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Herpes simplex virus type 1 (HSV-1) is a DNA virus that infects humans

and establishes long-term latency within the host. Throughout its prolonged

interaction with the host, HSV-1 evades the innate immune system by encoding

its own proteins. Post-translational modifications (PTMs) of these proteins play

crucial roles in their function, activity, and interactions with other factors by

modifying specific amino acids, thereby enabling a diverse range of protein

functions. This review explores the mechanisms and roles of PTMs in HSV-1-

encoded proteins, such as phosphorylation, ubiquitination, deamidation, and

SUMOylation, during HSV-1 infection and latency. These modifications are

essential for suppressing host innate immunity, facilitating viral replication, and

elucidating the crosstalk among various post-translational modifications.

KEYWORDS
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1 Introduction

More than 100 types of herpesviruses have been identified to date, categorized into
three subfamilies: alpha, beta, and gamma herpesviruses (Sehrawat et al., 2018). HSV-1
is globally prevalent due to its high infectious potential and ability to establish latency
(James et al., 2020). HSV-1 belongs to the alpha-herpesvirus subfamily based on its genome,
viral characteristics, and incubation period. It is a double-stranded DNA virus with a core
genome of approximately 152 kb, encoding more than 80 genes. These genes translate
into the capsid proteins that encase the DNA core, membrane proteins that form the
protein matrix, and the outer envelope proteins and glycoproteins. These viral proteins play
essential roles throughout the HSV-1 life cycle, encompassing processes such as assembly,
infection, replication, and latency (Su et al., 2024).

Proteins are the primary executors of biological activities, and their functions are
often regulated by post-translational modifications (PTMs) (Lin et al., 2015). PTMs
involve the addition of chemical groups, peptides, or other proteins to specific residues of
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protein through distinct enzymatic reactions following protein
synthesis. This modification enhances protein versatility and
diversity by regulating protein-protein interactions, enzyme
activity, and gene expression. Over 400 known types of PTMs have
been identified, including methylation, acetylation, ubiquitination,
and phosphorylation (Ebert et al., 2022; Zhong et al., 2023).

Viruses, including HSV-1, exploit host cell metabolism to
complete their life cycle. Regulating PTMs in host cells is a key
strategy viruses employ to enhance their infection and replication
(Cheng et al., 2022). Over millennia of co-evolution within the
human immune system, HSV-1 has refined its ability to manipulate
PTMs, including phosphorylation, methylation, and glycosylation,
to optimize infection and evade the host’s innate immune response.
Additionally, host proteins can inhibit viral replication by affecting
the PTMs of viral proteins, such as degrading viral proteins
and suppressing the activity of associated proteins (Kulej et al.,
2017). In this review, we examine the role of PTMs in HSV-
1 encoded protein, focusing on phosphorylation, ubiquitination,
glycosylation, and SUMOylation, and their role in suppressing
the host’s innate immune pathways. We also explore the crosstalk
between different PTMs during the HSV-1 life cycle and their
contribution to the virus’s ability to persist in the host and establish
a lifelong latent infection.

2 HSV-1 infection and host innate
immune response

HSV-1 infection typically occurs during childhood, primarily
affecting the mucosal epithelial cells (Yousuf et al., 2020). This
infection can lead to a range of symptoms, including oral or facial
herpes, and may also involve the genitals or other areas of the
body. The incubation period generally spans from 1 to 26 days,
with common symptoms manifesting as small blisters at the corners
of the mouth or around the nostrils, accompanied by pain and
tingling (Gupta et al., 2007). HSV-1 follows a distinct infection
pattern that includes primary, latent, and recurrent infections.
During the primary infection, the virus invades epithelial cells
and replicates in the host cell nucleus. Mature virions are released
through exocytosis, allowing the infection to spread to neighboring
cells (Danastas et al., 2020; Nicola et al., 2005). Once the virus enters
sensory neurons, it is transported retrogradely along microtubules
to sensory ganglia, such as the trigeminal ganglia, with the
assistance of key proteins pUL36 and pUL37, thereby establishing
a latent infection (Kim et al., 2024; Richards et al., 2017). Various
stressors can trigger the reactivation of latent HSV-1, resulting in
renewed replication and recurrent infections (Yan et al., 2020).
The cycle of primary infection, latency, and reactivation constitutes
the complete life cycle of HSV-1 infection (Marcocci et al., 2020).
Notably, HSV-1 exhibits a strong neuro-infective nature, and
emerging evidence suggests a link between its infection and the
onset and progression of neurodegenerative diseases, such as
Alzheimer’s disease (AD) (Mancuso et al., 2019; Sivasubramanian
et al., 2022).

The host’s innate immune response serves as the primary
mechanism against viral infections (Kawai and Akira, 2006;
Koyama et al., 2008). Upon HSV-1 infection, host cells recognize
viral pathogen-associated molecular patterns (PAMPs) through

pattern recognition receptors (PRRs). The most common viral
recognition receptors in host cells include toll-like receptors
(TLRs) and Retinoic acid-inducible gene-I (RIG-I)-like receptors
(RLRs) (Alandijany, 2019). TLRs are generally categorized as
either cell surface receptors and endosomal receptors based on
their subcellular localization (Ma and He, 2014; Zolini et al.,
2014). Upon viral infection, TLRs activate immune signaling
pathways to suppress viral replication (Bryant-Hudson et al.,
2013; Kim, 2023). RLRs are immune receptors that detect viral
RNA, with key members such as RIG-I, melanoma differentiation-
associated gene 5 (MDA5), and laboratory of genetics and
physiology 2 (LGP2) (Loo and Gale, 2011). After binding to
viral RNA, these receptors activate signaling pathways that
engage the upstream regulator mitochondrial antiviral signaling
protein (MAVS), which then activate transcription factors such as
interferon regulatory factor 3 (IRF3) and nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) (Seth et al., 2005).
This cascade ultimately stimulates the production of interferons
and inflammatory cytokines, which help the immune system clear
the virus (Rehwinkel and Gack, 2020).

During HSV-1 infection, TLRs and RLRs detect double-
stranded RNA (dsRNA) intermediates, initiating the interferon
response (Zhu and Zheng, 2020). Additionally, stimulators
of interferon genes (STING) and NOD-like receptors (NLRs)
contribute to inhibiting viral replication and transmission through
similar mechanisms (Liwinski et al., 2020). Protein kinase R (PKR)
is another critical sensor of viral RNA, and its activation triggers
an antiviral response that inhibits viral replication. PKR plays a
crucial role in inflammation and immune dysfunction by regulating
several key pathways, including mitogen-activated protein kinases,
IRF3, NF-κB, apoptosis, and autophagy (Kang and Tang, 2012).
Studies have shown that HSV-1 has evolved strategies to manipulate
PKR and evade its antiviral effects (Pennisi et al., 2020; Pennisi and
Sciortino, 2023).

Additionally, DNA recognition molecules, such as DNA
sensors, primarily function by identifying specific regions of single-
stranded or double-stranded DNA, including AT-rich sequences
or phosphorylated modified domains, such as organophosphates
(Zahid et al., 2020). When a DNA sensor detects a non-self DNA
structure or sequence, it activates signaling pathways, such as the
cyclic GMP–AMP synthase-stimulator of interferon genes (cGAS-
STING) pathway or the absent in melanoma 2 (AIM2) pathway,
which stimulate the host immune system and initiate an immune
response (Chen et al., 2016; Xu et al., 2023). These pathways are
associated with cytoplasmic DNA sensors that are prevalent across
various cell types. For instance, during the HSV-1 replication and
assembly, the double-stranded DNA (dsDNA) released into the
cytoplasm is recognized and processed by cGAS. The activated
cGAS then binds to ATP and GTP to produce cyclic GMP-
AMP (cGAMP), which triggers an antiviral immune response by
activating STING and downstream signaling adapters (Hopfner
and Hornung, 2020; Zhang et al., 2020). Additionally, Interferon
Gamma Inducible Protein 16 (IFI16), a recently identified DNA
sensor, can recognize both its aberrant dsDNA and viral dsDNA,
leading to the production of type I interferon (IFN-I) and
contributing to inflammatory responses (Briard et al., 2020;
Unterholzner et al., 2010).

Activation and negative regulation of various signaling
pathways are often closely associated with PTMs of key factors,
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especially innate immune pathways (Diskin et al., 2021). For
example, NF-κB is a crucial transcription factor that regulates
antiviral immune responses and the expression of interferons
(Li and Verma, 2002). A key step in NF-κB activation is
the phosphorylation of inhibitor of kappa B alpha (IκBα) by
IKK kinase, which leads to the degradation of IκBα via the
ubiquitin-proteasome pathway and the release of NF-κB into
the nucleus (Hayden and Ghosh, 2011). Similarly, the interferon
alpha/beta receptor-Janus kinase-signal transducer and activator
of transcription (IFNAR-JAK-STAT) signaling pathway is a vital
component of the immune system, playing a central role in
regulating immune cell function and antiviral as well as antitumor
responses (Darnell et al., 1994). Upon binding to IFNAR,
interferon-α/β activates JAK, which phosphorylates tyrosine
residues on IFNAR, facilitating the recruitment of STAT proteins,
which are subsequently phosphorylated. The phosphorylated STAT
proteins form dimers that translocate to the nucleus, where they
initiates the transcription and translation of target genes. This
process leads to the production of numerous antiviral interferon-
stimulated genes (ISGs) proteins (Raftery and Stevenson, 2017;
Wang et al., 2021). We have graphically illustrate the host-
associated innate immune response after HVS-infection, as shown
in Figure 1.

3 Post-translational modifications in
HSV-1 infection

In recent years, advancements in mass spectrometry have
significantly enhanced our understanding of the molecular
mechanisms underlying virus-host interactions (Ashcroft, 2019).
This technology has provided valuable insights into how viruses
regulate important critical cellular processes such as cell cycle,
transcription, translation, and the degradation of antiviral proteins,
through PTMs (Bai et al., 2021). These regulatory mechanisms
are important in influencing both latent and recurrent infection
mechanisms (Milewska et al., 2020).

HSV-1 virus has evolved sophisticated strategies to establish
both acute, latent, and recurrent infections in human hosts. Over
thousands of years, it has effectively evaded the host’s antiviral
innate immune responses (Wang et al., 2024). Among these
strategies, PTMs serve as a key regulatory mechanism during
HSV-1 infection. The virus leverages PTMs to regulate its gene
expression and protein function, targeting viral proteins for
modification or using them as competitors to enhance its infectivity
and resistance to host innate immune responses, as shown in
Table 1 (Kumar et al., 2020).

3.1 Phosphorylation in HSV-1 infection

Phosphorylation is a process in which certain amino acid
residues in proteins form covalent bonds with phosphate groups
derived from ATP. This modification mainly takes place on
serine (Ser), threonine (Thr), and tyrosine (Tyr). Additionally,
phosphorylation has been reported on histidine (His), arginine
(Arg), lysine (Lys), aspartic acid (Asp), glutamic acid (Glu), and
cysteine (Cys) as well (Watanabe and Osada, 2012).

3.1.1 HSV-1 Us3 protein as a kinase-mediated
modifier of host proteins

HSV-1 encodes Us3, a highly conserved serine/threonine kinase
within the Herpesvirus alpha subfamily, which plays a critical role
in inhibiting host interferon expression. The kinase activity of Us3
depends on phosphokinase active sites, K220 and D305 (Mori,
2012). It has been reported that Us3 activates mTORC1 in infected
cells in a protein kinase B (Akt)-independent manner by directly
phosphorylating Tuberous Sclerosis Complex 2 (TSC2) following
HSV-1 infection (Chuluunbaatar et al., 2010). Moreover, Us3
inhibits host autophagy by phosphorylating Unc-51 ike autophagy
activating kinase 1 (ULK1), a major autophagy activator, via
mTORC1, thereby reducing ULK1 activity. Us3 also functions as
an Akt-like kinase, interacting with the host protein Beclin1 and
phosphorylating it at S295 and S234 sites. This inhibits Beclin1-
dependent autophagy by hijacking Akt signaling (Rubio and Mohr,
2019). Furthermore, HSV-1 Us3 interacts with β-catenin and
mediates its hyperphosphorylation at Thr556, thereby blocking
its nuclear translocation and inhibiting IFN-I production (You
et al., 2020). Us3 further induces the hyperphosphorylation of
IRF3 and RelA/p65, which inhibits the IRF3 and NF-κB signaling
pathways and suppress interferon production (Wang et al., 2014;
Wang et al., 2013b).

A recent study indicates that HSV-1 Us3 interacts with RIG-I
and specifically phosphorylates its S8 residue. This phosphorylation
inhibits TRIM25-mediated ubiquitination of RIG-I, prevents RIG-
I binding to MAVS, and ultimately reduces of type I interferon
induction (Gack et al., 2007; Van Gent et al., 2022). Moreover,
Us3 play a vital role in preventing the accumulation of the
phosphorylated PKR. Us3 interacts with the viral protein VHS,
mediating VHS phosphorylation, which regulates PKR-mediated
immune responses (Pennisi et al., 2020). Taken together, Us3
phosphorylates several key factors in the host immune pathway.
These phosphorylation events benefit viral growth and replication,
as illustrated in Figure 2. Therefore, Us3 may serve as a critical
target for designing HSV-1 inhibitors or vaccines.

3.1.2 Phosphorylation of HSV-1 protein interferes
with host innate immunity

The HSV-1-encoded protein ICP34.5 plays a critical role
in interfering with or disrupting several antiviral pathways
at multiple levels (Ripa et al., 2022). Studies have shown
that the ectopic expression of the nucleolar protein NOP53
significantly increases both intracellular and extracellular HSV-
1 viral yields in type I interferon-deficient Vero cells. However,
this effect is absent in mutant viruses lacking ICP34.5. Further
research reveals that ICP34.5 utilizes NOP53 to promote the
dephosphorylation of the eukaryotic initiation factor 2 (eIF2α),
thereby enabling efficient viral translation (Meng et al., 2018). HSV-
1 UL51 is a phosphoprotein critical for viral envelope formation
and cell-to-cell spread, enhancing the replication efficiency in
cell cultures (Roller et al., 2014). Phosphorylation at serine
184 (Ser-184) of UL51 significantly reduces viral replication
and cell spread in HaCaT cells, as demonstrated by mass
spectrometry analysis. Additionally, alanine mutation at UL51
Ser-184 significantly decrease mortality rate in mice following
ocular infection (Kato et al., 2018). Furthermore, UL13, along with
VHS and US3, has been shown to inhibit PKR phosphorylation,

Frontiers in Microbiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1543676
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1543676 February 6, 2025 Time: 17:36 # 4

Zhang et al. 10.3389/fmicb.2025.1543676

FIGURE 1

The innate immune response is activates by the entry of HSV-1 into host cells. HSV-1 is recognized by PRRs, which trigger a signaling cascade that
leads to the production of IFNs and cytokines. The entry of HSV-1 into the cell involves both the TLR and non-TLR pathways. Key viral DNA sensors
include TLR9, cGAS, IFI16, and DAI, while viral RNA sensors include TLR3, MDA5, PKR and RIG-I. During viral attachment and entry, multiple
virus-recognizing receptors detect viral components and initiate innate immune responses. Created with BioRender.com.

highlighting its role in disrupting antiviral immune responses
(Pennisi et al., 2020).

VP22, an envelope protein of HSV-1, undergoes extensive
phosphorylation during infection (Chi and Blaho, 2024). Notably,
ICP0, encoded by an immediate early gene of HSV-1, exhibits E3
ubiquitin ligase activity that facilitates the degradation of IRF3,
a critical component of the antiviral response (Lin et al., 2004).
This degradation necessitates the cytoplasmic localization of ICP0,
which is influenced by the phosphorylation states of VP22. Non-
phosphorylated VP22 inhibits ICP0 expression, while permanently
phosphorylated VP22 diminishes ICP0 packaging (Potel and
Elliott, 2005). In addition, the HSV-1 envelope protein VP11/12
regulates T cell signaling pathways by activating the Src family
tyrosine kinases (SFK), which enhance T cell responses. Mutations
in VP11/12 impair SFK activation and downstream of tyrosine
kinase 2 (Dok-2) phosphorylation, disrupting the maintenance
of CD8+ T cells. This mechanism also influences the negative
feedback loop following antigen clearance by facilitating Dok-2
degradation, which terminates T cell receptor (TCR) signaling
and promotes the resting state of T cells (Lahmidi et al., 2017).
Necrosis is a form of programmed cell death mediated by signaling
complexes containing the receptor-interacting protein 3 (RIP3)
and RIP1 kinase. A study has shown that the interaction between
ICP6, encoded by HSV-1, and RIP1/RIP3 produces nearly opposite
effects in mouse and human cells. Specifically, heterodimeric

interactions of RIP1 and RIP3, as well as homodimeric interactions
of RIP3, lead to necrosis in HSV-1-infected mouse cells. In
contrast, the RHIM structural domain of HSV-1 ICP6 inhibits
TNF-induced necrosis in human cells (Huang et al., 2015;
Mocarski et al., 2015).

3.1.3 HSV-1 interferes with normal host
phosphorylation to evade innate immunity

HSV-1 encodes multiple proteins that disrupt normal host
phosphorylation mechanisms to evade the innate immune
response. One such protein, UL2, antagonizes Tumor Necrosis
Factor Alpha (TNF-α)-mediated NF-κB activation. UL2 interacts
with NF-κB subunits p65 and p50 without affecting the
formation of p65/p50 dimers or their nuclear localization. Instead,
UL2 inhibits NF-κB activity by attenuating TNF-α-induced
phosphorylation at the p65 Ser536 locus, reducing the expression
of downstream inflammatory chemokines such as Interleukin 8
(IL-8) (Cai et al., 2020). The HSV-1 immediate early protein
ICP22 inhibits the phosphorylation of Ser2 in the carboxy-terminal
domain (CTD) of RNA polymerase II (pol II), disrupting its
productive elongation. Co-immunoprecipitation (Co-IP) analysis
and mass spectrometry have identified transcriptional elongation
factors, including P-TEFb, various CTD kinases, and Facilitates
Chromatin Transcription (FACT) complexes, as key players
of ICP22 in human cells (Isa et al., 2021). Further studies
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TABLE 1 PTMs in key viral proteins of HSV-1 involved in immune function.

PTMs Viral protein Targets Function References

Phosphorylation US3 TSC2 Inhibit mTORC1 in an Akt-independent manner Chuluunbaatar et al., 2010

ULK1 Reducing ULK1 activity, inhibits host autophagy Rubio and Mohr, 2019

Beclin Inhibits Beclin1-dependent autophagy Rubio and Mohr, 2019

β-catenin Blocking β-catenins nuclear translocation You et al., 2020

RelA Hyperphosphorylated RelA and block its nuclear
translocation

Wang et al., 2014

IRF3 Hyperphosphorylated IRF3 to prevent IRF3 activation Wang et al., 2013b

RIG-1 Prevents the binding of RIG-I to MAVS Van Gent et al., 2022

Viral VHS Inhibiting the accumulation of phosphorylated PKR Pennisi et al., 2020

ICP34.5 NOP53 Promote the dephosphorylation of eIF2α Meng et al., 2018

UL13 Inhibiting the accumulation of phosphorylated PKR Pennisi et al., 2020

VP22 Viral ICP0 Affect ICP0 expression and localization Potel and Elliott, 2005

VP11/12 Dok-2 Facilitating Dok-2 degradation Lahmidi et al., 2017

ICP6 RIP1/RIP3 Lead to necrosis in mouse cells, inhibits TNF-induced
necrosis in human cells

Huang et al., 2015

Ubiquitination ICP0 PML, Sp100 Affects the establishment of ND10 Everett et al., 2008

RNF8, RNF168 Inhibits the DNA damage pathway mediated by RNF8 and
RNF168

Lilley et al., 2010

MyD88, Mal Reducing the response of NF-κB signaling pathway Van Lint et al., 2010

DNA-PKcs Interferes the host DNA damage repair function Parkinson et al., 1999

BRCC36 Downregulates the expression of IFNAR1 Zhang et al., 2021

SLFN5 Inhibiting SLFN5’s antiviral effects Kim et al., 2021

IFI16 Suppress the function of DNA sensor Diner et al., 2015

MORC3 Suppression of MORC3-regulated DNA elements Gaidt et al., 2021

IRF7 Affects the expression of IRF7 Shahnazaryan et al., 2020

p50 Inhibiting NF-κB-dependent gene expression Zhang et al., 2013

UL21 TOLLIP Downstream TBK1 and IRF3 signaling pathways Ma et al., 2023

US3 LAT Suppresses TCR signaling and T-cell activation Yang et al., 2015

Bclaf1 Reducing IFN-induced antiviral activity Qin et al., 2019

Deubiquitination UL36 IκBα Inhibiting cGAS induced IFN-β and NF-κB promoter
activation

Ye et al., 2017

TRAF3 Prevent the recruitment of TBK1 Wang et al., 2013a

IFNAR2 Antagonize the IFN-JAK-STAT signaling pathway Yuan et al., 2018

TSG101 Inhibits inflammasome formation and antigen presentation Kharkwal et al., 2016

Deamidation UL37 cGAS Resulting in the loss of cGAMP synthesis Zhang et al., 2018

RIG-I Inhibits the recognition of HSV-1 by RIG-I Huang et al., 2021

SUMOylation ICP27 Daxx Suppresses p65 acetylation and NF-κB signaling Christensen et al., 2016

ICP0 PIAS1 Disrupt the interaction between PIAS1 and PM Shih et al., 2007

demonstrated that ICP22 interacts with cyclin-dependent kinase
9 (CDK9) and other CDKs, thereby inhibiting the transcriptional
elongation of cellular genes—a mechanism potentially critical
to HSV-1 pathogenesis (Whisnant et al., 2024). The HSV-1
early protein ICP27 plays a crucial role in regulating viral gene
expression and is associated with viral latency and reactivation.
ICP27 binds to IκBα, inhibiting its phosphorylation and subsequent
ubiquitin-mediated degradation. This inhibition prevents IκBα

from dissociating with NF-κB dimers, thereby suppressing NF-κB
signaling pathway activation (Hargett et al., 2006; Kim et al., 2008).
Additionally, the early protein ICP34.5 and the kinase US11 work
together to counteract the host’s translation shutdown during viral
replication by inhibiting eIF2 phosphorylation in the later stages
of HSV-1 infection (Charron et al., 2019; Lussignol et al., 2013). In
summary, HSV-1 disrupts normal host phosphorylation processes
to evade innate immunity.
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FIGURE 2

HSV-1 Us3 protein inhibits the host immune response by phosphorylating host proteins via its kinase activity. Following HSV-1 infection, host cells
detect the viral nucleic acid sequences through various pathways, triggering the intrinsic antiviral immune response to combat viral proliferation and
eliminate infected cells. The Us3 protein encoded by HSV-1 disrupts signal transmission in these pathways by phosphorylating key intermediate
proteins, including IRF3 and RelA, thereby suppressing the host’s antiviral response. Created with BioRender.com.

3.2 Ubiquitination in HSV-1 infection

Ubiquitination is a three-step enzymatic process involving the
ubiquitin-activating enzyme E1, the ubiquitin-conjugating enzyme
E2, and the ubiquitin ligase E3. In this process, E1 activates
ubiquitin molecules in the presence of ATP and transfers them
to E2. The ubiquitin ligase E3 then facilitates the attachment of
ubiquitin from E2 to the target protein. Once ubiquitination occurs,
most ubiquitin-tagged proteins are recognized and degraded by
the 26S proteasome. Notably, ubiquitination is reversible, as
deubiquitinases (DUBs) can hydrolyze bonds at the carboxyl
terminus of ubiquitin, thereby reversing protein degradation and
modulating protein function (Liu et al., 2024).

3.2.1 HSV-1 proteins as E3 ligases or
deubiquitinating enzymes in HSV-1 infection

The immediate-early protein ICP0, encoded by HSV-1, is a
multifunctional protein with E3 ubiquitin ligase activity that is
critical for HSV-1 replication and immune evasion (Everett, 2000).
The N-terminal finger-ring structure (RING finger) of ICP0 confers
E3 ubiquitin ligase activity, enabling it to ubiquitinate multiple
host proteins and disrupt the host’s antiviral defenses (Boutell and
Everett, 2013). ICP0 primarily enhances HSV-1 gene expression
and replication by counteracting host restriction factors, such
as interferon responses (Everett and Orr, 2009), DNA damage

responses (Lilley et al., 2011), and chromatin repression (Gu and
Zheng, 2016).

When HSV-1 invades host cells, the innate immune system
restricts the viral genome access to the nuclear site by targeting
PML nuclear bodies (PML-NBs), also known as nuclear domain
10 (ND10). This restriction promotes the transcriptional silencing
of viral genes and prevents viral lytic replication (Jan Fada et al.,
2023; Wang et al., 2012). After HSV-1 enters the cell, ICP0 utilizes
its nuclear localization signal and ND10 localization domain to
accurately localize to the ND10 complex in the nucleus. It employs
its E3 ligase property to degrade the PML directly or indirectly
and Sp100 proteins, which in turn affects the establishment of
Nuclear Domain 10 (ND10) and its inhibitory effect on HSV-1
infection (Everett et al., 2008; Ma et al., 2022; Xu et al., 2016). HSV-1
further disrupts the host DNA damage response. For example, ICP0
interferes with the host DNA damage repair function by degrading
DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs)
through ubiquitination, thereby increasing the viral replication
multiplier (Parkinson et al., 1999). Additionally, it inhibits the DNA
damage pathway mediated by RNF8 and RNF168 as E3 ligases
through ubiquitination (Lilley et al., 2010).

ICP0 also modulates immune signaling pathways. It inhibits
STAT1 activation, affecting antivirus signaling (Halford et al.,
2006), and blocks IRF3- and IRF7-mediated activation of
interferon-stimulated genes (Lin et al., 2004; Paladino et al.,
2010), with ICP0 specifically promoting IRF7 ubiquitination
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(Shahnazaryan et al., 2020). Additionally, ICP0 degrades MORC3,
suppressing MORC3-regulated DNA elements (MREs) near the
IFNB1 locus, which are critical for interferon expression (Gaidt
et al., 2021; Sloan et al., 2016). In IFI16-deficient cells, replication
of ICP0-mutant HSV-1 increases, highlighting ICP0’s role in IFI16
degradation (Diner et al., 2015; Orzalli et al., 2012). Furthermore,
ICP0 reduces protein levels of Myeloid Differentiation Primary
Response Gene 88 (MyD88) and MyD88 Adaptor-Like (Mal),
limiting the inflammatory response of the TLR2-stimulated NF-
κB signaling pathway following HSV-1 invasion (Van Lint et al.,
2010). By binding to the NF-κB subunits p65 and p50, ICP0 inhibits
NF-κB-dependent gene expression through p50 degradation, but
not p65 (Zhang et al., 2013). ICP0 also induces K48-linked
polyubiquitination and BRCA1-dependent protein complex 36
(BRCC36) degradation, which downregulates IFN-I receptor
interferon alpha/beta receptor 1 (IFNAR1) and impairs the host’s
IFN-I antiviral response during early HSV-1 infection (Zhang
et al., 2021). More recently, a comparative proteomics study
found that Schlafen5 (SLFN5), an HSV-1 inhibitory factor that
inhibits viral transcription, is also regulated by ICP0. During HSV-1
infection, SLFN5 binds to Viral DNA and is targeted for ubiquitin-
mediated degradation by ICP0, inhibiting SLFN5’s antiviral effects
(Kim et al., 2021).

In summary, ICP0 targets numerous ubiquitination substrates
using its RING finger structure, as illustrated in Figure 3. The
development of mass spectrometry technology offers opportunities
to discover additional critical substrate proteins. As an essential
multifunctional protein encoded by HSV-1, ICP0 represents
a promising target for developing HSV-1-specific drugs and
inhibitors.

Moreover, ICP0 is regulated by both viral and host proteins.
For instance, HSV-1 ICP134.5 interacts with ICP0, preventing its
proteasomal degradation (Manivanh et al., 2017). Conversely, the
host E3 ligase tripartite motif containing 23 (TRIM23) targets ICP0
for degradation by inducing K11-and K48-linked ubiquitination
(Liu et al., 2021).

UL36, the largest envelope protein in the herpesvirus family
and a well-conserved protein, contains a DUB motif at its
N-terminus, granting it deubiquitinase activity (Newcomb and
Brown, 2010). An early study revealed that UL36 suppresses NF-
κB promoter activation and IFN-β production through DNA
sensors. UL36 deubiquitinates IκBα, limiting its degradation and
thereby inhibiting cGAS induced IFN-β production and NF-κB
activation (Ye et al., 2017). UL36 also interacts with TNF receptor-
associated factor 3 (TRAF3) and deubiquitinates it to prevent
the recruitment of the downstream adapter TANK-binding kinase
1 (TBK1) (Wang et al., 2013a). Additionally, another study has
demonstrated that during the ectopic expression of UL36 and
wild-type HSV-1 infection, UL36 specifically binds to IFNAR2 and
inhibits its interaction with JAK1, thereby antagonizing the IFN-
JAK-STAT signaling pathway (Yuan et al., 2018). UL36 has also
been reported to affect the endosomal sorting complex required
for transport (ESCRT)-I core component tumor susceptibility gene
101 (TSG101). UL36 removes the ubiquitin tag from TSG101,
interacts with it, and prevents its degradation by host cells. This
disruption alters the intracellular and extracellular distribution of
TSG101, affects the formation of the ESCRT-I complex, and inhibits
inflammasome formation and antigen presentation, allowing HSV-
1 to evade host immune surveillance (Kharkwal et al., 2016).

3.2.2 HSV-1 proteins modulate host protein
ubiquitination for immune evasion

During HSV-1 infection, the viral protein UL21 bridges the
E3 ligase ubiquitin-protein ligase E3 Component C (UBE3C) and
cGAS, triggering the K27-linked ubiquitination and degradation
of cGAS at its K384 residue. UL21 interacts with the selective
autophagy receptor Toll-interacting protein (TOLLIP), recognizes
the ubiquitinated cGAS, and directs it to the lysosome for
degradation. This process inhibits the downstream TBK1 and
IRF3 signaling pathways, thereby reducing the production of
type I interferon production (Le Sage et al., 2013; Ma et al.,
2023). Additionally, Us3 disrupts T-cell signaling by inhibiting
TRAF6-mediated LAT ubiquitination, which is crucial for LAT
tyrosine phosphorylation and T-cell activation. This interruption
suppresses TCR signaling and T-cell activation (Yang et al., 2015).
Us3 also induces the degradation of host protein BCL2-associated
transcription factor 1 (Bclaf1) through the ubiquitin-proteasome
pathway, significantly reducing IFN-induced antiviral activity
(Qin et al., 2019).

3.3 Glycosylation during HSV-1 infection

HSV-1 glycoprotein B (gB) is a class III fusion glycoprotein
and a key target for antibody-mediated immunity (Ramachandran
et al., 2010). Glycosylation at the Asn 141 site of gB structurally
conceals essential amino acids involved in antibody recognition
and viral fusion. This creates a glycan shield that blocks antibody
binding to gB epitopes, allowing the virus to evade immune
surveillance. For instance, while non-glycosylated gB can mediate
antibody-dependent cellular cytotoxicity (ADCC), glycosylation of
Asn141 significantly inhibits the ADCC response (Fukui et al.,
2023; Jambunathan et al., 2021).

HSV-1 gC-1 is a glycoprotein composed of 511 amino acid
residues and is extensively glycosylated, with nine consensus
sites for N-linked glycosylation and a prominent mucin-like
domain. This domain, spanning amino acids 30 to 124, is rich
in Ser and Thr residues, which serve as sites for O-linked
glycosylation. The O-linked glycan structures on gC-1 shield
viral envelope glycoproteins from potential neutralizing antibodies,
thereby facilitating immune evasion (Harris et al., 1990; Komala
Sari et al., 2020).

3.4 Deamidation during HSV-1 infection

UL37, a capsid protein encoded by HSV-1, has been identified
as a deamidase. UL37 binds to RIG-I and mediates deamidation at
the N495 site. This modification inhibits RIG-I recognition of HSV-
1 and suppresses the host’s intrinsic immunity (Zhao et al., 2016).
Moreover, the deamidation of RIG-I at N495 by UL37 facilitates its
re-amidation at the N549 site by the host deamidase PPAT (Huang
et al., 2021). The synergistic deamidation of RIG-I by UL37 and
PPAT allows HSV-1 to evade RIG-I recognition. Beyond RIG-1,
UL37 has also been shown to inhibit the activation of cGAS through
its deamidase activity, resulting in the loss of cGAMP synthesis and
the blockage of downstream signaling. Notably, HSV-1-infected
cells with a mutation that eliminates UL37’s deamidase activity
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FIGURE 3

HSV-1 ICP0 protein inhibits the host immune response by degrading host proteins through the ubiquitin-proteasome pathway. Upon entering the
host cells, HSV-1 uses the host’s cellular machinery to synthesize the key immediate-early protein ICP0. Through its E3 ligase activity, ICP0 mediates
the ubiquitin-dependent degradation of key immune pathway protein, such as IFI16 and MOCR3, effectively suppressing the host’s antiviral
response. Figure created with BioRender.com.

do not exhibit this inhibition (Zhang et al., 2018). These findings
highlights UL37’s critical role as a deamidase in HSV-1’s evasion of
host immunity, as shown as in Figure 4.

3.5 SUMOylation in HSV-1 infection

HSV-1 ICP27 is a multifunctional protein essential for viral
replication, late gene expression, and reactivation from latency
(Sandri-Goldin, 2011). ICP27 also regulates the cGAS-STING-
TBK1 signaling pathways. Studies show that NF-κB activity is
significantly enhanced in macrophages infected with the ICP27
deletion mutant of HSV-1, suggesting that ICP27 can inhibit
the cGAS-STING-TBK1 pathway (Christensen et al., 2016). Post-
translational acetylation of the NF-κB subunit p65 plays an
important role in regulating NF-κB activity. Multiple sites of
p65 can be reversibly acetylated, with p300/CREB-binding protein
(CBP) and p300/CBP-associated factor (PCAF) serving as the
primary enzymes for p65 acetylation (Abraham, 2000). In contrast,

histone deacetylase 3 (HDAC3) mediates p65 deacetylation (Chen
and Greene, 2003). This process is inhibited by the death domain-
associated protein (Daxx), a regulator of cell survival, apoptosis,
gene expression, and the cell cycle (Park et al., 2007). SUMOylation
of Daxx controls its nuclear anchoring and nucleocytoplasmic
localization, inhibiting p65 acetylation and thus suppressing NF-
κB transcriptional activity (Shih et al., 2007). Additionally, HSV-
1 ICP27 may interfere with Daxx SUMOylation through spatial
hindrance, enhancing the interaction between Daxx and p65,
further suppressing p65 acetylation and inhibiting NF-κB signaling
(Kim et al., 2017).

HSV-1 ICP0 targets and degrades host SUMOylated proteins,
such as PMLand Sp100, through its E3 ligase activity, thereby
inhibiting the recruitment of viral restriction factors (Everett
et al., 2008). Furthermore, ICP0 disrupts the interaction between
the E3 ligase protein inhibitor of activated STAT1 (PIAS1) and
PML, preventing PIAS1 from localizing to the site of HSV-
1 infection and replication within the host cell nucleus, which
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FIGURE 4

HSV-1 UL37 protein deamidates host proteins to inhibit immune pathways. UL37, a capsid protein encoded by HSV-1 with deamidase activity, inhibits
host antiviral immune responses by targeting key viral recognition sensors. Within host cells, UL37 deamidates cGAS and RIG-I, preventing the
recognition of HSV-1 viral nucleic acids and effectively suppressing host-associated antiviral immune responses. Created with BioRender.com.

ensures efficient viral lysis and replication (Brown et al., 2016).
In addition to these known SUMOylated targets, HSV-1 infection
also alters the SUMOylation of various intracellular proteins. For
example, Elizabeth Sloan and colleagues identified 124 intracellular
SUMOylated proteins whose levels were reduced in response to
ICP0 infection, including Zinc Finger and BTB Domain Containing
10 (ZBTB10), Zinc Finger and BTB Domain Containing 38
(ZBTB38), Moloney Leukemia Virus 10 Protein (MORC3),
NAC Alpha Subunit 1 (NACC1), Ben Domain Containing 3
(BEND3), and Methyl-CpG Binding Domain Protein 1 (MBD1)
(Sloan et al., 2015).

3.6 O-GlcNAc modifications in HSV-1
infection

Recent studies have demonstrated that HSV-1 infection
enhances the host hexosamine biosynthesis pathway (HBP),
promoting O-Linked N-Acetylglucosamine (O-GlcNAc)
modifications and activating the STING signaling pathway,
particularly through the succinylation of STING at Thr229
and K63-linked ubiquitination. This activation leads to an

antiviral immune response. A mutation at Thr229 inactivates
STING and reduces IFN production. Conversely, inhibition of
O-GlcNAcylation using the drug6-Diazo-5-oxo-L-nor-Leucine
(DON) significantly impairs the host’s ability to clear HSV-1,
exacerbating infection and tissue damage. These findings highlight
the crucial role of O-GlcNAc modification in antiviral innate
immune responses (Li et al., 2024).

3.7 Citrullination modifications in HSV-1
infection

Protein citrullination involves the enzyme-catalyzed
conversion of the imidazole group in arginine residues to a
carbonyl group, resulting in the formation of citrulline, a non-
genetically encoded amino acid. During HSV-1 infection, the virus
activates protein arginine deiminase (PAD) enzymes (PAD2, PAD3,
and PAD4), promoting hypercitrullination of interferon-induced
proteins such as IFIT1 and IFIT2, thereby impairing interferon
production. This citrullination represents a mechanism by which
HSV-1 evades the immune response (Pasquero et al., 2023).
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3.8 Crosstalk between PTMs in HSV-1
infection

PTMs are prevalent in virus-host interactions, with crosstalk
frequently occurring between different PTMs (Beltrao et al., 2013).
This crosstalk can be categorized into two mechanisms. The first
group involves different modifications that interact by regulating
the same substrate protein. In this context, modifications at specific
amino acids can affect other modifications at the same site or
nearby residues, synergistically regulating the function of the
modified protein (Csizmok and Forman-Kay, 2018). Another type
involves multiple enzymes with activating or inhibitory functions
sequentially using each other as substrates, altering enzymatic
activity through the addition or removal of modifications. This
process forms positive regulatory or feedback loops to exert their
functions. In PTM crosstalk, interactions between phosphorylation,
ubiquitination, and SUMOylation have been the most commonly
observed types of crosstalk (Garza-Domínguez and Torres-Quiroz,
2022; Hervás et al., 2020).

As previously discussed, HSV-1 ICP0 degrades SUMOylated
proteins within PML nuclear bodies, thereby eliminating their
antiviral activity. Concurrently, the host kinase Casein Kinase 1
(CK1) phosphorylates ICP0 at Thr67, enhancing its interaction
with key proteins involved in the DNA damage response, such
as RNF8 (Chaurushiya et al., 2012). Furthermore, Chk2 kinase
promotes the phosphorylation of ICP0 at SUMO-interacting
regions, which increases ICP0’s interaction with SUMOylated
proteins and enhances the activity of SUMO-targeted ubiquitin
ligase (STUbL) (Hembram et al., 2020). Additionally, the
Us3 protein inhibits TRAF6-mediated ubiquitination of LAT,
disrupting TCR signaling and preventing LAT phosphorylation,
thereby suppressing T-cell activation and contributing to HSV-
1 immune evasion (Yang et al., 2015). The HSV-1 UL9
protein interacts with nuclear factor B42 (NFB42), promoting
viral replication. Co-expression of NFB42 and UL9 in 293T
cells significantly reduces UL9 protein levels, which can be
restored by the proteasome inhibitor MG132. This interaction,
dependent on phosphorylation, suggests that NFB42 mediates
UL9 polyubiquitination and subsequent proteasomal degradation
(Eom and Lehman, 2003). These examples illustrate how viral
proteins coordinate multiple PTMs, including ubiquitination,
SUMOylation, and phosphorylation, to suppress host antiviral
immune responses.

In addition to these inter-modification relationships, cascading
effects between single types of PTMs have been reported.
For example, as aforementioned, the HSV-1 UL37 protein
functions as a deamidase and interacts with the host RIG-I,
facilitating deamidation at the N495 site. This modified RIG-I
can subsequently interact with another deamidase, PPAT leading
to further deamidation at the N549 site. This process ultimately
prevents RIG-I from recognizing the virus (Huang et al., 2021; Zhao
et al., 2016).

4 Discussion

HSV-1 infection is a widespread phenomenon. Once a host
undergoes primary infection, HSV-1 establishes a latent infection

in the nervous system, which can persist for an extended period.
HSV-1 promotes its survival by evading the host innate immunity
through a variety of immune evasion strategies. Among these,
the post-translational modification of proteins is one of the
major ways which HSV-1 antagonizes the host antiviral innate
immune response (Cakir et al., 2021). Therefore, studying the
mechanisms related to the post-translational modification of HSV-
1 viral proteins offers novel insights into the molecular mechanisms
underlying HSV-1 infection latency and provides a theoretical
foundation for the design of more effective therapeutic drugs and
strategies.

Currently, drug development strategies targeting HSV-1
primarily center on host cell factors involved in viral replication.
These drugs are known as host-targeted antiviral drugs (HTAs) (Su
et al., 2024). Research is also in progress to develop drugs that target
the viral PTMs during HSV-1 infection or those that influence host
cell PTMs. For instance, inhibitors that target PADs can inhibit
the citrullination of interferon-induced protein IFIT1 and IFIT2.
This inhibition reverses HSV-1 immune evasion and effectively
suppresses the infection (Pasquero et al., 2023). Additionally,
NLRC4 has been shown to promote the interaction between TBK1
and the E3 ubiquitin ligase Casitas B-Lineage Lymphoma (CBL),
enhancing K63-linked polyubiquitination of TBK1 Consequently,
this upregulates the cGAS-STING signaling pathway and boosts
antiviral innate immunity (Zhang et al., 2023).

In conclusion, HSV-1 viral proteins utilize PTMs, particularly
phosphorylation and ubiquitination, to regulate immune evasion
as a key strategy to counteract the host immune system. However,
there are still relatively few targeted drugs aimed at viral protein
PTMs. Therefore, elucidating the mechanisms of host-HSV-1
protein interactions and the PTMs involved in immune evasion
will be crucial for guiding future immune therapies and drug
development strategies targeting HSV-1. In the long run, this
line of research holds the potential to yield more effective
approaches for curbing HSV-1 infection and transmission within
the population, thereby enhancing public health and reducing the
burden associated with HSV-1-related diseases.
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