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With the increasing application of artificial intelligence (AI) in medical research, 
studies on the human immunodeficiency virus type 1(HIV-1) and acquired 
immunodeficiency syndrome (AIDS) have become more in-depth. Integrating 
AI with technologies like single-cell sequencing enables precise biomarker 
identification and improved therapeutic targeting. This review aims to explore 
the advancements in AI technologies and their applications across various facets 
of HIV research, including viral mechanisms, diagnostic innovations, therapeutic 
strategies, and prevention efforts. Despite challenges like data limitations and model 
interpretability, AI holds significant potential in advancing HIV-1 management and 
contributing to global health goals.
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1 Introduction

The human immunodeficiency virus type 1 (HIV-1) causes acquired immunodeficiency 
syndrome (AIDS). Since the World Health Organization (WHO) published guidelines in 2002 
for treating HIV, advancements in antiretroviral therapy (ART) have notably increased both 
the life expectancy and quality of life for people living with HIV (PLWH) (World Health 
Organization, 2015). However, the world is still not on track to achieve the Sustainable 
Development Goal of ending AIDS as a public health threat by 2030 (Godfrey-Faussett et al., 
2022). This highlights the urgent need to deepen our understanding of HIV and develop more 
effective treatment strategies and vaccines to address challenges posed by the virus’s variability 
and drug resistance.

Recent advancements in AI have opened new avenues in biomedical research. AI, using 
machine learning (ML) algorithms, can analyze vast biological datasets to enhance early 
detection, personalized treatment, and vaccine development (Wang et al., 2024; Hu et al., 2024; 
Yu et al., 2022; Holzinger et al., 2019). Machine learning algorithms particularly excel at building 
complex nonlinear models to link features with disease-related risk factors in large datasets, 
demonstrating both efficiency and accuracy (Li et al., 2024). As a subfield of AI, ML contains a 
diverse range of algorithm classes, linking to different learning tasks. These include supervised 
learning, unsupervised learning and reinforcement learning. Among these, the family of 
artificial neural networks have flexible structure, which enables adaptation to various situations 
in all three types of machine learning (Janiesch et al., 2021). Deep learning (DL) involves neural 
networks with multiple layers of computational neurons, enabling it to handle unstructured 
data like images (Petersen et al., 2022). The emergence of single-cell technologies has increased 
the availability of full-length paired B cell receptor (BCR) sequences. Consequently, combining 
immune repertoire sequencing with AI holds significant potential for improving the diagnosis 
and treatment of immune-related and infectious diseases (Irvine and Reddy, 2024; Figure 1).
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Despite its potential, AI in HIV research faces challenges such as 
limited data access due to privacy concerns (You et al., 2020), ethical 
considerations (Gillette et al., 2023; Garett and Young, 2021), high 
variability of HIV and its complex immune evasion mechanisms, 
which complicate training and validation (Poonia and Al-Alshaikh, 
2024; Vieira et al., 2017).

This review seeks to deliver a thorough overview of the latest 
advancements in AI within HIV research. It will also critically 
examine current challenges and propose future research directions.

2 Structural insights and integration 
mechanisms of HIV

2.1 HIV protein structure analysis

As a ML technique, support vector machine (SVM) is capable of 
executing both linear and nonlinear classification tasks (Pouyanfar 
et al., 2018). Another common statistical model, logistic regression 
(LR), can be used for both classification and regression problems 
(Sarker, 2021). In the quest to better understand HIV proteins, Mei’s 
study utilized Chou’s pseudo amino acid composition and increment 
of diversity as features, employing SVM, LR, and multilayer 
perceptron models to predict HIV-1 and HIV-2 proteins (Mei and 
Zhao, 2018). All three models demonstrated superior performance. 
Concurrently, the tomoDRGN (Powell and Davis, 2024) captures 
structural heterogeneity in cryo-electron tomography (cryo-ET) 
datasets through low-dimensional continuous representations, 
enabling the reconstruction of data-driven heterogeneous structures. 
This approach demonstrates exceptional performance in analyzing 
diverse datasets, including elucidating the organization of HIV capsid 
complexes within virus-like particles and resolving structural 
heterogeneity among ribosomes in cellular imaging.

2.2 Integration and tropism mechanisms of 
HIV-1

The integration of the HIV-1 genome into the human genome is 
a critical step in the viral infection and replication cycle influencing 
the persistence of infected cells (Maldarelli et al., 2014). Understanding 
this mechanism is essential for strategies to control the infection and 
its long-term effects.

DeepHINT (Hu et al., 2019), an attention-based deep learning 
framework, improves the prediction of HIV integration sites 
compared to traditional models. Unlike conventional approaches, 
DeepHINT automatically learned genomic context from DNA 
sequences, either independently or in conjunction with epigenetic 
information, providing both high accuracy and mechanistic insights.

HIV can infect cells at various stages of their development, 
ranging from monocytes to macrophages. A ML model has been 
employed to differentiate viral genomes in monocytes and T cells 
based on envelope sequences. This model identified five key features 
in the C2V3C3 region that significantly distinguish proviruses in 
monocytes: positions 297, 326, 335, 355, and 395 (Peng and Zhu, 
2023). Additionally, XGBpred offer valuable insights into disease 
progression, underscoring the importance of computational methods 
in HIV research (Chen et al., 2019).

3 HIV diagnosis and co-infection

3.1 Advances in HIV diagnosis and 
monitoring tools

HIV self-test (HIVST) is an underutilized innovation in 
differentiated service delivery for HIV, despite its high sensitivity and 
specificity. Concerns about false negatives could delay antiretroviral 

FIGURE 1

Overview of the key topics in this review.
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therapy initiation and/or lead to inappropriate use of HIV 
pre-exposure prophylaxis (PrEP), which in turn increases the risk of 
HIV drug resistance (Gibas et al., 2019).

Two studies demonstrated the potential of AI in improving 
HIVST sensitivity through image analysis. Roche’s research (Roche 
et al., 2024) found that AI identified four HIV infections that were 
missed by both pharmacy providers and customers, highlighting its 
higher sensitivity in detecting faint lines on HIVST results. Similarly, 
Valérian Turbé’s deep learning algorithm (Turbé et al., 2021), trained 
on 11,374 images of rapid HIV tests from rural South Africa, achieved 
high sensitivity (97.8%), outperforming human interpretation in a 
pilot field study using a mobile app. Both studies demonstrated that 
the sensitivity of the AI algorithms surpassed that of traditional 
visual interpretation.

3.2 HIV monitoring and risk assessment

In HIV monitoring, real-time electronic adherence monitoring 
(EAM) combined with machine learning significantly improved the 
accuracy of predicting HIV viral load (Benitez et  al., 2020). 
Additionally, researchers proposed a selective testing strategy to 
reduce testing frequency while effectively identifying high-risk 
patients. Another study (Balzer et al., 2020) used HIV testing data 
from Kenya and Uganda to develop a machine learning-based HIV 
risk score, which improved sensitivity in identifying high-risk 
individuals compared to traditional methods. Moreover, Bao et al. 
(2021) developed a model using demographic and sexual behavior 
data to predict the risk of HIV and sexually transmitted infections 
(STIs) among men who had sex with other men, yielding 
promising results.

3.3 Advances in managing HIV 
co-infections

HIV co-infections are common but crucial to study because they 
can accelerate disease progression and complicate treatment for both 
HIV and the co-infecting pathogen. Common HIV co-infections 
include viral hepatitis (HBV, HCV) (Li et al., 2024; Laguno et al., 2004; 
Wei et al., 2019; Sun et al., 2014; Muriuki et al., 2013; Wang et al., 
2023), tuberculosis (Shen, 2024), and oncogenic viruses like HPV and 
HHV-8. These infections can worsen the overall health outcomes for 
HIV-positive individuals and increase risks of severe complications, 
such as liver disease and certain cancers. While ART has significantly 
improved HIV management, it cannot completely mitigate the 
additional risks posed by co-infections (Brites et al., 2021).

Firstly, HIV-1 and HCV share transmission routes, leading to a 
high risk of co-infection (Laguno et al., 2004). Researchers combined 
Naïve Bayes (NB) and SVM algorithms with two molecular 
fingerprints (MACCS and ECFP6) to develop 60 classification models, 
predicting compounds effective against 11 HIV-1 and 4 HCV targets. 
Over 20 potential multi-target inhibitors were identified, including 
seven HIV-1 and four HCV-approved drugs (Wei et al., 2019).

Co-infection with HIV and HBV is also prevalent due to similar 
transmission routes. Patients with HIV/HBV co-infection often 
experience faster disease progression, significantly increasing their 
risk of developing chronic liver disease, cirrhosis, end-stage liver 

disease, and hepatocellular carcinoma (Sun et al., 2014; Muriuki 
et  al., 2013). Researchers applied ML to identify six novel 
compounds targeting both HIV-1 and HBV, demonstrating the 
potential for virtual screening in co-infection treatment (Wang 
et al., 2023).

In another study, Onywera et al. (2020) used LEfSe analysis to find 
that men co-infected with HIV and HPV showed a more diverse 
penile microbiota, although no significant association between HIV 
status and microbiota diversity was found.

Machine learning was also applied to predict early cervical cancer 
(CC) in women living with HIV, identifying key predictive factors, 
such as the duration of ART, WHO clinical stage, TPT status, viral 
load status, and family planning history. A Random Forest (RF) model 
suggested that ML can improve early detection rates for CC, reduce 
healthcare costs, and enhance preventive strategies (Namalinzi 
et al., 2024).

4 Innovations in treatment

4.1 Advancements in discovering HIV 
compounds and antibodies

Protease inhibitors remain an important component of ART for 
the treatment of HIV-1 infection (Mulato et al., 2024). Researchers 
have utilized AI techniques to screen datasets for potential HIV-1 
protease ligands. These preliminary findings, validated through 
docking and molecular dynamics simulations, led to the discovery of 
a novel ligand outside known HIV-1 protease inhibitor classes 
(Arrigoni et al., 2023). Another study developed a gradient boosting 
model using a large dataset of HIV-1 protease inhibitors to predict 
ligand binding affinity. Enhanced by structural and potency data, it 
showed high accuracy. Shapley value analysis revealed that van der 
Waals interactions with key protein residues were critical to ligand 
potency (Leidner et al., 2019). Similarly, another study (Bitencourt-
Ferreira et al., 2021) incorporated affinity data to further optimize 
small molecule drugs.

An approach integrated Long Short-Term Memory (LSTM) 
networks and variational autoencoders to accelerate HIV drug 
discovery to help identify candidate compounds and validate their 
interactions with HIV, offering a cost-effective drug development 
pathway (Kutsal et al., 2024).

Drug–drug interaction (DDI) prediction offers crucial insights for 
managing complex treatments effectively. Researchers have developed 
Deep-ARV, a tool designed to predict four categories of DDIs. To 
address the imbalance in DDI severity distribution, the model 
incorporates undersampling and ensemble learning techniques. This 
approach can help identify high-risk drug pairings, enhance the drug 
screening process, and support clinical drug development targeting 
DDI risks (Pham et al., 2024).

During the COVID-19 pandemic, researchers focused on 
identifying potential drugs targeting SARS-CoV-2, specifically the 
3-chymotrypsin-like protease (3CLpro), an essential enzyme that 
plays a critical role in viral replication. Through computational 
screening methods, two compounds emerged as promising candidates 
against 3CLpro. These compounds are considered strong candidates 
for further development, offering a new direction for COVID-19 
therapeutic strategies (Nand et al., 2020).
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In antibody research, broadly neutralizing antibodies (bNAbs) 
against the HIV-1 envelope (Env) glycoprotein have shown promise 
for prevention and treatment. Using Rapid Automated Identification 
of bNAbs (RAIN) (Foglierini et  al., 2024), researchers identified 
several bNAbs targeting the CD4 binding site of the HIV-1 Env 
glycoproteins. Structural analysis of bNAb4251, using cryo-electron 
microscopy, revealed that unconventional mutations are key to HIV-1 
bNAbs’ function, offering new insights into HIV-1 immune 
evasion mechanisms.

4.2 Innovative predictive modeling and 
mutation analysis for addressing HIV drug 
resistance

To tackle HIV drug resistance, researchers have developed ML 
models to predict novel compounds that may inhibit HIV (Zorn et al., 
2019). Due to HIV-1’s high sequence diversity and mutation rate, 
isolates often develop resistance to bNAbs. Traditionally, identifying 
resistant strains requires time-consuming in vitro assays. Reda Rawi 
used ML to predict HIV-1 resistance to 33 bNAbs, identifying key 
epitope features using gradient boosting machines. This in silico tool 
could streamline decision-making regarding antibody use and enable 
sequence-based monitoring of viral escape (Rawi et al., 2019). Steiner 
et al. (2020) evaluated three machine learning architectures—MLP, 
bidirectional recurrent neural network (Bi-RNN), and CNN—to 
predict resistance across 18 antiretroviral drugs. By combining 
sequence data with biological analysis, they enhanced the 
interpretation of drug resistance predictions.

Additionally, RF and SVM were employed to analyze resistance 
linked to 21 mutated residues in HIV target proteins. By using 
different kernel functions [linear, polynomial, and radial basis 
function (RBF)], these models offer insights into the impact of novel 
mutations on treatment efficacy (Cai et al., 2021).

Most antiretroviral drugs targeting HIV focus on reverse 
transcriptase (RT), yet HIV can develop drug resistance mutations 
(DRMs) under treatment pressure, limiting treatment options on a 
population level (Branda et al., 2024; Gupta et al., 2018). Traditionally, 
researchers have identified resistance mutations by comparing viral 
sequences from treated and untreated individuals (Willim et al., 2022), 
but this method tests mutations individually and fails to reveal 
interactions between them. In Luc Blassel’s study, ML methods were 
applied to analyze approximately 55,000 RT sequences from the 
UK. The analysis revealed six new mutations associated with 
resistance, providing candidates for further validation. They indicated 
that mutation interactions are primarily confined to the traditional 
paradigm, where primary DRMs confer resistance, while associated 
mutations modify resistance levels and/or offset the fitness costs 
linked to DRMs (Blassel et al., 2021).

4.3 Innovations in predictive modeling to 
address clinical outcomes and risks

Because of the challenges associated with gathering large 
cohort samples and comprehensive genetic data in clinical 
environments, data imbalance remains one of the significant 
challenges in applying ML to HIV research. To address this, 

researchers have combined ML with undersampling techniques, 
such as MAREV-1 and MAREV-2, aimed at identifying 
associations between Vif protein motifs and HIV clinical 
outcomes. These methods effectively identify genetic variants 
linked to HIV prognosis and mutations in accessory protein-
coding regions, guiding new therapeutic strategies (Altamirano-
Flores et al., 2023).

A meta-analysis of 24 studies involving 401,389 people living with 
HIV (PWH) evaluated machine learning models like random survival 
forests and SVM for predicting mortality risk. Machine learning 
showed strong potential for assessing long-term mortality risk, 
enhancing clinical decision-making (Li et al., 2024).

The persistent viral reservoir, particularly in CD4 T cells, remains 
a major obstacle to a cure. The complex interaction between the HIV 
reservoir and the host immune system made its characterization 
essential. A study (Semenova et  al., 2024) identified significant 
correlations between immune cell populations and HIV reservoir size, 
including CD127 expression in CD4 T cells. Both intact and total 
proviral DNA levels showed a positive correlation with T cell 
activation and exhaustion, whereas ART duration and HIV-specific 
CD4 T cell responses were negatively correlated with intact 
provirus levels.

4.4 Machine learning insights into 
comorbidities and neurocognitive 
outcomes in HIV

Research involving PWH must consider comorbidities like 
cardiovascular disease, coinfections, and neurocognitive disorders, as 
these conditions often confound the primary effects of HIV (Long 
et al., 2016; Meyer-Rath et al., 2013; Calon et al., 2020).

Chronic HIV infection can lead to HIV-associated neurocognitive 
disorder (HAND). In a study conducted by Ogishi and Yotsuyanagi 
(2018), ML models identified key genetic features in the HIV env gene 
that predict HAND status. Specifically, three amino acid positions 
within the gp120 glycoprotein were predictive of HAND, with 
positions 291 and 315 being predictive of HIV-associated dementia 
(Holman and Gabuzda, 2012). These findings could guide the 
development of combination antiretroviral therapy (cART) regimens 
for HAND-associated quasispecies.

Peripheral nerve disorders (PNP) have been acknowledged for a 
long time as a characteristic of HIV-1 infection, becoming most 
evident as the disease progresses to AIDS (Kaku and Simpson, 2018). 
A study assessed PNP symptoms and signs through demographic, 
laboratory, and clinical variables. Using univariate and multivariate 
logistic regression combined with ML techniques, it identified key 
predictive factors for PNP. The most significant predictors included 
the duration of HIV-1 infection, peak plasma viral load, age, and low 
CD4+ T cell levels. These models improved classification performance 
and uncovered both known and novel factors, such as the duration of 
exposure to stavudine (Tu et al., 2021).

A subset of children with perinatal HIV (pHIV) faces persistent 
neurocognitive challenges (Ezeamama et al., 2016; Garvie et al., 2017; 
Bunupuradah et  al., 2012). Recent studies have applied ML for 
neurocognitive development in pHIV children, demonstrating the 
feasibility of identifying those at risk for suboptimal outcomes. They 
also highlighted the interaction between HIV infection and mental 
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health issues as early indicators of later neurocognitive challenges in 
pHIV children (Paul et al., 2020).

White matter changes in HIV-infected individuals can 
be quantified using brain-age gap (BAG) (Cole et al., 2017; Cole et al., 
2018). Kalen J. Petersen used a Gaussian process regression model, 
trained on diffusion magnetic resonance imaging data from publicly 
available normative controls to assess BAG. Results indicated a 
significant interactive effect between BAG and detectable viral load 
(VL): PWH who had detectable VL exhibited an accumulation of 
+1.5 years in BAG per decade compared to HIV-negative controls 
(Petersen et al., 2022).

Studies have shown that the effects of smoking on DNA 
methylation in white blood cells (WBCs) can be  detected using 
epigenome-wide association studies (EWAS) (You et  al., 2020). 
Researchers used a DNA methylation-based ML approach to identify 
smoking-associated methylation sites predicting HIV prognosis and 
mortality. The chosen features successfully distinguished between 
favorable and poor HIV-related clinical outcomes in an independent 
sample. Additionally, the DNA methylation index derived from these 
CpGs was linked to mortality in the HIV-infected population. Notably, 
this study is the first to describe smoking-related DNA methylation 
associations in the HIV-infected population, demonstrating the utility 
of methylation-based machine learning in linking molecular 
information to clinical outcomes (Zhang et al., 2018).

5 Advancements in vaccine design

Over the past 15 years, numerous HIV-1 vaccine trials have failed 
to produce significant evidence of efficacy. Despite extensive efforts, 
the challenge of eliciting bNAbs has limited the success of these 
vaccine trials (Klasse and Moore, 2022).

Ed McGowan proposed a novel approach by analyzing HLA 
diversity and CD8 T cell immune responses, to identify key antigens 
(McGowan et al., 2021). Additionally, predicting viral strain sensitivity 
to monoclonal antibodies (mAbs) is critical for HIV vaccine and 
therapy development. Using amino acid sequence data and deep 
learning, researchers (Dănăilă and Buiu, 2022) have advanced the 
identification of potent antibody combinations by predicting HIV 
sensitivity to mAbs.

In a related effort, researchers developed a non-linear RF model 
using clinical and demographic data to predict the humoral response 
of PLWH to SARS-CoV-2 mRNA vaccines. This model suggests that 
additional booster doses may be  necessary for PLWH, offering a 
tailored approach to vaccine strategies in clinical settings (Montesi 
et al., 2024).

6 Discussion

While AI is widely used and shows promising potential in HIV 
research, several challenges must be addressed.

AI models rely heavily on large, high-quality datasets to train 
algorithms effectively (Zou et al., 2023). Insufficient data can lead to 
incomplete training of AI models, which in turn affects the accuracy and 
reliability. Due to concerns over patient privacy, ethical issues, and the 
fragmentation of healthcare data, access to comprehensive HIV datasets 
remains limited especially across different populations and regions. In 

Emma Gillette’s study, participants identified accidental disclosure, 
stigma, and discrimination as significant risks of participating in 
research (Gillette et  al., 2023). If participants lack confidence in 
researchers’ ability to protect data privacy and confidentiality, they may 
be discouraged from engaging in studies (Garett and Young, 2021). To 
ensure data security, one study implemented secure data governance 
rules and data encryption (Olatosi et al., 2019). Additionally, Zucchi 
proposed that, in some areas, adolescents need parental consent to 
participate in HIV research. Since it involved sensitive topics like sexual 
behavior, this requirement might violate their privacy and lead to 
embarrassment or even worse situations. Researchers suggested 
eliminating parental consent in ethical reviews to better respect, protect, 
and assist the participants (Zucchi et al., 2023).

Furthermore, HIV’s high genetic diversity and ability to evade the 
immune system present unique challenges (Dingens et  al., 2017). 
HIV’s rapid mutation rate demands more sophisticated models to 
accurately predict viral behavior and other mechanisms, such as 
supporting long-term treatment and prevention strategies.

More importantly, the stigma surrounding AIDS (Guarnieri et al., 
2024; Britton et al., 2024) places specific demands on AI technology. 
To be specific, false negatives may delay the initiation of ART (Gibas 
et al., 2019; Roche et al., 2024). Also, specificity is needed to avoid false 
positives that may cause psychological distress. Another important 
point is that AI models need to be accessible, facilitating testing in 
community and home settings to increase testing uptake and reduce 
stigma. In this way, the method can be considered highly practical by 
making testing more convenient and inclusive. It is advisable to 
conduct multicenter datasets and integrate a variety of ML algorithms 
for training. The goal is to create a more profound and powerful 
system to achieve a higher accuracy in analysis.

Collaboration among AI researchers, clinicians, and policymakers 
is of great importance. As mentioned above, removing parental 
consent can help not only protect adolescents but also enhance the size 
of datasets. Establishing ethical frameworks for data sharing, 
improving model transparency, and protecting data privacy are key to 
unlocking AI’s full potential in HIV research. With the advancement 
of AI models, personalized medicine and vaccines development could 
become a reality.

This review is a comprehensive study of AI applications in HIV 
research. It focuses on the integration of ML with other technologies, 
which previous literature has not explored enough. It aims to fill the 
gap in understanding how AI can enhance HIV researches and offer 
a new framework for future research. Also, it highlights the potential 
of AI to address current challenges in HIV management and 
contribute to global health goals.
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