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Introduction: Understanding the key factors that enable bacterial pathogens to 
adapt to new hosts is crucial, as host-microbe interactions not only influence 
host health but also drive bacterial genome diversification, thereby enhancing 
pathogen survival in various ecological niches.

Methods: We conducted a comparative genomic analysis of 4,366 high-quality 
bacterial genomes isolated from various hosts and environments. Bioinformatics 
databases and machine learning approaches were used to identify genomic 
differences in functional categories, virulence factors, and antibiotic resistance 
genes across different ecological niches.

Results: Significant variability in bacterial adaptive strategies was observed. Human-
associated bacteria, particularly from the phylum Pseudomonadota, exhibited 
higher detection rates of carbohydrate-active enzyme genes and virulence factors 
related to immune modulation and adhesion, indicating co-evolution with the 
human host. In contrast, bacteria from environmental sources, particularly those 
from the phyla Bacillota and Actinomycetota, showed greater enrichment in 
genes related to metabolism and transcriptional regulation, highlighting their 
high adaptability to diverse environments. Bacteria from clinical settings had 
higher detection rates of antibiotic resistance genes, particularly those related to 
fluoroquinolone resistance. Animal hosts were identified as important reservoirs 
of resistance genes. Key host-specific bacterial genes, such as hypB, were found 
to potentially play crucial roles in regulating metabolism and immune adaptation 
in human-associated bacteria. 

Discussion: These findings highlight niche-specific genomic features and adaptive 
mechanisms of bacterial pathogens. This study provides valuable insights into 
the genetic basis of host-pathogen interactions and offers evidence to inform 
pathogen transmission control, infection management, and antibiotic stewardship.
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Introduction

Bacterial pathogens have the exceptional capacity to colonize and 
infect a wide range of hosts, including animals, plants, and insects, 
across diverse ecological niches (Baquero et al., 2021; van Baarlen 
et al., 2007). This often involves host switching, which underlines the 
complex interdependencies within ecosystems as highlighted by the 
WHO’s One Health approach. This approach is crucial as it integrates 
human, animal, and environmental health, acknowledging that the 
health of each is interconnected and dependent on the other 
(Hernando-Amado et al., 2019). The emergence of new infectious 
diseases and the widespread use of antibiotics have intensified public 
health challenges, emphasizing the need for a holistic view in tackling 
these issues (Barber and Fitzgerald, 2024). Therefore, identifying the 
factors that control the ability of pathogens to adapt to new host 
species is a critical research priority (Barber and Fitzgerald, 2024). 
Understanding the genetic basis and molecular mechanisms that 
enable these pathogens to adapt to different environments and hosts 
is essential for developing targeted treatment and prevention 
strategies (Sheppard et al., 2018).

The genomic diversity of pathogens plays crucial roles in their 
adaptability (Toft and Andersson, 2010). DNA mutation and repair, 
as well as horizontal gene transfer, are key genetic mechanisms of 
bacterial evolution, enabling pathogens to survive and proliferate in 
various environments (Morley et al., 2015; Ochman et al., 2000). 
Ample evidence suggests that the host environment has a profound 
effect on the bacterial genome, leading to genetic differentiation. For 
example, the ability of pathogens like Vibrio parahaemolyticus to 
exhibit distinct ecotypes in different environments, and the 
transition of Pseudomonas aeruginosa from environmental niches to 
human hosts, underscores the relevance of understanding ecological 
influences on bacterial behavior (Cui et al., 2015; de Bentzmann and 
Plesiat, 2011). Bacteria adapt to their host environment primarily 
through gene acquisition and gene loss (Sheppard et  al., 2018). 
Horizontal gene transfer is common among host-associated 
microbiota (Soucy et al., 2015). A notable example is Staphylococcus 
aureus, which has acquired a variety of host-specific genes through 
this process. These include immune evasion factors in equine hosts, 
methicillin resistance determinants in human-associated strains, 
heavy metal resistance genes in porcine hosts, and lactose 
metabolism genes in strains adapted to dairy cattle (Richardson 
et al., 2018). On the other hand, gene loss also represents a critical 
adaptive strategy (Albalat and Cañestro, 2016). Mycoplasma 
genitalium has undergone extensive genome reduction, including the 
loss of genes involved in amino acid biosynthesis and carbohydrate 
metabolism (Fraser et al., 1995), enabling the bacterium to reallocate 
limited resources toward maintaining a mutualistic relationship with 
its host. However, identifying the specific genes responsible for niche 
adaptation remains a challenge, requiring robust comparative 
approaches to differentiate core genome content from niche-
specific adaptations.

Recent advances in whole-genome sequencing and comparative 
genomics have provided powerful tools and new insights into the 
genetic basis of niche adaptation in human pathogens (Brynildsrud 
et  al., 2016; McAdam et  al., 2014). By integrating genome-wide 
association studies (GWAS) with population genomics, researchers 
can identify genes associated with specific ecological niches or 

host-specific adaptations, offering a deeper understanding of the 
processes of adaptation, diversification, and reductive evolution 
during host adaptation (Keen et al., 2021; Toft and Andersson, 2010; 
Wang et  al., 2022). Combining the identification of host-adaptive 
genetic traits with functional analyses can reveal the biological 
mechanisms underlying the colonization of new host species, 
including key host-pathogen interactions that may represent novel 
therapeutic targets (Sheppard et al., 2018).

In this study, we investigated the genomic differences between 
human pathogens isolated from various hosts (humans and animals) 
and environmental sources to identify niche-associated signature 
genes. Using 4,366 high-quality, non-redundant pathogen genomes, 
we  conducted comparative genomic analyses with multiple 
bioinformatics databases (COG, dbCAN, VFDB, CARD) to explore 
functional and pathogenic variations across ecological niches. This 
study reveals the differential strategies employed by various phyla of 
human-associated pathogenic microorganisms to adapt to the human 
host. Specifically, Pseudomonadota utilize a gene acquisition strategy, 
while Actinomycetota and certain Bacillota employ genome reduction 
as an adaptive mechanism. Additionally, we identified animal-derived 
pathogens as significant reservoirs of virulence and antibiotic 
resistance genes. Adaptive genes linked to specific niches were 
identified using Scoary, and machine learning algorithms were applied 
to enhance predictive accuracy. We also discovered potential human 
host-specific signature genes, such as hypB. Our findings provide 
insights into the genetic basis of pathogen adaptation, shedding light 
on how pathogens evolve under niche-specific selection pressures. 
This study offers a framework for future research on pathogen 
evolution, host-pathogen interactions, and the development of new 
antimicrobial strategies.

Materials and methods

Collecting genome datasets for 
comparative genomic analysis

We obtained metadata information for 1,166,418 human 
pathogens from the gcPathogen database1 (Guo et  al., 2024). To 
construct a high-quality and non-redundant genome collection, 
we  implemented stringent quality control procedures (Levy et al., 
2017). First, we performed an initial quality control based on the 
metadata information. Given the sufficient data volume, we excluded 
sequences assembled at the contig level. We  retained genome 
sequences with N50 ≥50,000 bp and those that passed CheckM 
evaluation with completeness ≥95% and contamination <5%. Next, 
we  removed bacterial genomes with unclear source information. 
Based on isolation source and host information, we  annotated 
bacterial genomes with ecological niche labels (human, animal, 
environment), which served as labels for subsequent analyses.

The classification into ecological niche labels was based on 
detailed metadata annotations of isolation sources and host 
information. Specifically:

1 https://nmdc.cn/gcpathogen/
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 1) Human: Genomes were categorized as “human” if the isolation 
source explicitly indicated a human host or clinical sample, 
such as blood, urine, stool, or other human-derived tissues and 
microbiomes. These samples were primarily associated with 
human diseases or health-related studies.

 2) Animal: Genomes were assigned to the “animal” category if 
the metadata indicated isolation from non-human animals, 
including domestic livestock (e.g., cattle, swine, poultry) and 
wildlife (e.g., deer, birds). This category also 
accounted for samples from animal infections or healthy 
microbiota surveys.

 3) Environment: Genomes were labeled as “environment” if 
isolated from natural settings, including water, soil, air, or 
surfaces not directly linked to specific hosts. This included 
environmental surveillance samples, such as those collected 
from agricultural environments.

This classification system was designed to reflect the ecological 
and functional contexts of the pathogens, enabling a detailed analysis 
of their adaptation to different ecological niches. In total, 
we downloaded 86,135 bacterial genomes for further analysis.

Subsequently, we calculated genomic distances using Mash and 
clustered the data through Markov clustering, removing bacterial 
genomes with genomic distances ≤0.01. Finally, we identified and 
excluded four genome sequences where the assigned taxonomic 
information differed from their phylogenetic placement. As a result, 
we  retained 4,366 pathogen genome sequences for subsequent 
comparative genomics analyses.

Construction of phylogenetic tree of 
bacteria

To construct the phylogenetic tree, we first retrieved 31 universal 
single-copy genes from each genome using AMPHORA2 (Kerepesi 
et al., 2014). For each marker gene, multiple sequence alignments were 
generated using Muscle v5.1 (Edgar, 2022). Finally, we concatenated 
the 31 alignments into a single comprehensive alignment and 
constructed a maximum likelihood tree using FastTree v2.1.11 (Price 
et al., 2009), with visualization performed through iTOL.2

To compare the genomic differences among bacteria from 
different ecological niches within the same ancestral clade and to 
identify characteristic genes, we first converted the phylogenetic tree 
into an evolutionary distance matrix using the R package ape. 
Subsequently, we  performed k-medoids clustering using the pam 
function from the R cluster package. To determine an appropriate 
number of clusters, we calculated the average silhouette coefficient for 
all clusters across a range of k values (k = 1 to k = 10). This range was 
chosen to balance resolution and interpretability: selecting too many 
clusters (i.e., very fine-grained populations) could complicate 
comparisons across ecological niches and reduce the generalizability 
of the analysis. The maximum average silhouette coefficient of 0.63 
was observed at k = 8, which was selected as the optimal 
clustering solution.

2 https://itol.embl.de/

Functional categorization, pathogenic 
mechanism annotation, and enrichment 
analysis

For the functional categorization of bacterial genomes, we initially 
predicted open reading frames (ORFs) using Prokka v1.14.6 
(Seemann, 2014). Subsequently, RPS-BLAST (BLAST v2.15.0) was 
employed to map the predicted ORFs to the Cluster of Orthologous 
Groups (COG) database, applying an e-value threshold of 0.01 and a 
minimum coverage of 70%. To annotate carbohydrate-active enzyme 
genes, dbCAN2 was used to map the ORFs to the CAZy database 
(Zhang et al., 2018), with filtering based on the parameter hmm_eval 
1e-5 (Rao et al., 2023), retaining only the annotations produced by the 
HMMER tool.

In order to further investigate the pathogenic mechanisms of 
bacterial genomes, we  utilized ABRicate v1.0.1 to map bacterial 
genomes to the VFDB database for the identification of virulence 
genes, using default parameters (Liu et  al., 2022). Subsequently, 
antibiotic resistance genes were identified using RGI and the CARD 
database (Alcock et al., 2023), retaining only resistance genes with an 
identity score of ≥0.7.

In investigating the intergroup differences in functional categories 
and pathogenic mechanisms across bacterial genomes with distinct 
labels, we first determined the median copy number of genes in each 
functional category across bacterial genomes in each group. 
Subsequently, we  calculated the fold change between groups and 
employed the Mann–Whitney U test to assess the statistical 
significance of these intergroup differences. To control for the false 
positive rate introduced by multiple testing, we applied false discovery 
rate (FDR) correction, considering a q-value of less than 0.05 as the 
threshold for statistical significance. Based on these analytical results, 
we further performed enrichment analysis to identify the enrichment 
of specific functional category genes and pathogenicity-related genes 
across different bacterial populations.

Identification of niche-associated gene 
clusters

Based on the clustering results of functional categories, virulence, 
and resistance-related genes, we utilized Scoary for the preliminary 
identification of niche-associated signature genes. Gene clusters with 
a Benjamini–Hochberg FDR-adjusted p-value of less than 0.05 were 
considered enriched (Brynildsrud et  al., 2016). Following this, 
we employed the “randomForest” package in R to construct a random 
forest model, performing five-fold cross-validation to further filter 
niche-associated signature genes. To obtain more robust results, 
we also applied LASSO regression using the “glmnet” package in R, 
with 10-fold cross-validation to select the most representative 
signature genes.

Finally, the receiver operating characteristic (ROC) curve 
visualizes a binary classifier’s diagnostic ability by plotting the true 
positive rate against the false positive rate at different thresholds. The 
area under the curve (AUC) reflects the classifier’s overall 
performance, with values closer to 1 indicating better discrimination 
(de Hond et al., 2022). We utilized the roc function from the R package 
“pROC” to plot the ROC curve and calculate the AUC value in order 
to evaluate the classification performance of the feature genes.
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Data availability

Data used in this study are available from the NCBI database, with 
metadata from the gcPathogen database. FTP links for genome 
sequences are in Supplementary Table S1. The code is available 
at https://github.com/zhangml1112/genomic-signatures-of-host-
adaptation.git.

Results

Genomic dataset construction and 
taxonomic classification of human 
pathogenic bacteria

We extracted metadata for 1,166,418 human pathogenic bacterial 
genome sequences from the gcPathogen database (see text footnote 
1). This dataset includes detailed information on isolation 
environments and essential quality control data, providing a 
foundation for our subsequent analysis. As described in the Materials 
and Methods section, we  filtered the data to remove low-quality 
assemblies and redundant genome information, retaining 4,366 high-
quality, non-redundant sequences (Figure  1A). These sequences 
represent eight bacterial phyla, and based on host and isolation source 
information from the gcPathogen database, we classified the ecological 
niches of these genomes into three categories: human, animal, and 
environment (Table 1; Supplementary Table S1). The classification 
criteria, as outlined in the Materials and Methods section, ensured 
that each genome was assigned to a specific niche according to its 
isolation source and host information. This approach highlights the 
distinct ecological contexts of the sampled bacteria, laying the 
groundwork for investigating patterns of genomic variation and 
potential ecological adaptations.

For phylogenetically relevant comparative genomic analyses, 
we  clustered the 4,366 genomes into eight taxonomic clusters 
(Clusters) via k-medoids, and we conducted subsequent comparative 
genomics analyses within the same clusters. We adopted this approach 
to reduce phylogenetic effects and ensure that differences in the 
studies only related to the ecological niche of the bacterial hosts 
we studied (Figure 1B and Table 1). Among them, five clusters (1, 2, 
8, 4, and 7) showed a relatively balanced distribution across the three 
ecological niches, constituting a core subset of the gene-phenotype 
correlation analysis across ecological niches. By comparing these 
strains that are stably present across ecological niches, the objective is 
to identify which genetic modules or genes are associated with 
bacterial colonization in human hosts.

Clusters 1, 2, and 8 belong to the Pseudomonadota and are given 
priority in our analysis due to their sufficient representation and 
distinct taxonomic characteristics. Specifically, Cluster 1 includes 
representative genera such as Enterobacter, Escherichia, and Vibrio; 
Cluster 2 includes Stenotrophomonas, Burkholderia, Legionella, and 
others; and Cluster 8 includes Acinetobacter and Pseudomonas.

Following these clusters, Cluster 4 and Cluster 7 were also 
analyzed due to their sufficient representation, although they do not 
belong to Pseudomonadota. Cluster 4 includes representative species 
from three phyla—Bacillota, Fusobacteriota, and Spirochaetota—and 
genera such as Bacillus, Staphylococcus, Listeria, Fusobacterium, and 
Borrelia. In contrast, Cluster 7 consists of genera from the phylum 

Actinomycetota, including Micrococcus, Gardnerella, Corynebacterium, 
Actinomyces, and Mycobacterium.

The remaining three clusters (3, 5, and 6) are excluded from the 
core analysis due to limitations in their source distribution. 
Specifically, the number of genomes from environmental or animal 
sources in these clusters was fewer than 17, rendering them insufficient 
for Scoary comparative analysis. Cluster 3 belongs to Campylobacterota 
and includes representative genera such as Helicobacter and 
Campylobacter. Representative genera from Bacteroidota and 
Chlamydiota were classified into Cluster 5, mainly including 
Bacteroides, Prevotella, and Chlamydia. Cluster 6 mainly consists of 
the genera Streptococcus and Enterococcus from the phylum Bacillota.

In summary, this study contains two main analytical focuses: first, 
we focused on the five Clusters with sufficient sample sizes, of which 
Clusters 1, 2, and 8 are from the Pseudomonadota, Cluster 4 contains 
mainly Bacillota, and Cluster 7 represents the Actinomycetota, whereas 
Clusters 3, 5, and 6, with insufficient sample sizes, were not included 
in the analyses. Second, we focused on characterizing bacterial genes 
involved in human host adaptation by comparing the genomes of 
these bacteria adapted to different ecological niches.

Host-dependent distribution of functional 
gene categories

Based on the rigorously screened collection of genomes, which 
we functionally annotated using the COG (Cluster of Orthologous 
Groups) and CAZymes databases, we  compared genomes with a 
common ancestor (from the same cluster) isolated from human, 
animal, and environmental sources. This comparison revealed distinct 
patterns of gene functional enrichment, reflecting different adaptation 
strategies to specific host ecological niches.

Utilizing 23 broad gene categories annotated to the COG, 
we evaluated the enrichment or depletion of certain gene categories 
across the whole genomes of human pathogens isolated from human, 
animal, and environmental sources (Figure 2A). Enrichment analysis 
was statistically validated using the Mann–Whitney U test. Our results 
indicate significant differences in functional gene categories among 
bacteria from different sources, further highlighting the profound 
impact of host niches on the evolution of pathogens. Bacteria in 
different taxa employ diverse strategies to cope with the specific 
environmental pressures of these niches, exhibiting unique 
adaptive advantages.

Compared to animal-associated bacteria, human-associated 
bacteria from the Pseudomonadota (Clusters 1, 2, and 8) exhibited 
significant enrichment of genes in multiple functional categories, with 
genes related to “Mobilome: prophages, transposons” being 
significantly enriched in all three clusters (Figure  2A and 
Supplementary Table S2). In Cluster 1, the gene enrichment in 
human-associated bacteria involved several functional categories, 
including four metabolic pathways: “Carbohydrate transport and 
metabolism,” “Coenzyme transport and metabolism,” “Inorganic ion 
transport and metabolism” and “Secondary metabolites biosyntheisis, 
transport and catabolism,” as well as genes related to “Mobilome: 
prophages, transposons” and “Transcription.” Meanwhile, in Clusters 
2 and 8, the abundance of functional genes showed a clear gradient 
distribution: environmental > human > animal sources. In contrast to 
the Pseudomonadota, functional genes in Bacillota (Cluster 4) and 
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FIGURE 1

Research design and genome dataset used for comparative genomic analysis. (A) A schematic representation of the approach used to identify bacterial 
host niches adaptation-associated marker genes. As described in the Materials and Methods, we curated a genome dataset by first filtering based on 

(Continued)
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Actinomycetota (Cluster 7) were more enriched in animal and 
environmental sources (environmental > animal > human). 
Specifically, in Cluster 4, human-derived bacteria showed significant 
enrichment of genes related to “Extracellular structures” while in 
Cluster 7, human-derived bacteria exhibited significant depletion of 
genes related to “Inorganic ion transport and metabolism.”

We also employed dbCAN2 to analyze the carbohydrate utilization 
potential of each genome (Figure  2B). In total, we  identified 534 
carbohydrate enzyme genes, which mainly belonged to six major 
carbohydrate families (GT, glycosyltransferases; GH, glycoside 
hydrolases; CE, carbohydrate esterases; CBM, carbohydrate-binding 
modules; AA, auxiliary activities; PL, polysaccharide lyases) and one 
less common module (SLH, S-layer homology domain). At the whole-
genome level, we  observed results consistent with the COG 
annotation, indicating that host niche and taxonomy have profound 
effects on bacterial adaptation. Overall, human-derived bacteria in the 
Pseudomonadota (Clusters 1, 2, and 8) possess significantly more 
carbohydrate-active enzyme genes than animal-derived bacteria. In 
contrast, Bacillota (Cluster 4) and Actinomycetota (Cluster 7) show the 
opposite trend, with animal-derived bacteria having more 
carbohydrate-active enzyme genes than human-derived bacteria. 
Furthermore, except for Cluster 1, human-derived bacteria in all other 
clusters typically contain fewer carbohydrate-active enzyme genes 
compared to environmental isolates.

Specifically, as shown in Figure 2B, human-derived bacteria in 
Cluster 1 contain significantly more genes from families such as GT, 
GH, and CE. In Cluster 2, human-derived bacteria are significantly 
enriched in genes from the GT, GH, CE, CBM, and AA families 
compared to animal-derived bacteria. In Cluster 8, human-derived 
bacteria show significant enrichment only in genes from the CBM 
family compared to animal-derived bacteria. In contrast, in Cluster 4 
and Cluster 7, human-derived bacteria exhibit a significant reduction 
in carbohydrate-active enzyme genes. In Cluster 4, human-derived 
bacteria show depletion of genes from three carbohydrate-active 
enzyme families (GH, CE, and CBM), while in Cluster 7, a depletion 

of genes from one family (AA) is observed in human-derived bacteria. 
Interestingly, environmental bacteria in Cluster 4 are significantly 
enriched in SLH domain genes, which are specifically found in 
bacterial surface proteins, a feature not observed in other clusters. 
These findings not only highlight the diversity of bacterial 
carbohydrate metabolism pathways but also emphasize the impact of 
host origin on bacterial adaptation mechanisms.

In conclusion, based on the functional category analysis, 
we observed differentiated human host adaptation traits in human-
derived bacteria across different phyla. In Pseudomonadota, human-
derived strains are significantly enriched in genes related to 
carbohydrate metabolism enzymes and mobile genetic elements, 
reflecting their strategy of adapting to the human environment by 
acquiring new functions. In contrast, human-derived strains in 
Bacillota and Actinomycetota exhibit characteristics of genomic 
streamlining, with lower functional gene abundance compared to 
their animal-derived counterparts. Additionally, we found that most 
human-derived bacteria have fewer functional genes compared to 
environmental isolates. These findings suggest that the process of 
microbial adaptation to host environments is a phylum-specific 
functional reorganization process.

Host-specific distribution of virulence 
factor clusters

In order to explore the relationship between host niches and 
pathogenic mechanisms, we first annotated virulence genes in 4,366 
genome sequences using the VFDB database, identifying 595 virulence 
factors categorized into 13 virulence factor clusters.

We then assessed the overall virulence factor load within each 
taxon and identified the most prevalent virulence factor clusters by 
calculating the average number of virulence factors in each group 
and determining their distribution frequency (detection rate) 
(Figure  3A and Supplementary Table S3). The results revealed 

genome metadata, followed by a series of quality control steps, for comparative genomic analysis. This resulted in a high-quality, non-redundant 
dataset comprising 4,366 bacterial genomes. The genomes were subsequently annotated using multiple databases, including the COG, CAZymes, 
VFDB, and CARD. Finally, host-niches-associated signature genes were identified using Scoary in conjunction with two machine learning approaches 
(Random Forest and LASSO regression). (B) Maximum-likelihood phylogenetic tree constructed from 31 conserved marker genes across the 4,366 
bacterial genomes. The three rings of annotations represent, from the inside to the outside: host niches of bacterial isolation, phylum-level taxonomic 
classification, and clusters generated using k-medoids clustering.

FIGURE 1 (Continued)

TABLE 1 Distribution of genomes across ecological niches and taxonomic clusters (clusters are presented in the order of analysis priority: 1, 2, 8, 4, 7, 
followed by less-represented clusters 3, 5, and 6).

Taxa Phylum Human Animal Environment

Cluster 1 Pseudomonadota 725 330 286

Cluster 2 Pseudomonadota 182 27 89

Cluster 8 Pseudomonadota 219 157 97

Cluster 4 Bacillota/Fusobacteriota/Spirochaetota 202 102 163

Cluster 7 Actinomycetota 124 21 32

Cluster 3 Campylobacterota 663 79 8

Cluster 5 Bacteroidota/Chlamydiota 138 11 0

Cluster 6 Bacillota 506 189 17
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distinct virulence factor profiles across the different taxa, closely 
linked to host origin. Human-derived bacteria exhibited the highest 

average number of virulence factors in five out of eight taxa, 
particularly in Cluster 1.

FIGURE 2

Fold-change differences in functional categories among bacterial genomes from different hosts/niches within the same taxa. (A) Fold-change 
differences in COG categories based on gene counts. The colored boxes in the figure represent different COG (Clusters of Orthologous Groups) 
categories, with each color corresponding to a specific class. From top to bottom, the classes are as follows: an unclassified category (X), metabolism, 
information storage and processing, and cellular processes and signaling. (B) Fold-change differences in CAZymes families based on gene counts. The 
heatmap illustrates levels of enrichment and depletion, determined using the Mann–Whitney U test. Colored cells indicate statistically significant 
differences (p < 0.05, after FDR correction), with distinct colors representing varying fold changes. “N.S.” denotes non-significant differences. The bar 
plots on the sides represent the summed medians of gene counts for the respective row/column groups. Full COG category names are presented in 
Supplementary Table S2.
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In general, the detection rates of virulence factors exhibit a clear 
host-dependent trend (Figure 3A and Supplementary Table S3): in 
Pseudomonadota, human-derived bacteria in Cluster 1 and 2, 
represented by Escherichia coli and Legionella, have the highest 
virulence factor detection rates. In contrast, in Pseudomonadota, 
Cluster 8, represented by Pseudomonas aeruginosa, as well as Bacillota 
(Cluster 4) and Actinomycetota (Cluster 7), animal-derived bacteria 
show the highest detection rates of virulence factors (Figure 3A and 

Supplementary Table S3). In Pseudomonadota, Cluster 1 and Cluster 
8 exhibit consistent virulence factor profiles across different host 
ecological niches, with higher average detection rates of virulence 
factor clusters. In contrast, Cluster 2 has a more diverse virulence 
factor profile, though its detection rate is relatively lower. Specifically, 
in Cluster 1, human-derived bacteria show the highest average 
virulence factor detection rates (human: 42.08%, animal: 36.58%, 
environment: 36.19%), characterized by a high proportion of 

FIGURE 3

Differences in virulence factor clusters among bacterial genomes from different hosts/niches within the same taxa. (A) Detection rates of virulence 
factor clusters across groups. The heatmap color gradient represents the level of detection rates, while the bar plot above the heatmap shows the 
number of virulence factor-related gene types within each group. (B) Fold-change differences in virulence factor cluster genes between bacterial 
genomes from different hosts/niches within the same taxa, based on gene counts. The heatmap depicts levels of enrichment and depletion 
determined by the Mann–Whitney U test. Colored cells indicate statistically significant differences (p < 0.05, after FDR correction), with different colors 
representing varying fold changes. “N.S.” denotes non-significant differences. The bar plots on the sides represent the summed medians of gene 
counts for the respective row/column groups.
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“Adherence” (83.4%) and “Immune modulation” (78.3%). At the same 
time, animal-and environmental-derived bacteria show higher 
detection rates of “Effector delivery system” (animal: 84.5%, 
environment: 84.3%). In Cluster 2, human-derived bacteria have a 
higher average virulence factor detection rate (human: 23.04%, 
animal: 18.78%, environmental: 19.82%), mainly associated with 
“Adherence” (83.4%) and “Immune modulation” (78.3%). Animal-
derived bacteria are primarily associated with “Effector delivery 
system” (70.37%), while environmental bacteria have the highest 
detection rate for “Regulation” (60.67%). In Cluster 8, as compared to 
Clusters 1 and 2, animal-derived bacteria exhibit the highest average 
virulence factor detection rate (animal: 41.63%, human: 38.45%, 
environmental: 34.61%). Bacteria from all host ecological niches in 
this cluster frequently carry “Immune modulation” (>94%), 
“Adherence” (>94%), and “Effector delivery system” (>75%). In 
Bacillota-dominant Cluster 4, animal-derived bacteria have the 
highest average virulence factor detection rate (animal: 23.04%, 
environmental: 16.91%, human: 10.50%), with the most commonly 
detected virulence factor clusters being “Exotoxin” (>36%) and 
“Exoenzyme” (>30%). In Cluster 7 (within the Actinomycetota 
phylum), the overall detection rate of virulence factors is lower, with 
most of them being of unknown classification. The detection rate is 
highest in animal-derived bacteria (animal: 9.52%, human: 6.22%, 
environmental: 2.01%). The main virulence factor clusters in this 
group include “Regulation” (>6%) and “Stress survival” (>9%).

To quantify the differences in virulence gene clusters across 
different ecological niches, we performed a Mann–Whitney U test to 
analyze the enrichment patterns of virulence factors in each cluster, 
and the results were adjusted for false discovery rate (FDR) correction 
(Figure 3B). The results indicate that human-derived bacteria from 
different phyla exhibit distinct virulence factor distribution patterns: 
in Cluster 1, human-derived bacteria are enriched in “Regulation,” 
“Nutritional/Metabolic factors,” “Immune modulation,” and 
“Antimicrobial activity/Competitive advantage” factors, while 
“Effector delivery system” factors are significantly reduced. In Cluster 
2, human-derived bacteria are characterized by the enrichment of 
“Adherence” factors. In Cluster 8, the virulence factor levels in human-
derived bacteria are lower than in animal-derived bacteria but higher 
than in environmental-derived bacteria. In Bacillota (Cluster 4), 
human-derived bacteria show a significant reduction in “Exoenzyme” 
and “Exotoxin” factors, whereas in Actinomycetota (Cluster 7), no 
significant differences were observed across different sources. This 
virulence factor distribution pattern reflects the selective pressure of 
host environments on different phyla and reveals the diverse strategies 
pathogens use to adapt to their hosts.

In concluding, our virulence factor analysis revealed two key 
features: the phylum distribution characteristics of virulence factors 
and host-specific patterns. These features together demonstrate the 
diverse strategies of pathogen adaptation to the host environment and 
provide new perspectives for understanding host ecological niche 
adaptation in bacteria.

Distribution characteristics of antibiotic 
resistance genes

To further investigate the relationship between host niches and 
pathogenic mechanisms, we utilized the CARD database to identify 

antibiotic resistance genes (ARGs) across 4,366 genome sequences, 
identifying a total of 1,343 ARGs. Among these, 123 ARGs had an 
occurrence frequency of over 20% across different groups, involving 
a variety of resistance mechanisms, with antibiotic efflux being the 
most prevalent. Notably, a single ARG can confer resistance to 
multiple antibiotics (Alcock et al., 2023), and these 1,343 ARGs were 
associated with 36 types of antibiotics.

We analyzed ARGs related to various antibiotic types across 
different groups to assess the overall ARG burden and potential 
resistance risk in these groups (Figure 4A and Supplementary Table S4). 
We predicted a bacterial strain to be potentially resistant to a specific 
antibiotic if its genome carried one or more ARGs linked to that 
antibiotic. The results showed that while bacteria from different 
sources within the same taxon had generally similar resistance profiles, 
there were significant differences in ARG detection rates and the 
average number of ARGs. Human-derived bacteria exhibited the 
highest potential antibiotic resistance (7/8 taxa), with the greatest 
average number of ARGs and the highest detection rates.

Overall, the distribution patterns of ARGs show a high degree of 
consistency with the previously described virulence factors (Figure 4A 
and Supplementary Table S4): human-derived bacteria in 
Pseudomonadota Clusters 1 and 2 (representative species being 
Escherichia coli and Legionella) exhibit the highest detection rates of 
ARGs, while animal-derived bacteria in Pseudomonadota Cluster 8 
(represented by Pseudomonas aeruginosa), Bacillota Cluster 4, and 
Actinomycetota Cluster 7 also show relatively high detection rates of 
ARGs. At the phylum level, different phyla display distinct ARGs 
distribution patterns: in Pseudomonadota, Clusters 1 and 8 
predominantly carry fluoroquinolone and phenicol antibiotic-related 
ARGs, with detection rates generally exceeding 80%, while Cluster 2 
mainly harbors macrolide antibiotic-related ARGs. Bacillota (Cluster 
4) shows a more diversified resistance profile, including peptide 
antibiotic (animal-derived), cephalosporin (environmental-derived), 
and fluoroquinolone (human-derived) ARGs. In Actinomycetota 
(Cluster 7), macrolide antibiotic-related ARGs are the most prevalent.

Moreover, human-derived bacteria exhibit unique resistance 
patterns across different phyla (Figure 4A and Supplementary Table S4). 
In Pseudomonadota, the ARGs in Cluster 1 human-derived bacteria 
are mainly associated with fluoroquinolone antibiotics (98.21%), 
penam (94.21%), and phenicol antibiotics (89.1%); Cluster 2 human-
derived bacteria predominantly carry macrolide antibiotics (73.07%), 
penam (62.64%), and aminoglycoside antibiotics (55.49%) ARGs. In 
Cluster 8, human-derived bacteria mainly carry fluoroquinolone 
antibiotics (99.09%), phenicol antibiotics (96.35%), and 
diaminopyrimidine antibiotics (95.43%) ARGs. In Bacillota-dominant 
Cluster 4, human-derived bacteria primarily exhibit potential 
resistance to fluoroquinolone antibiotics (30.69%), lincosamide 
antibiotics (28.71%), and tetracycline antibiotics (26.73%). In 
Actinomycetota (Cluster 7), human-derived bacteria are more likely to 
carry rifamycin antibiotics (32.26%), macrolide antibiotics (17.74%), 
and lincosamide antibiotics (15.32%) ARGs.

To further explore the differences in resistance mechanisms across 
host sources within the same taxa, we applied the Mann–Whitney U 
test to assess the enrichment or depletion of ARGs for various 
antibiotic types (Figure 4B). The results revealed that, similar to the 
distribution of virulence genes, ARGs were most enriched in human-
derived bacteria in Clusters 1 and 2. For example, in Cluster 1, human-
derived bacteria showed significant enrichment of ARGs for 10 types 
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FIGURE 4

Differences in antibiotic resistance genes associated with distinct hosts/niches within the same taxa. (A) Detection rates of antibiotic resistance genes 
across groups. The color gradient in the heatmap represents varying levels of detection rates, while the bar plot above the heatmap shows the number 

(Continued)

https://doi.org/10.3389/fmicb.2025.1543610
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2025.1543610

Frontiers in Microbiology 11 frontiersin.org

of antibiotics, including aminoglycosides, carbapenems, 
cephalosporins, disinfecting agents and antiseptics, elfamycins, 
monobactams, nitroimidazoles, penems, peptides, and phosphonic 
acids. In Cluster 2, human-derived bacteria exhibited greater 
enrichment of penam-related resistance genes. In Cluster 8, animal-
derived bacteria had significantly more ARGs than human-derived 
bacteria, while human-derived bacteria had more ARGs than 
environmental bacteria. For Cluster 4, there was no significant 
difference in the number of ARGs between human-and animal-
derived bacteria, but human-derived bacteria showed a notable 
depletion of ARGs compared to environmental bacteria. In Cluster 7, 
no significant differences appeared in ARG distribution between host 
sources. These findings reveal the diversity and specificity of ARG 
distribution in pathogens across different host backgrounds.

By integrating the distribution patterns of antimicrobial resistance 
genes (ARGs) and virulence factors, we observed that these two types 
of pathogen-related genes exhibit highly consistent distribution 
patterns both at the phylum level and in terms of host origin. The 
co-distribution of these pathogenicity-related genes highlights the 
systematic regulatory strategies employed by pathogens during host 
adaptation, offering new insights into the ecological niche 
differentiation of microbial communities.

Identification of host niches 
adaptation-associated signature genes

To further identify host niches adaptation-associated signature 
genes in bacteria, we  first employed Scoary for preliminary 
identification, as described in the Materials and Methods section. 
We then integrated Random Forest and LASSO models to further 
screen and optimize these signature genes. Finally, based on the cross-
analysis results from the three methods, we plotted ROC curves and 
calculated AUC values to evaluate the classification performance of 
the selected robust signature genes. The results demonstrated that our 
approach effectively enhanced the model’s classification performance, 
though the classification effectiveness varied across different bacterial 
taxa (Supplementary Figure S1). Clusters 4 and 7 exhibited superior 
classification performance, Clusters 2 and 8 showed moderate 
performance, while Cluster 1 performed the worst, which may 
be related to niche ambiguity. The final robust signature genes selected 
from the classification models achieved AUC values above 0.7 and 
classification accuracy exceeding 0.8, indicating strong classification 
capability (Figure 5). This multi-layered screening method illustrated 
that iterative optimization improved the classification performance of 
signature genes, and the varying performance of different bacterial 
taxa in niche classification likely reflects the complexity of host-
associated traits.

Through this methodology, we identified a set of signature genes 
closely associated with host niches (Supplementary Figure S2 and 

Supplementary Table S5), which demonstrated significant host bias 
across different taxa. These findings systematically revealed the 
adaptive strategies and functional characteristics of pathogens in 
distinct host niches. Overall, when comparing human-and animal-
derived human pathogens, our study showed that the differential 
signature genes primarily concentrated in COG functional categories, 
especially in metabolism and cellular processes and signaling 
pathways. In terms of metabolism, the signature genes of animal-
derived bacteria were mainly involved in nucleotide transport and 
metabolism (2/7) and secondary metabolite metabolism (3/7), while 
those of human-derived bacteria were related to the transport and 
metabolism of ions (4/11), amino acids (2/11), and carbohydrates 
(2/11). For cellular processes and signaling pathways, animal-derived 
bacteria exhibited significant enrichment in genes related to cell wall/
membrane/envelope biogenesis (4/8) and post-translational 
modification (3/8), whereas human-derived bacteria were enriched in 
genes associated with post-translational modification (4/10) and 
intracellular secretion (2/10). Notably, two genes repeatedly appeared 
in cross-lineage Clusters, suggesting potential functional conservation 
across hosts. For example, the COG0378 (hypB) gene cluster was 
significantly enriched in human-derived bacteria from Clusters 1 and 
4, and the COG1704 (LemA) gene cluster was enriched in animal-
derived bacteria from Clusters 1 and 7. This observation suggests 
potential functional conservation of these genes across host species.

On the other hand, environmental bacteria exhibited significant 
enrichment in carbohydrate-active enzyme (CAZyme) genes (11/58), 
and their metabolic signature genes were relatively abundant (16/58). 
Additionally, in pathways related to “Information Storage and 
Processing,” transcription-related genes represented a substantial 
proportion (4/5) in environmental bacteria. In contrast, human-
derived bacteria exhibited enrichment in “Information Storage and 
Processing” pathways (8/18), primarily involving translation-related 
genes (5/8). Overall, environmental bacteria demonstrated a more 
diverse functional profile, particularly in their ability to metabolize 
various carbon sources via carbohydrate-active enzymes, thereby 
adapting to the survival demands of complex environments.

Discussion

There is growing recognition that host-microbe interactions play 
a critical role in health and disease. Understanding host-pathogen 
relationships at the genomic level could enable researchers to develop 
targeted strategies for infection control and prevention. However, 
most studies have focused on individual pathogen species or microbial 
communities, placing more emphasis on microbial diversity rather 
than gene function (Sheppard et al., 2013; Wheeler et al., 2018; Zhou 
et al., 2024). In this study, our primary goal was to explore the adaptive 
differences of bacterial pathogens across distinct ecological 
environments. By analyzing 4,366 high-quality, non-redundant 

of different types of antibiotic resistance genes detected within each group. (B) Fold-change differences in antibiotic resistance genes between 
bacterial genomes from different hosts/niches within the same taxa, based on gene counts. The heatmap illustrates levels of enrichment and depletion 
determined by the Mann–Whitney U test. Colored cells represent statistically significant differences (p < 0.05, after FDR correction), with distinct colors 
indicating different fold changes. “N.S.” denotes non-significant differences. The bar plots on the sides represent the summed medians of gene counts 
for the respective row/column groups.
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genome sequences of human pathogenic bacteria classified into three 
host ecological niches—human, non-human animals, and 
environment—we aimed to identify genetic adaptation patterns 
associated with different hosts or environments. This approach 
provides insights into potential mechanisms underlying cross-host 
transmission and environmental dissemination of pathogens.

Our analysis reveals the adaptive traits of these microorganisms 
in terms of functional genes, virulence factors, and antibiotic 
resistance genes. The results indicate a complex and intimate 
association between the genomic characteristics of pathogens and 
their host niches, reflecting the pathogens’ adaptation to diverse 
environments over the course of long-term evolution. Bacterial 
clusters show specific adaptations to their ecological niches, 
highlighting the multi-level strategies employed to thrive in human, 
animal, and environmental contexts.

The phylum Pseudomonadota, particularly members residing in 
the human gut, has shown evidence of extensive co-evolution with 
humans. Compared to non-human hosts, bacteria isolated from 
human hosts exhibit significant enrichment in COG functional 
category genes and carbohydrate enzyme genes. This may relate to 
higher horizontal gene transfer observed in human-associated 
bacteria, increasing genetic diversity and adaptation in humans 
(Smillie et al., 2011). Meanwhile, Pseudomonadota also display higher 
detection rates of adhesion factors and immune-modulating factors, 
with studies suggesting that adhesion and immune evasion 
mechanisms are key strategies for bacterial colonization in humans 
(Kelly et al., 2005).

Further analysis revealed that bacteria in Cluster 1 (such as 
Enterobacter, Escherichia, and Vibrio) are widely present in the 
nutrient-rich human gut, with rapid growth and efficient protein 

synthesis (Dethlefsen and Schmidt, 2007; Vieira-Silva and Rocha, 
2010). In contrast, Cluster 2 and Cluster 8 (including 
Stenotrophomonas spp., Burkholderia spp., Legionella spp., 
Acinetobacter spp., and Pseudomonas spp.) demonstrate broader 
niche adaptability, being not only isolated from clinical samples but 
also widely distributed across various environments such as soil, 
water bodies, and artificial water systems. These bacteria exhibit 
exceptional environmental adaptability and metabolic diversity, 
enabling them to utilize a wide range of nutrient sources for growth 
and reproduction (Atlas, 1999; Compant et al., 2008; Ryan et al., 
2009; Silby et al., 2011; Wong et al., 2017). Notably, human-derived 
bacteria from Cluster 1 and Cluster 2 display a higher detection rate 
of antibiotic resistance genes (ARGs), likely due to frequent exposure 
to antibiotics in clinical settings (Berglund, 2015). In contrast, 
animal-derived bacteria in Cluster 8 exhibit higher virulence factor 
and ARG loads, further emphasizing the role of animal hosts as 
important reservoirs for ARGs (Hu et al., 2017).

We also found that environmental bacteria (such as Bacillus and 
Staphylococcus in Cluster 4 and Actinomycetota in Cluster 7) exhibit 
greater enrichment of genes related to metabolism and transcriptional 
regulation compared to host-derived bacteria. This suggests that these 
bacteria require more flexible metabolic and regulatory strategies to 
adapt to environmental survival pressures in complex and dynamic 
conditions (Balasubramanian et al., 2017; Borriss, 2020). Exotoxins and 
exoenzymes are the most prevalent virulence factors in Cluster 4, 
primarily distributed among environmental bacteria, while the virulence 
factor and antibiotic resistance gene burdens in Actinomycetota are 
relatively limited. The limited identification of virulence and resistance 
factors in Actinobacteria may be due to the restricted number of genomes 
included in this study and the fact that we  performed gene-level 

FIGURE 5

ROC curves illustrating the performance of host niches adaptation-associated signature genes identified through Scoary and machine learning 
approaches. The left panel shows ROC curves based on signature genes distinguishing bacteria from human hosts and animal hosts, while the right 
panel depicts ROC curves based on signature genes differentiating bacteria from human hosts and environmental niches. The numerical values on the 
plots represent the area under the curve (AUC) of the ROC curves.
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identification. Future analyses at the SNP level will be crucial for further 
exploring host-specific genes in key pathogens within this phylum.

Additionally, we observed that fluoroquinolone-related resistance 
genes were the most widely distributed across the samples. This 
finding suggests that the widespread use of fluoroquinolone antibiotics 
may have driven the pervasive dissemination of these resistance genes 
in both environmental and human-associated bacteria, facilitated by 
horizontal gene transfer (HGT) among different strains (Redgrave 
et  al., 2014). This distribution complicates treatment and poses 
challenges. Therefore, it is necessary to further monitor the 
transmission pathways of these genes and their potential impact on 
bacterial ecological adaptation, in order to develop more effective 
antibiotic usage strategies and resistance control measures.

We identified a set of signature genes closely associated with host 
niches, spanning multiple functional categories such as metabolism, 
signal transduction, and transcriptional regulation. A particularly 
notable finding is the presence of the hypB gene across multiple 
human-associated bacterial taxa. hypB encodes a GTP-binding protein 
that plays a critical role in nickel transport and hydrogenase enzyme 
maturation, both of which are essential for bacterial energy 
metabolism (Fu et al., 1995; Yang et al., 2022). In addition, its potential 
involvement in modulating host immune responses suggests that hypB 
may serve as a key determinant of bacterial adaptation to the human 
host (Lacasse et al., 2019; Morrison et al., 1990). This highlights its 
importance as a target for further functional studies.

Despite these findings, there are certain limitations to this study that 
warrant consideration. First, our analysis relies on the metadata available 
for bacterial genomes, particularly their isolation source, to define 
ecological niches. This approach may oversimplify the ecological and 
biological complexity of pathogen-host interactions, as some bacteria 
may transition between different niches or display overlapping adaptive 
traits. For example, Campylobacter jejuni colonizes poultry and infects 
humans (Mouftah et al., 2021), while Staphylococcus aureus transitions 
between livestock and human hosts (Weinert et al., 2012). Additionally, 
while we categorized host niches into human, non-human animal, and 
environment, the non-human animal category encompasses diverse 
ecological contexts (e.g., infection-related and commensal samples), 
which may require more detailed stratification in future studies. 
Moreover, metadata variability and inconsistencies could introduce 
biases in niche classification, limiting the granularity of our findings. 
Future studies should aim to refine ecological niche classifications, 
particularly by incorporating more detailed metadata and accounting 
for overlapping adaptive traits across host and environmental contexts.

In conclusion, large-scale comparative genomics was utilized in this 
study to uncover the adaptive strategies and evolutionary mechanisms 
of human pathogens within various host niches. By demonstrating how 
host niches shape the distribution of genomic functions, virulence 
factors, and antibiotic resistance genes in these pathogens, our findings 
not only deepen the understanding of pathogen adaptation but also 
offer a critical theoretical basis for developing targeted infection control 
strategies and improving antibiotic stewardship.
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SUPPLEMENTARY FIGURE S1

PCoA analysis of gene cluster contributions to host niches differentiation in 
bacterial genomes. (A–C) Represent different taxa. We visualized the overall 
contribution of statistically significant enriched/depleted gene clusters to the 
differentiation of bacterial genomes from distinct hosts/niches using 
principal coordinates analysis (PCoA). The analysis was performed using 
Canberra distance on two types of genome-wide matrices: (1) the full matrix 
containing all gene clusters annotated from various databases within a taxon, 
and (2) the matrix containing only the gene clusters identified as enriched/
depleted through different methods (Scoary, Random Forest, LASSO). Blank 
plots indicate that the method was not suitable for identifying host niches 
adaptation-associated signature genes in that group. Each scatter plot 
includes the Akaike information criterion (AIC) value from logistic regression 
fitting, with lower AIC values indicating better model fit to the data.
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SUPPLEMENTARY FIGURE S2

Venn diagram illustrating the number of important feature gene clusters 
predicted by Random Forest and LASSO. The numbers represent gene 
clusters identified exclusively in each method (non-overlapping regions) or 
shared between the two methods (overlapping regions). Pink represents 
gene clusters identified by Random Forest, while yellow represents those 
identified by LASSO.

SUPPLEMENTARY TABLE S1

Metadata summary of 4,366 bacterial genome sequences used in 
this study.

SUPPLEMENTARY TABLE S2

Description of COG categories.

SUPPLEMENTARY TABLE S3

Detection rates of virulence factor clusters across different groups.

SUPPLEMENTARY TABLE S4

Detection rates of antibiotic resistance genes across different groups.

SUPPLEMENTARY TABLE S5

List of host niches adaptation-associated signature genes identified by 
different methods.
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