fat 
diets, potentially increasing the risk of colorectal cancer 
development (Yazici et al., 2017). The downregulated microbiota 
observed in NF-PitNET patients in our study includes well-known 
protective intestinal flora that may contribute to tumor prevention 
and suppression through multiple mechanisms. For instance, 

Blautia and the Eubacterium hallii group produce short-chain fatty 
acids (SCFAs), particularly butyrate, which exhibits anti-
inflammatory properties and inhibits cancer cell proliferation by 
modulating immune responses (Ye et al., 2023; Song et al., 2024). 
Additionally, Bifidobacterium has been shown to improve the 
efficacy of immune checkpoint inhibitors by strengthening the gut 
barrier and promoting anti-tumor immune responses (Sivan et al., 
2015). Together, these bacteria foster a protective gut microbiome 
profile, reduce systemic inflammation, and provide metabolites 

FIGURE 5

Changes in the plasma metabolite profile in NF-PitNETs patients. (A) PCA revealed significant differences in serum metabolic profiles between the NF-
PitNETs and HC groups. (B) Heatmap of differential metabolites in NF-PitNETs and HC groups. (C) Volcano plot of differentially expressed serum 
metabolites. (D) KEGG pathway enrichment analysis of differential metabolites.
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FIGURE 6

Correlation between differential metabolites and the severity of clinical symptoms. (A) Correlation between upregulated metabolites and the severity of 
clinical symptoms in NF-PitNETs. *p < 0.05. (B) Correlation between downregulated metabolites and the severity of clinical symptoms in NF-PitNETs. 
*p < 0.05. (C) Difference in the abundance of upregulated metabolites between aggressive and non-aggressive NF-PitNETs. *p < 0.05. (D) Difference in 
the abundance of downregulated metabolites between aggressive and non-aggressive NF-PitNETs. *p < 0.05, **p < 0.01.
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that inhibit tumor growth while enhancing immune surveillance 
against cancer cells.

The differential expression of microbial genera linked to aggressive 
versus non-aggressive tumor phenotypes further underscores the role 
of specific microbiota in disease progression. For example, elevated 
Bacteroides in aggressive NF-PitNETs might reflect an environment 
favoring tumor invasion, supported by positive correlations with 
clinical indicators such as tumor size and Knosp grade. These 
observations suggest that microbiota-targeted therapies could 
represent a novel avenue for managing tumor aggressiveness in 
NF-PitNETs.

The serum metabolomic profiles of NF-PitNET patients 
displayed notable alterations, with differential expression of 154 
metabolites predominantly linked to pathways involved in amino 
acid and carbohydrate metabolism. For instance, pathways such 
as “Phenylalanine, Tyrosine, and Tryptophan Metabolism” and the 
“Pentose Phosphate Pathway” are integral to cellular growth and 
immune regulation (TeSlaa et al., 2023; Liu et al., 2024; Lieu et al., 
2020; Landis et al., 2018), and their dysregulation could support 
the proliferation and invasiveness of pituitary tumors. Upregulated 
metabolites, such as o-cresol and hypoxanthine, were positively 
associated with aggressive clinical characteristics. o-Cresol may 
induce cell membrane damage, trigger free radical reactions, alter 
glycolytic processes, or disrupt carcinogen metabolism, thereby 
promoting carcinogenesis (Yanysheva et al., 1993). Hypoxanthine 
plays a critical role in the nucleotide salvage pathway, enabling 
cells to recycle purine bases like hypoxanthine to generate 
essential nucleotides without relying on energy-intensive de novo 
synthesis. This pathway is particularly significant for cancer cells, 
which require large amounts of purines to support rapid 

proliferation (Shakartalla et al., 2024). Our multi-omics analysis 
revealed correlations between specific microbial genera and 
metabolites, further linking gut dysbiosis with NF-PitNET 
metabolic disturbances. The positive correlations observed 
between upregulated bacterial genera (e.g., Lachnospiraceae_
UCG-004) and pro-tumor metabolites (e.g., o-Cresol) underscore 
the intricate interactions by which the gut microbiome could 
influence tumor behavior. In contrast, downregulated genera such 
as Blautia and Subdoligranulum, which were negatively correlated 
with tumor markers, may serve as protective factors through 
their associations with anti-inflammatory metabolites like 
Arachidic Acid. This interplay suggests that therapeutic 
strategies aimed at enhancing beneficial microbes or 
supplementing anti-inflammatory metabolites could potentially 
mitigate NF-PitNET progression.

While our findings provide new insights into the gut microbiota 
and serum metabolomic alterations in NF-PitNET patients, 
we acknowledge the potential impact of confounding factors. For 
instance, the p-values for sex (0.058) and BMI (0.055) are close to 
the significance threshold, indicating that these variables might 
influence the observed microbial and metabolic differences. 
We recognize the benefits of age-, sex-, and BMI-matched designs 
and will consider adopting this approach in future studies to 
improve comparability.

Furthermore, this study is exploratory in nature, and 
we  acknowledge certain limitations. While 16S rRNA gene 
sequencing is a widely used method for microbiome analysis, it 
does not provide comprehensive genetic characterization. 
Additionally, our relatively small sample size and single-center 
data collection limit the generalizability of our findings. Larger, 

FIGURE 7

Sankey plot illustrating the interrelationship between gut flora, serum metabolic features, and major phenotypes. Dark lines represent positive 
correlations, while light lines represent negative correlations. In the first two columns of the plot, dark blue labels indicate NF-PitNETs-associated 
genera or metabolites, while light blue labels represent genera or metabolites negatively associated with NF-PitNETs.
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multi-center studies with more controlled experimental designs 
will be necessary to validate our observations and further explore 
the mechanisms underlying the microbiota-metabolome-tumor 
axis in NF-PitNETs.

Our findings shed light on the complex interactions between 
gut microbiota and host metabolism in NF-PitNET patients, 
offering insights into potential biomarkers for disease progression 
and therapeutic targets. Identifying microbial and metabolic 
profiles linked to tumor aggressiveness and metabolic 
reprogramming presents an opportunity for developing 
personalized treatment strategies. Modulating the gut microbiota 
and rebalancing key metabolites may offer a means to influence the 
tumor microenvironment, potentially reducing tumor growth 
and invasion.

5 Conclusion

This study highlights distinct gut microbiota and serum 
metabolite differences in NF-PitNET patients compared to healthy 
individuals. Key findings include an increase in inflammatory 
bacteria like Bacteroides and metabolites like o-Cresol, associated 
with aggressive tumor characteristics. The altered gut bacteria are 
linked with tumor-promoting metabolites, suggesting gut dysbiosis 
might play a role in NF-PitNET progression. While promising, 
further studies with larger sample sizes and more advanced 
sequencing are needed to confirm these potential biomarkers and 
therapeutic targets.
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SUPPLEMENTARY FIGURE S1

Gut microbiome diversity analysis. (A) Rarefaction curves. (B) Beta diversity 
analysis using weighted UniFrac, followed by ANOSIM.

SUPPLEMENTARY FIGURE S2

LDA combined with LEfSe. (A) Histogram of LDA scores, where the LDA 
score reflects the effect size and ranking of each differentially abundant 
taxon (LDA > 3.6). (B) Cladogram showing the phylogenetic distribution of 
microbiota associated with the HC and NF-PitNETs groups.

SUPPLEMENTARY FIGURE S3

LDA combined with LEfSe. Histogram of LDA scores, where the LDA score 
reflects the effect size and ranking of each differentially abundant genus 
(LDA > 3.0).

SUPPLEMENTARY FIGURE S4

Differences in bacterial genera between aggressive and non-aggressive NF-
PitNETs. (A) Difference in the abundance of upregulated bacterial genera 

between aggressive and non-aggressive NF-PitNETs. *P < 0.05, ns: not 
significant. (B) Difference in the abundance of downregulated bacterial genera 
between aggressive and non-aggressive NF-PitNETs. *P < 0.05, ns: 
not significant.

SUPPLEMENTARY FIGURE S5

Differential pathways between the NF-PitNET and HC groups predicted by  
PICRUSt2.

SUPPLEMENTARY FIGURE S6

Diversity analysis of the gut microbiota. (A) The Shannon index and the 
Simpson index were used to estimate alpha diversity differences between the 
aggressive and non-aggressive groups. (B) Beta diversity analysis comparing 
the aggressive and non-aggressive groups.

SUPPLEMENTARY FIGURE S7

LDA combined with LEfSe. Histogram of LDA scores reflecting the effect size 
and rank of each differentially abundant genus between the aggressive and 
non-aggressive groups (LDA > 3.0).

SUPPLEMENTARY FIGURE S8

Integrated correlation analysis of microbes and metabolites. Heatmap 
depicting Spearman’s rank correlation analysis between differential gut 
microbiota and serum metabolites. *P < 0.05.
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Glossary

16S rRNA - 16S ribosomal RNA

Adonis - Permutational multivariate analysis of variance

Anosim - Analysis of similarities

BA - Bile acid

BFT - Bacteroides fragilis toxin

BMI - Body mass index

CV - Coefficient of variation

DCA - Deoxycholic acid

FDR - False discovery rate

GLM - Generalized linear model

HC - Healthy control

H₂S - Hydrogen sulfide

Ki67 - A protein associated with cell proliferation

LC/MS - Liquid chromatography-mass spectrometry

LDA - Linear discriminant analysis

LEfSe - Linear discriminant analysis effect size

m/z - Mass-to-charge ratio

MRPP - Multi-response permutation procedure

NF-PitNET - Non-functional pituitary neuroendocrine  
tumor

OTU - Operational taxonomic unit

PA - Pituitary adenoma

P53 - A tumor suppressor protein

PCoA - Principal coordinate analysis

PCA - Principal component analysis

QC - Quality control

QIIME - Quantitative insights into microbial ecology

R - Correlation coefficient in statistical analysis

R2 - Coefficient of determination

ROS - Reactive oxygen species

SASP - Senescence-associated secretory phenotype

SCFA - Short-chain fatty acids

UniFrac - A method used to measure the phylogenetic distance 
between microbial communities
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