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The biocontrol efficiency of the antagonist yeast Meyerozyma guilliermondii is 
significantly reduced under oxidative stress in adverse environments. However, 
effective strategies to improve M. guilliermondii under such abiotic stress remain 
limited. As an effective protectant of yeasts, xylitol has significant potential to 
improve the performance of M. guilliermondii under abiotic stress. We investigated 
xylitol’s effects on the viability and efficiency of M. guilliermondii under oxidative 
stress. The results showed that 0.5 M and 1 M xylitol significantly enhanced yeast 
survival, antioxidant gene expression, and enzyme activity, including thioredoxin 
reductase (TrxR) and peroxidase (POD), while reducing intracellular reactive oxygen 
species levels as well as damage to mitochondrial membranes, and preserving 
the ATP content. Notably, xylitol-treated (XT) yeast exhibited higher intracellular 
xylitol levels and improved resistance to oxidative stress compared with the non-
xylitol-treated cells. Additionally, XT yeast showed a greater biocontrol efficacy 
and lower postharvest fungal infection rate by gray mold and blue mold in 
apples. These results demonstrated that xylitol effectively boosts the resilience 
and biocontrol efficiency of M. guilliermondii, making it a promising candidate 
to improve postharvest disease management.
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1 Introduction

Postharvest fungal control using biocontrol yeasts offers both practical and economic 
advantages (Droby et al., 2016; Wisniewski et al., 2016; Kim et al., 2018). Over recent decades, 
a number of biocontrol yeast strains have been identified as effective antagonists against fungal 
diseases, such as gray mold (Botrytis cinerea) and blue mold (Penicillium expansum) 
(Romanazzi et  al., 2016; Vilanova et  al., 2017). Among the effective biocontrol yeasts, 
Meyerozyma guilliermondii shows high efficacy against various postharvest fungal pathogens 
of multiple fruits, including apples, pears, and kiwifruit during storage (Sui and Liu, 2014; 
Sadeghi et al., 2021).

Despite the demonstrated efficacy of antagonistic yeasts, their efficacy as biocontrol agents 
can be constrained by environmental factors, such as temperature, oxidative stress, and salinity, 
thereby limiting their effectiveness (Macarisin et al., 2010; Sui et al., 2015; Spadaro and Droby, 
2016). The stress tolerance of antagonistic yeasts is closely linked to their survival and 
proliferation within host tissues, as well as their biocontrol efficacy against pathogens (Liu 
et al., 2013). Consequently, identifying effective and cost-efficient protectants is a strategic 
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approach to enhance the biocontrol capacity of these yeasts, offering 
both efficiency and rapid benefits (Liu et al., 2011; Ming et al., 2020).

Sugars or sugar alcohols have been shown to be  effective 
protectants for biocontrol yeasts (Sui et al., 2012; Ming et al., 2020). 
Xylitol, a polyol derived from the hydrogenation of xylose, has 
demonstrated efficacy against ochratoxigenic fungus Aspergillus 
carbonarius and Listeria monocytogenes (Morón de Salim and Ramírez 
Mérida, 2013; Espinosa-Salgado et al., 2022). Xylitol’s low cost and 
widespread use as a food additive, along with its inherent antioxidant 
properties, make it particularly well-suited for use as a protectant for 
biocontrol yeasts in both pre-and post-harvest applications. However, 
there is limited research on the application of these compounds as 
protectants for antagonistic yeasts under adverse 
environmental conditions.

Taking into account the above research, the present study was 
conducted to determine the effects of xylitol on the antioxidant 
response, stress tolerance, and biocontrol efficacy of the yeast 
M. guilliermondii. We determined: (1) The cell survival rate of xylitol-
treated (XT) cells following exposure to oxidative stress induced by 
H2O2; (2) the impact of xylitol treatment on the expression of 
antioxidant genes, including those encoding thioredoxin reductase 
(TrxR) and peroxidase (POD), as well as their corresponding enzyme 
activities; (3) the accumulation of intracellular reactive oxygen species 
(ROS), mitochondrial membrane potential analysis, changes in ATP 
production and intracellular xylitol levels; and (4) the biocontrol 
efficacy of XT M. guilliermondii yeast cells against B. cinerea and 
P. expansum infections in apples.

2 Materials and methods

2.1 Antagonistic yeast

The yeast M. guilliermondii, known for its antagonistic properties, 
was first isolated from apple surfaces and identified through its general 
morphology and DNA sequencing of the ribosomal internal 
transcribed spacer (ITS) region (Leaw et al., 2006). This yeast was 
cultured in a yeast extract-peptone-dextrose (YPD) medium, which 
contained 10 g of yeast extract, 20 g of peptone, and 20 g of glucose 
dissolved in 1 liter of water. To cultivate the yeast, 40 mL of YPD 
medium was added to a 100 mL Erlenmeyer flask, followed by 
inoculation with M. guilliermondii. The initial yeast cell concentration 
was measured at 105 cells/mL using a hemocytometer. The culture was 
then incubated at 25°C on a rotary shaker at 200 rpm for 16 h.

2.2 Fungal pathogens

The fungal pathogens B. cinerea and P. expansum were isolated 
from infected apples and pears and identified by DNA sequencing of 
the ITS region, and maintained on potato dextrose agar (PDA) at 
4°C. To reactivate the culture and confirm its pathogenicity, each 
pathogen was inoculated into a wounded apple, and re-isolated onto 
PDA after infection was successfully confirmed. Spore suspensions of 
the fungal pathogens were prepared from 2-week PDA plates 
incubated at 25°C, with spore concentrations determined using a 
hemocytometer and adjusted to 104 spores/mL with sterile distilled 
water before use.

2.3 Test fruit

Apples (Malus × domestica Borkh) were harvested when 
commercially ripe. Only fruits that were uniform in shape and size, 
and free from physical damage, were selected for the study. The apples 
were thoroughly inspected to ensure they were intact and free from 
decay. To sterilize the fruit surfaces, a 2% (v/v) sodium hypochlorite 
solution was applied for 2 min, followed by rinsing with tap water and 
air-drying. The sterilized apples were then used in 
biocontrol experiments.

2.4 Xylitol treatment of Meyerozyma 
guilliermondii

In order to investigate the effect of xylitol treatment (XT) on 
M. guilliermondii, yeast cultures were centrifuged at 8,000 × g for 
3 min. The yeast cells were washed three times with sterile distilled 
water to remove residual growth medium (Liu et al., 2012b). The 
cleaned cells were then resuspended in 20 mL of fresh YPD medium, 
and xylitol was added to achieve final concentrations of 0.5 or 1 M. The 
cultures were incubated on a rotary shaker at 25°C, with shaking at 
200 rpm for 3 h. The xylitol concentrations were selected based on 
preliminary experiments. Briefly, given that xylitol concentrations 
typically range from 0.3 to 3 M in market food applications, 
we initially confirmed the efficacy of a lower concentration (1 M) in 
pilot experiments. To assess the potential effectiveness of even lower 
concentrations, we halved the treatment concentration to 0.5 M for 
further analysis. A control group, referred to as the Non-xylitol (NX) 
group, underwent the same procedure without xylitol addition. After 
centrifugation and washing, the yeast cells from both XT (0.5 and 
1 M) and NX groups were resuspended in water at a concentration of 
1 × 107 cells/mL for further analysis.

2.5 Effect of xylitol on the survival rate of 
Meyerozyma guilliermondii

Cell samples collected at 0, 10, 20, and 30 min after oxidative 
treatment were cultured on YPDA agar medium (YPD supplemented 
with 20 g of agar per liter). The medium was incubated at 25°C for 
3 days, after which colony-forming units (CFUs) per medium were 
quantified. Cell viability was expressed as the percentage of CFUs 
following oxidative treatment, relative to the CFU count of total cells. 
Each treatment contained three replicates, and the experiment was 
repeated three times.

2.6 Intracellular ROS, mitochondrial 
membrane potential, and ATP 
determination

Intracellular ROS levels in yeast cells were determined using 
the oxidation-sensitive probe 2′,7′-dichlorodihydrofluorescein 
diacetate (H2DCFDA; Invitrogen, Eugene, OR, USA), as previously 
described (Liu et al., 2011). Samples of NX and XT yeast cells were 
exposed to 30 mM H2O2 for 10, 20, or 30 min, with pre-exposure 
samples designated as time 0. The yeast cells were washed with 
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phosphate-buffered saline (PBS, pH 7.0) and resuspended in the 
same buffer with 25 μM H2DCFDA. The suspension was incubated 
in the dark at 30°C for 1 h, washed twice with PBS, and examined 
under an FV3000 confocal microscope (Olympus, Tokyo, Japan) 
using a 480 nm excitation and 520 nm emission filter. ROS-positive 
cells were quantified by randomly selecting 10 fields per slide (with 
a minimum of 200 cells per slide), and the percentage of 
fluorescent cells relative to the total count was determined. Each 
experiment included three biological replicates and was repeated 
three times.

Mitochondria damage and ATP levels analysis was according to 
previous studies (Liu et  al., 2012a; Sui and Liu, 2014). Briefly, 
mitochondrial membrane potential was assessed using the 
Mitochondrial membrane potential assay kit with JC-1 (Beyotime, 
China), which contains the cationic dye JC-1 (5,5′,6,6′-tetrachloro-
1,1′,3,3′-tetraethyl-imidacarbocyanine iodide). This dye emits red 
fluorescence in the mitochondria of healthy cells. Upon collapse of the 
mitochondrial membrane potential, the cationic dye accumulates in 
the cytoplasm, emitting green fluorescence. Thus, the ratio of red to 
green fluorescence is higher in healthy cells and lower in damaged 
cells. In this study, all M. guilliermondii samples were collected and 
resuspended in the JC-1 reagent at a final concentration of 1 × 106 
cells/ml and incubated at 37°C for 15 min. Cells were then centrifuged 
and resuspended in 1 mL of assay buffer provided by the kit, and the 
ratio of red (excitation at 550 nm, emission at 600 nm) to green 
(excitation at 485 nm, emission at 535 nm) fluorescence was 
immediately measured using a Laser Scanning Confocal Microscopy 
(Zeiss, Germany). Each treatment contained three replicates, and the 
experiment was repeated three times.

ATP levels analysis was performed according to Li et al. (2010). 
Briefly, ATP of approximately 20 mg of fresh weight cultured 
M. guilliermondii cells that exposed to 30 mM H2O2 for 0, 10, 20, 30, 
60, and 120 min were extracted with 50 μL of 2.5% trichloroacetic acid 
(TCA) and incubated at 4°C for 3 h. After centrifugation at 10,000 × g 
for 15 min, 10 μL supernatant was diluted with 115 μL ATP-free water 
and 125 μL ATP-free Tris-acetate buffer (40 mM, pH 8.0). ATP 
content was quantified using a luciferin/luciferase assay kit (Beyotime, 
China) according to the manufacturer’s instructions. Luminescence 
emission was measured using a Laser Scanning Confocal Microscopy 
(Zeiss, Germany). Each treatment contained three replicates, and the 
experiment was repeated three times.

2.7 Intracellular xylitol concentration 
measurement

To analyze the intracellular xylitol levels, yeast cells were disrupted 
by physical methods. After centrifugation at 8000 rpm at −4°C for 
5 min, the yeast cell samples were collected and resuspended in 
HPLC-grade water. An HPLC system was employed to determine the 
xylitol concentrations (Agilent Series 1260, Agilent Technologies, 
Santa Clara, CA, United  States). The mobile phase consisted of 
acetonitrile-water (80:20, v/v) with a flow rate of 1 mL/min. Xylitol 
was quantified using a standard (Sigma-Aldrich, Shanghai, China) 
with a linear response range of 0.05–10 mg/mL (Krallish et al., 1997). 
Xylitol concentrations of yeast cells were expressed as mg/g. Each 
treatment contained three replicates, and the experiment was repeated 
three times.

2.8 RNA isolation and reverse 
transcription–quantitative real-time PCR 
analysis of gene expression

Total RNA from NX and XT cells was extracted, treated with 
DNase, and purified using the EasyPure® Plant RNA Kit (TransGen 
Biotech, Beijing, China). RNA quality was assessed by gel 
electrophoresis and spectrophotometry (Nanodrop, Thermo Fisher 
Scientific, Waltham, MA, United  States). First-strand cDNA was 
synthesized using 1 μg of total RNA, employing the TransScript® 
One-Step gDNA Removal and cDNA Synthesis SuperMix kit 
(TransGen Biotech). qPCR was performed on a Roche LightCycler® 
480 (Roche, Basel, Switzerland) with the following program: 95°C for 
5 min; 40 cycles of 95°C for 5 s and 60°C for 20 s; 95°C for 15 s; 60°C 
for 1 min, followed by a dissociation step at 95°C for 15 s. Gene 
expression of TrxR and POD was normalized to the reference gene 18S 
rRNA using the 2−ΔΔCT method (Livak and Schmittgen, 2001). Three 
independent biological replicates and three technical replicates were 
used, and the analysis was repeated three times.

2.9 Assay of enzyme activity

To measure antioxidant enzyme activity, XT and NX yeast cells 
were exposed to 30 mM H2O2 for 10, 20, or 30 min, with samples 
collected prior to oxidative stress exposure serving as time 0. Enzyme 
extracts were prepared according to the manufacturer’s instructions. 
Cells (1 × 108) were frozen in liquid nitrogen, resuspended in chilled 
potassium phosphate buffer (0.1 M, pH 7.4), and centrifuged at 
10,000 × g for 20 min at 4°C. The supernatant was collected for 
enzyme activity analysis. Activities of TrxR and POD were measured 
using commercial assay kits (Nanjing Jiancheng Bioengineering 
Institute, Nanjing, China) and expressed as U/mg protein. Protein 
content was determined using the Bradford assay, with bovine serum 
albumin as the standard (Bradford, 1976). One unit of TrxR activity 
was defined as the amount of enzyme that reduces 1 nmol of 
5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) per minute at 25°C. One 
unit of POD activity was defined as the amount of enzyme that causes 
a 0.01 absorbance change per minute at 470 nm due to guaiacol 
oxidation. Each assay was performed with three biological replicates 
and repeated three times.

2.10 Biocontrol assay

The biocontrol efficacy was evaluated following the method 
outlined by Wang et al. (2018), with some adjustments. In brief, three 
wounds (4 mm deep × 3 mm wide) were created on the equator of 
each apple using a sterile nail. A 10 μL suspension (1 × 107 cells/mL) 
of either XT or NX M. guilliermondii yeast cells was applied to each 
wound. One control group received sterile distilled water, while 
another control consisted of a 10 μL suspension (1 × 107 cells/mL) of 
fresh yeast cells, which had not been exposed to sugar or oxidative 
stresses. The treated apples were divided into two groups. After the 
fruits were air-dried for 2 h, 10 μL of a B. cinerea or P. expansum 
suspension (1 × 104 spores/mL) was introduced into each wound of 
the respective groups. The apples were then placed in covered plastic 
food trays, each sealed within a polyethylene bag, and stored at 
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25°C. After 4 days, the disease incidence and lesion diameter on each 
apple were measured. Incidence referred to the percentage of infected 
wounds, while lesion diameter was measured only for those wounds 
that showed infection. Each treatment was repeated three times with 
three replicates, each containing 10 apples. After 4 days treatments, 
uniformed apples of each treatment were photographed by a 
digital camera.

2.11 Data analysis

Statistical analyses were carried out using SPSS V26 (IBM Corp., 
Armonk, NY, United States). Comparisons between the NX and XT 
groups were made using Student’s t-test, with a significance level of 
p < 0.05. The results presented are based on pooled data from three 
independent experimental replicates, as a one-way analysis of variance 
(ANOVA) showed no significant effects of the treatments or 
interactions between variables and experiments.

3 Results

3.1 The effects of xylitol on the survival rate 
of Meyerozyma guilliermondii under 
oxidative stress

Exposure to 30 mM H2O2 resulted in a decrease in cell viability as 
the treatment duration increased from 10 to 30 min (Figure 1). After 
10 min of H2O2 exposure, the survival rates across all treatments were 
comparable, averaging around 86%. For yeast cells suspended in the NX 
group, survival rates dropped to 69 and 51% after 20 and 30 min of H2O2 
exposure, respectively. Interestingly, survival rate of XT cells showed an 
increasing trend. Yeast cells treated with 1 M xylitol exhibited survival 
rates of 75 and 78% after 20 and 30 min of H2O2 exposure, respectively. 
Similarly, cells treated with 0.5 M xylitol exhibited over 65% viability 
under oxidative stress at both 20 and 30 min.

3.2 Effect of xylitol on cell damage and ATP 
levels in Meyerozyma guilliermondii under 
oxidative stress

At the time 0 (immediately following a 30-min pre-treatment but 
before exposure to oxidative stress), about 5% of cells treated with 
0.5 M and 1 M xylitol, as well as the NX cells, were ROS-positive 
(Figure 2A). This proportion increased after exposure to 30 mM H2O2. 
At each time point, the cells treated with 0.5 M and 1 M xylitol showed 
significantly lower ROS levels compared to the NX cells. To investigate 
if the increase in ROS under oxidative stress was linked to 
mitochondrial dysfunction, ΔΨm and ATP content were measured. 
Figure 2B showed that ΔΨm was significantly changed between NX 
and XT cells under oxidative stress. And a decreasing trend of ΔΨm 
was observed in the XT cells compared to the NX group. As higher 
damage was observed in NX cells, ATP levels, reached their lowest 
point at 120 min when exposed to 30 mM H2O2 stress. In contrast, the 
ATP decline in XT cells was notably slower, cells treated with 1 M 
xylitol maintaining ATP levels approximately 10 times higher than 
those in the NX group at the 120-min (Figure 2C).

3.3 Yeast cells uptake xylitol under 
oxidative stresses

Compared to the NX group, yeast cells under oxidative stress 
exhibited a significant increase in intracellular xylitol levels following 
xylitol treatment. The intracellular xylitol concentration showed a 
positive relation to the increasing external xylitol concentrations. 
After 10 min treatment, the xylitol concentration in 0.5 and 1 M XT 
cells was significantly increased by 35.5% and 45%, respectively. When 
treated to 30 min, the highest intracellular xylitol levels were observed 
in 1 M XT cells (Figure 3).

3.4 Effect of xylitol treatment on the 
antioxidant system of Meyerozyma 
guilliermondii

The activities of thioredoxin reductase (TrxR) and peroxidase 
(POD) were evaluated in pre-treated and NX samples in response to 
oxidative stress. The findings revealed that XT cells had significantly 
higher TrxR and POD activities compared to NX yeast cells (Figure 4). 
Under oxidative stress, TrxR activity in XT cells was significantly 
greater than in NX cells (Figure 4A). Similarly, POD activity in XT 
cells exposed to oxidative stress remained consistently higher than in 
NX cells across all time points (Figure 4B). In M. guilliermondii cells 
treated with xylitol, both the activities of these antioxidant enzymes 
and their corresponding gene expression levels (Figure  5) were 
significantly elevated at all-time points (from 0 to 30 min), both before 
and after exposure to oxidative stress, compared to untreated cells.

3.5 Biocontrol of postharvest diseases in 
apples using Meyerozyma guilliermondii

As shown, the antagonistic yeast M. guilliermondii significantly 
reduced the incidence and lesion diameter of blue mold and gray 

FIGURE 1

Percent viability of Meyerozyma guilliermondii cells under H2O or 
xylitol subjected to a subsequent oxidative (30 mM H2O2) stress for 
10, 20 or 30 min. Prior to exposure to the subsequent oxidative stress 
served as Time 0. Data represent the mean ± standard deviation of 
three independent experiments, where each experiment consisted of 
three biological replicates (n = 9). Columns with different letters are 
significantly different according to a Duncan’s multiple range test at 
p < 0.05. ns, no significance.
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mold, caused by Botrytis cinerea and Penicillium expansum, 
respectively, in apples. Notably, the incidence of both molds in fruit 
treated with fresh yeast was approximately 50% lower than in the 

controls, where disease incidence reached 100% for both pathogens. 
In contrast, the incidence of apple rot was significantly reduced in XT 
cells compared to the controls and H2O2 treatments (Figures 6A,C,E). 
Additionally, the lesion diameter on apples infected with B. cinerea 
and P. expansum was significantly smaller in fruit treated with XT cells 
than in the control and H2O2 groups (Figures 6B,D,F). These results 
demonstrate that M. guilliermondii effectively reduced the incidence 
and severity of blue mold and gray mold pathogens, with XT yeast 
cells further enhancing the level of control over the control treatments.

4 Discussion

Biocontrol agents used in postharvest disease management face 
challenges posed by various abiotic stresses in packing houses and 
postharvest environments, such as oxidative stress, elevated 
temperatures, nutrient deficiencies, and unfavorable pH levels. The 
ability of yeast to survive and remain active under these stresses is 
critical for improving their biocontrol efficacy (Wang et al., 2010; An 
et al., 2012). Since biocontrol yeasts are particularly vulnerable to 
oxidative conditions, their survival is significantly compromised 
under oxidative stress (Wang et al., 2018).

Xylitol, a sugar alcohol commonly used as a food additive, acts as 
an antioxidant, presenting a potential strategy to enhance the stress 
tolerance of yeasts (Kulikova-Borovikova et al., 2018; Wei et al., 2022). 
This study assessed the survival of yeast cultures treated with xylitol 
for 1 h under oxidative stress. The results demonstrate that xylitol 

FIGURE 2

ROS accumulation (A), mitochondrial membrane potential analysis (B) and ATP levels (C) of Meyerozyma guilliermondii cells under H2O or xylitol 
subjected to a subsequent oxidative (30 mM H2O2) stress for 10, 20 or 30 min, (60 and 120 min for ATP analysis). Prior to exposure to the subsequent 
oxidative stress served as Time 0. Data represent the mean ± standard deviation of three independent experiments, where each experiment consisted 
of three biological replicates (n = 9). Columns with different letters are significantly different according to a Duncan’s multiple range test at p < 0.05. ns, 
no significance.

FIGURE 3

Intracellular xylitol concentrations of Meyerozyma guilliermondii 
cells under H2O or xylitol subjected to a subsequent oxidative 
(30 mM H2O2) stress for 10, 20 or 30 min. Prior to exposure to the 
subsequent oxidative stress served as Time 0. Xylitol concentrations 
represent as milligram per gram of yeast cell fresh weight (mg/g FW). 
Data represent the mean ± standard deviation of three independent 
experiments, where each experiment consisted of three biological 
replicates (n = 9). Columns with different letters are significantly 
different according to a Duncan’s multiple range test at p < 0.05. ns, 
no significance.
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treatment showed a significant promoting effect on the survival rate 
of M. guilliermondii under oxidative stress, with higher xylitol 
concentrations leading to a more pronounced protective effect. The 
XT yeast cells exhibited higher survival rates, may be attributed to two 
potential mechanisms. Firstly, the xylitol treatment provides limited 
osmotic protection, which reduced oxidative stress-induced damage 
(Karlgren et al., 2005). Secondly, the uptake of xylitol by yeast cells 
(Figure  3) may improve intracellular water utilization, thereby 
contributing to the resistance against oxidative stress (Krallish et al., 
1997). It should be noted that the viability in this study was quantified 
as CFU, which may result in an underestimation of the actual level of 
viable cells. This is due to the fact that, following treatment, some yeast 
cells may have reduced vitality, preventing them from growing on the 
culture medium. However, these cells still exhibited detectable changes 
in enzyme activity and lower levels of ATP.

Previous research has demonstrated that exposure to oxidative 
stress can severely impair cell viability by increasing ROS production 
(Liu et  al., 2011; Sui and Liu, 2014). The application of modified 
minimal mineral media, sugars, and sugar alcohols has been shown 
to mitigate the impact of high-temperature and oxidative stress in 

biocontrol yeasts by reducing intracellular ROS levels and minimizing 
oxidative damage (Sui and Liu, 2014; Ming et al., 2020). In this study, 
yeast cells treated with xylitol (XT group) exhibited lower levels of 
ROS, mitochondria dysfunction and higher ATP levels compared to 
the control cells. The correlation between lower ROS production, 
mitochondrial membrane potential and improved cell viability under 
oxidative stress suggests that xylitol enhances the oxidative resistance 
of yeast used as biocontrol agents. Since xylitol is involved in the 
glycolysis and the pentose phosphate pathway (Bertels et al., 2021; 
Narisetty et al., 2022), the uptake of xylitol by the yeast may regulate 
sugar metabolism or act as energy source, thus maintaining ATP 
production (Figure 3).

Antioxidant gene expression in yeast is typically upregulated in 
response to various stressors, helping the cells cope with environmental 
challenges (Martínez-Pastor et al., 2010; Huang et al., 2021). It has 
been reported that POD and TrxR participate in the oxidative response 
and enzymatic detoxification of ROS (Wang et al., 2018; Sun et al., 
2021). In this study, xylitol treatment resulted in increased expression 
of TrxR and POD in yeast cells exposed to oxidative stress, which may 
be effective in enhancing the antioxidative defense of yeasts. Moreover, 

FIGURE 4

Thioredoxin reductase [(A), TrxR] and peroxidase [(B), POD] activity of Meyerozyma guilliermondii cells under H2O or xylitol subjected to a subsequent 
oxidative (30 mM H2O2) stress for 10, 20 or 30 min. Prior to exposure to the subsequent oxidative stress served as Time 0. Data represent the mean ± 
standard deviation of three independent experiments, where each experiment consisted of three biological replicates (n = 9). Columns with different 
letters are significantly different according to a Duncan’s multiple range test at p < 0.05. ns, no significance.

FIGURE 5

Two antioxidant genes [TrxR (A) and POD (B)] expression levels of Meyerozyma guilliermondii cells under H2O or xylitol subjected to a subsequent 
oxidative (30 mM H2O2) stress for 10, 20, or 30 min. Prior to exposure to the subsequent oxidative stress served as Time 0. Data represent the mean ± 
standard deviation of three independent experiments, where each experiment consisted of three biological replicates (n = 9). Columns with different 
letters are significantly different according to a Duncan’s multiple range test at p < 0.05. ns: no significance.
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the enzyme activities of TrxR and POD, both essential for ROS 
detoxification (Yan et al., 2018; Sun et al., 2021; Huang et al., 2022), 
were significantly higher in XT cells. TrxR catalyzes the reduction of 
thioredoxin, while POD protects cells from ROS damage, playing a 
key role in biocontrol yeast (Greetham and Grant, 2009; Gostimskaya 
and Grant, 2016; Sun et al., 2021). The enhanced activity of these 
enzymes, along with their increased gene expression, indicated 
improved ROS clearance and higher survival rates in the XT yeast 
cells. Oxidative stress has also been shown to cause mitochondrial 
damage (Sui and Liu, 2014; Ming et al., 2020). In this study, oxidative 
stress significantly decreased ATP levels in the control cells, whereas 

xylitol treatment effectively mitigated this decline. The increase in 
survival, enhanced antioxidant enzyme activity, and reduction in ROS 
levels with xylitol treatment suggest a potential improvement in the 
biocontrol efficiency of yeast.

Xylitol, a widely utilized food additive, has been confirmed safe 
and healthy for consumption (Chen et al., 2010; Rice et al., 2020). 
Previous studies have indicated that under dehydration stress, 
yeasts such as Saccharomyces cerevisiae and Pachysolen tannophilus 
preferentially synthesize intracellular xylitol, which enhances their 
resistance to dehydration, with survival rates increased to 68% and 
57%, respectively (Krallish et al., 1997). These findings underscore 

FIGURE 6

Biocontrol efficacy of Meyerozyma guilliermondii against gray mold caused by Botrytis cinerea (A,B), blue mold caused by Penicillium expansum (C,D) 
in apples. Panels (E,F) showing the efficacy of xylitol on M. guilliermondii against gray mold and blue mold. Data represent the mean ± standard 
deviation of three independent experiments, where each experiment consisted of three biological replicates (n = 9). Columns with different letters are 
significantly different according to a Duncan’s multiple range test at p < 0.05.
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the potential of xylitol in enhancing yeast stress tolerance. For 
instance, treatment with 1 M xylitol elevated the viability of dried 
S. cerevisiae cells to 70% under dehydration, while a 2% 
(approximately 0.13 M) xylitol treatment improved the survival rate 
of Zygosaccharomyces rouxii from 65% to 69% following a 20-min 
exposure to 40°C heat stress (Kulikova-Borovikova et al., 2018; Wei 
et al., 2022). In this study, we systematically examined the impact 
of xylitol treatment on biocontrol yeasts under oxidative stress. 
Given xylitol’s involvement in the xylose metabolic pathway (Kumar 
et al., 2022), its absorption by yeast may enhance metabolic activity, 
thereby improving cell survival. Under oxidative stress induced by 
30 mM H2O2, XT cells exhibited at least a 6% higher viability 
compared to previous reports. Furthermore, we demonstrated for 
the first time that xylitol treatment significantly mitigated oxidative 
damage in M. guilliermondii, with TrxR and POD activities 
increasing by at least 18 and 40%, respectively, leading to a 25% 
increase in ATP production. Notably, XT cells showed enhanced 
efficacy in reducing apple infection by B. cinerea and P. expansum.

High survival and growth of biocontrol yeasts on wounds and fruit 
surfaces provide them with a competitive edge in acquiring nutrients and 
space (Liu et al., 2013). XT yeast cells exhibited improved survival and 
biocontrol efficiency compared to untreated cells. Previous studies have 
also shown that pretreatment with protectants such as glucose and 
sorbitol can enhance the biocontrol efficacy of yeast (Sui et al., 2012; Sui 
and Liu, 2014; Ming et al., 2020). Lesion diameters were measured at 
their largest point, providing an indicator of the maximum extent of 
infection. Additionally, XT cells were more effective in reducing the 
incidence of gray mold and blue mold than the control, consistent with 
previous research, which demonstrated that pretreatments can improve 
stress tolerance and activate antioxidant defenses, leading to enhanced 
biocontrol efficiency (Liu et al., 2011; Chi et al., 2015).

5 Conclusion

This study demonstrated that xylitol treatment significantly enhances 
the tolerance and efficacy of M. guilliermondii under oxidative stress 
conditions. Xylitol treatment notably improved yeast survival rates, 
antioxidant enzyme activities and intracellular xylitol levels, thereby 
reducing the intracellular accumulation of ROS, mitochondrial 
dysfunction and preserving ATP levels during oxidative stress. The 
enhanced oxidative stress tolerance conferred by xylitol also contributed 
to improved biocontrol performance, as evidenced by reduced disease 
incidence and lesion diameter in apples subjected to pathogenic fungal 
infections. These findings underscore the potential of xylitol as an 
effective treatment to enhance the efficiency of biocontrol yeasts.
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