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Mango (Mangifera indica) is a commercially significant fruit crop cultivated globally. 
However, leaf spot diseases are common in mango orchards, which severely impact 
the yield. Mycoviruses hold promise as potential biocontrol agents. To investigate 
this possibility, fungi were isolated from mango leaf spot lesions, resulting in the 
identification of six strains that contained double-stranded RNA (dsRNA). Through 
BLASTx analysis of the NCBI non-redundant database, 27 mycovirus-related contigs 
were identified, which corresponded to 10 distinct viruses grouped into 8 lineages: 
Alternaviridae, Chrysoviridae, Partitiviridae, Polymycoviridae, Orthototiviridae, 
Deltaflexiviridae, Narnaviridae, and Bunyaviricetes. Full genomic sequences of 
these viruses were characterized and confirmed to be associated with their host 
fungi. The findings included six novel mycoviruses, three previously unreported 
viruses discovered in new hosts, and one virus strain. These results highlight the 
diversity and taxonomy of mycoviruses found in fungi associated with mango 
leaf spots.
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1 Introduction

Mycoviruses infect fungi and are classified based on the host, genome structure, and 
phylogenetic relationships of viral proteins (Kondo et al., 2022). The majority of mycoviruses 
have double-stranded RNA (dsRNA) or positive-sense single-stranded RNA (+ssRNA) 
genomes; however, some mycoviruses with linear negative-sense single-stranded RNA 
(-ssRNA), single-stranded DNA (ssDNA), or circular single-stranded RNA genomes have also 
been identified (Yu et al., 2010; Liu et al., 2014; Schiwek et al., 2024). The recent Virus Metadata 
Resource (VMR, MSL39.v4) lists 40 viral families and 1 unclassified genus known to 
infect fungi1.

Advances in high-throughput next-generation sequencing (NGS) and bioinformatics have 
revolutionized the discovery of viruses across diverse organisms, including fungi. Large-scale 
meta-transcriptomic surveys, such as those conducted by Shi et al. (2016, 2018), have revealed 
thousands of novel viruses in invertebrates. Similarly, NGS-based viromics has identified 79 
novel viruses in tomatoes and weeds (Rivarez et al., 2023). Studies on pathogenic fungi, 

1 https://ictv.global/vmr
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endomycorrhizal fungi, and macrofungi have revealed the presence of 
new viral taxa, some of which possess unprecedented genomes (Sutela 
et al., 2020; Ye et al., 2023; Zhang et al., 2024; Zhou et al., 2024). 
Remarkably, even obligatory biotrophic oomycetes have been found 
to contain mycoviruses, further enriching the evolutionary narrative 
of Riboviria (Chiapello et al., 2020; Poimala and Vainio, 2024).

Fungal pathogens causing leaf spot diseases are an increasing 
threat to the vital tropical and subtropical mango fruit (Mangifera 
indica). The severity of mango leaf spots has risen globally in recent 
years (Guo et al., 2021). The following are some of the notable fungal 
pathogens: Phomopsis mangiferae, which causes stem-end rot (Ko 
et al., 2009); Pestalotioid fungi and Fusarium species, which cause leaf 
and gray leaf spots (Ko et al., 2007; Omar et al., 2018; Shu et al., 2020); 
and Botryosphaeriaceae fungi, which are associated with rachis 
necrosis, bark canker, and dieback (Javier-Alva et al., 2009; Shah et al., 
2010; Serrato-Diaz et  al., 2013). Although Nigrospora oryzae is a 
significant pathogen affecting crop production (Wang et al., 2021), its 
role in mango leaf diseases has not been documented to date. Recent 
studies have reported novel mycoviruses in Phomopsis vexans (Xie 
et  al., 2022), Neofusicoccum parvum (family Botryosphaeriaceae) 
(Marais et al., 2021; Comont et al., 2024), Pestalotiopsis sp. (Chen et al., 
2021), and N. oryzae (Liu et al., 2019; Yang et al., 2024).

Although the majority of mycoviruses establish latent infections, 
some significantly influence the growth, reproduction, and virulence 
of the host. For instance, Cryphonectria hypovirus 1 (CHV1) hinders 
host growth and has been successfully used in controlling chestnut 
blight disease (Rigling and Prospero, 2018). Sclerotinia sclerotiorum 
hypovirulence-associated DNA virus 1 (SsHADV1), which has a 
ssDNA circular genome, effectively manages rapeseed sclerotinia 
disease (Yu et al., 2010; Yu et al., 2013) and improves the yields of 
rapeseed and wheat (Tian et al., 2020; Zhang et al., 2020). Similarly, 
Fusarium graminearum gemytripvirus 1 (FgGMTV1) has been 
developed as a viral vector (Li et al., 2020; Zhang et al., 2023), and 
Diaporthe sojae circular DNA virus 1 (DsCDV1) significantly attenuates 
fungal virulence (Wang et al., 2024). In addition, Pestalotiopsis theae 
chrysovirus 1 (PtCV1) transforms its host fungus into a non-pathogenic 
endophyte (Zhou et al., 2021). Fusarium graminearum virus China 9 
(FgV-ch9), which causes hypovirulence in Fusarium graminearum, is 
utilized as a tool for determining reporter gene expression (Domènech-
Eres et al., 2024). The discovery of novel mycoviruses offers profound 
insights into viral ecology and evolution (Xie and Jiang, 2024).

In this study, we identified 10 mycoviruses from fungi associated 
with mango leaf spots using NGS and RNA-ligase-mediated rapid 
amplification of cDNA ends (RLM-RACE). Our findings include six 
novel viruses, three previously unreported viruses in their new hosts, 
and a virus strain. These findings enhance our understanding of the 
diversity and taxonomy of mycoviruses in mango-pathogenic fungi.

2 Materials and methods

2.1 Isolates and growth conditions

Fungal isolates were obtained from mango leaves that exhibited 
undefined lesion symptoms in Zhanjiang, Guangdong, China. Infected 
leaf segments (1 cm in diameter) were disinfected with 70% ethanol 
for 1 min, rinsed twice with sterile distilled water, and dried using a 

sterile filter paper. Five segments were placed onto potato dextrose 
agar (PDA; consisting of 200 g/L potato, 15 g/L agar, and 20 g/L 
dextrose) and incubated in the dark at 28°C for 2 days. Emerging 
hyphae were transferred to the fresh PDA medium. Cultures were 
maintained on PDA at 28°C in the dark, and fungal stocks were 
preserved in 25% (v/v) glycerol at −80°C.

2.2 dsRNA extraction, cloning, PCR 
amplification, and sanger sequencing

Double-stranded RNA (dsRNA) was isolated using the CF11 
cellulose powder method (Morris and Dodds, 1979). Fungi were 
cultivated on cellophane membranes placed over PDA plates for 
5 days. The hyphal mycelia (0.5 g) were harvested and used for 
dsRNA extraction. To remove DNA and single-stranded RNA 
(ssRNA), the dsRNA preparations were treated with DNase I and 
S1 nuclease (Takara Bio, Dalian, China) according to the 
manufacturer’s instructions. The purified dsRNA was separated 
via 1.2% agarose gel electrophoresis and visualized after staining 
with ethidium bromide. Target dsRNA bands were excised and 
purified using a FastPure Gel DNA Extraction Mini Kit (Vazyme 
Biotech, Nanjing, China). Cloning was performed using rPCR 
(Froussard, 1993).

For internal transcribed spacer (ITS) amplification, genomic 
DNA from dsRNA extractions was used as the template with ITS1/
ITS4 primers (Glass and Donaldson, 1995). PCR conditions 
included initial denaturation at 95°C for 5 min, 33 cycles of 
denaturation at 94°C for 30 s, annealing at 58°C for 30 s, and 
extension at 72°C for 60 s, followed by a final extension at 72°C for 
5 min (This protocol was applied to the rest of the PCR performed 
in this study). The purified PCR amplicons were inserted into the 
pMD18-T vector and then transformed into Top10 Escherichia coli 
competent cells. Three positive clones were selected from the 
transformed competent cells for Sanger sequencing (Tsingke 
Biotech, Guangzhou, China).

2.3 Total RNA extraction, Illumina 
sequencing, and analysis

The total RNA was extracted following the protocol of the 
NI-Sclerotinia sclerotiorum RNA reagent (NEWBIO INDUSTRY, 
Wuhan, China). RNA samples (~2 ng each) were pooled to a final 
concentration of 12 ng and sent to Suzhou Genewiz Corporation for 
Illumina sequencing. The raw sequence data are available in the 
NCBI Sequence Read Archive (SRA) under BioProject PRJNA1185921.

Raw reads were trimmed to remove adapter sequences (AAGTCG 
GAGGCCAAGCG-GTCTTAGGAAGACAA and AAGTCGGATC 
GTAGCCATGTCGTTCTGTGAGCCAAGGAGTTG) and low-quality 
bases using Trimmomatic v0.39 (Bolger et al., 2014). De novo assembly 
was performed using Trinity v2.8.5 (Haas et  al., 2013). Assembled 
contigs were de-duplicated and annotated using Diamond v0.9.30.131 
(Buchfink et  al., 2015) against the NCBI non-redundant protein 
database. Virus-associated contigs were identified via BLASTn against 
the NCBI core nucleotide database to exclude fungal sequences.
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2.4 Confirmation of putative mycoviruses 
and termini cloning

Individual total RNA of each strain was used as a template to 
synthesize first-strand cDNA using reverse transcriptase M-MLV (Takara, 
China) and random primers. Putative viral contigs were validated using 
RT-PCR with primer pairs listed in Supplementary Table S2.

RLM-RACE was performed to determine terminal sequences (Liu 
and Gorovsky, 1993). For this purpose, 100 ng of dsRNA or 10 μg of the 
total RNA was ligated with a PC3T7loop primer using an RNA ligase, 
followed by cDNA synthesis. PCR amplification was carried out with the 
primer PC2 and virus-specific primers (Supplementary Table S3). RACE 
products were cloned into pMD18-T vectors for Sanger sequencing. 
Nucleotide sequences were confirmed by sequencing three independent 
clones, and full-length virus genomes were assembled using the 
Sequence Assembly tool in DNAman software v7.0.2.176.

2.5 RNA alignment and structure prediction

Terminal identical sequences were aligned using a Multiple 
Alignment tool with fast alignment method of DNAMAN (version 7). 
Predicted panhandle structures at the termini of NoDV1-RNA1, 2, 3 
segments, and PmBV1 were generated using Mfold RNA structure 
software with default parameters (Zuker, 2003).

2.6 Phylogenetic analysis

Open reading frames (ORFs) were identified using the NCBI ORF 
Finder tool. Conserved domains were annotated using the NCBI 
conserved domain database2. Multiple sequence alignments were 
performed in CLUSTX with default settings and visualized 
with GeneDoc.

Phylogenetic trees based on RdRp sequences were constructed as 
described previously (Chen et al., 2024). Alignments were conducted 
using Mafft (Katoh and Standley, 2013), trimmed with TrimAL 
(Capella-Gutierrez et al., 2009), and maximum likelihood trees were 
built in IQ-TREE (Nguyen et al., 2015) with 1,000 bootstrap replicates. 
The best-fit protein substitution models were determined 
automatically by IQ-TREE. MEGA 7 was used for visualizing and 
editing phylogenetic trees.

3 Results

3.1 Identification of 10 mycoviruses in 6 
fungal strains

Fungal strains were isolated from mango leaf spot lesions 
collected in the summer of 2022. Among the 300 strains tested, 6 
were tested positive for dsRNA bands, which varied in both 

2 http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

number and electrophoretic mobility (Figure 1). These strains 
were identified by sequencing polymerase chain reaction (PCR)-
amplified internal transcribed spacer (ITS) regions and  
included Phomopsis sp. strain A6, Phomopsis phaseoli strain A19, 
N. oryzae strain B24, Botryosphaeria ramosa strain A92, 
N. parvum strain A85, and P. mangiferae strain P9 
(Supplementary Table S1).

The total RNA from the six strains was extracted and pooled to 
construct a next-generation sequencing (NGS) library. The library 
produced 12 GB of data, yielding 40,870,609 raw reads (SRA accession 
number: SRR31527143). After trimming, decontamination, and 
assembly, 57,272 unique contigs were identified, of which 51 were 
related to viral proteins based on the BLASTx analysis. Among these, 
24 contigs were linked to fungal genes via BLASTn, leaving 27 contigs 
identified as viral segments (Table 1). The majority of the contigs 
contained full-length or nearly full-length coding DNA sequences 
(CDSs), which were confirmed by reverse transcription (RT)-PCR 
(Figure 2).

The contigs detected in the B. ramosa strain A92, contig8561, 
contig4706, and contig27821, were significantly shorter than their 
closest viral CDS matches. To address this, a secondary NGS library 
was constructed using 12 ng of the total RNA from the strain A92, 
yielding 17 GB of data and 57,392,550 raw reads (SRA accession 
number: SRR31527142). The analysis revealed that the contigs 
92contig9071, 92contig9284, and 92contig9395 corresponded to 
contig8561, contig4706, and contig27821 and included full-length 
CDSs. In addition, four dsRNA segments from the strain A92 were 
sequenced using a random RT-PCR (rPCR). Three segments 
corresponded to the contigs 92contig9071, 92contig9284, and 
92contig9395, while the smallest segment (92contig7847) had no 
homology to the known genes. The terminal sequences of all 
identified viruses were validated using RLM-RACE 
(Supplementary Figures S1, S2).

3.2 Botryosphaeria ramosa polymycovirus 1

The Polymycoviridae family comprises multipartite dsRNA 
viruses with genome sizes ranging from 7.5 to 12.5 kb, typically 
organized in four to eight segments (Kotta-Loizou et al., 2022). 
Recent findings suggest that some members form filamentous 
virions, redefining their morphology (Jia et  al., 2017; Kotta-
Loizou et  al., 2022). In this study, we  identified the contigs 
92contig9071, 92contig9284, and 92contig9395 in the B. ramosa 
strain A92, which shared 47, 33, and 37% identity, respectively, 
with proteins from Sclerotinia sclerotiorum tetramycovirus-1 
(SsTmV1; Table  1). These segments, collectively named 
Botryosphaeria ramosa polymycovirus 1 (BrPmV1), formed a 
genome totaling 8,328 bp. The first segment (2,580 bp) encoded 
the RNA-dependent RNA polymerase (RdRp); the second 
(2,263 bp) encoded a serine protease-like protein; the third 
(2,056 bp) encoded methyltransferase; and the fourth (1,429 bp) 
encoded an uncharacterized protein (Figure  3A). All four 
segments shared identical GC-rich terminal sequences 
(Figure  3B). The phylogenetic analysis categorized BrPmV1 
within the Polymycoviridae family (Figure 3C), highlighting its 
contribution to the diversity of this viral group.
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3.3 A tri-segmented narnavirus in 
Neofusicoccum parvum

Narnaviridae is a family of simple, un-encapsidated +ssRNA 
viruses with genomes ranging from 2.3 to 2.9 kb, typically encoding a 
single RdRp (Hillman and Cai, 2013). Recent studies have described 
multi-segmented narnaviruses (Daghino et al., 2024; Muñoz-Suárez 
et  al., 2024). In this study, we  identified a unique tri-segmented 
narnavirus in the N. parvum strain A85, designated Neofusicoccum 
parvum narnavirus 4 (NpNarV4). Contig36167, containing two open 
reading frames (ORFs), was detected as two distinct segments 
(contig36167orf1 and contig36167orf2; Figure 2). No amplification 
was achieved using primers spanning the two ORFs. An additional 
contig, contig36685, encoding a hypothetical protein was detected in 
this strain. The full-length sequences of the three segments, designated 
NpNarV4-RNA1, RNA2, and RNA3, were 2,511 nt, 2,271 nt, and 
883 nt, respectively, excluding poly(A) or poly(U) tails (Figure 4A). 
All segments shared identical terminal sequences, with RNA1 
containing a poly(U) at the 5′ termini and RNA3 also containing a 
poly(U) at the 5′ terminus and a poly(A) at the 3′ termini (Figure 4B).

Proteins encoded by NpNarV4-RNA1, RNA2, and RNA3 shared 
72, 67, and 69% identities, respectively, with Zhangzhou narna tick 

virus 3, Downy mildew lesion-associated splipalmivirus 3, and Downy 
mildew lesion-associated splipalmivirus 4. Five conserved RdRp 
motifs were identified across RNA1 and RNA2 (Figure  4C). 
Interestingly, RNA3 encoded a hypothetical protein related to NUDIX 
hydrolase of Streptomyces sp. (22% identity; DELTA-BLAST).

Given its novel host and unique genetic features, NpNarV4 
represents a new member of the Narnaviridae family. The phylogenetic 
analysis of RdRp motifs revealed distinct clustering of RdRp-part1 and 
RdRp-part2, differing from Neofusicoccum parvum narnavirus 1, 2, 
and 3 (Figure  4D), underscoring the genetic and evolutionary 
complexity of the family.

3.4 Two Bunya-like mycoviruses

The Class Bunyaviricetes includes two major orders, 
Elliovirales (e.g., Cruliviridae, Fimoviridae, Hantaviridae) and 
Hareavirales (e.g., Arenaviridae, Discoviridae, Leishbuviridae), 
comprising hundreds of viruses that infect humans, animals, 
plants, and fungi (Kuhn et al., 2024). In our study, the N. oryzae 
strain B24 yielded three contigs, contig38664, contig38293, and 
contig37620, that encoded bunya-like proteins related to a large 
protein (LP), non-structural protein (NS), and nucleocapsid 
protein (NP) (Figure  2, Table  1). These segments, designated 
Nigrospora oryzae discovirus 1 (NoDV1), were 6,602 nt, 2,026 nt, 
and 1,245 nt in length, respectively (Figure 5A). NoDV1-RNA1 
encoded a large protein sharing 66% identity with Guyuan tick 
virus 1 (GtV1, an insect virus). NoDV1-RNA2 encoded a 
non-structural protein sharing 31% identity with Leptosphaeria 
biglobosa negative ssRNA virus 3 (LbNSRV3). NoDV1-RNA3 
encoded nucleocapsid protein sharing 51% identity with 
Penicillium roseopurpureum negative ssRNA virus 1 (PrNSRV1). 
Notably, the 5′ and 3′ terminal sequences of each NoDV1 segment 
were identical (Figure 5B).

In the P. mangiferae strain P9, contig38185 encoded an RdRp 
related to Rhizoctonia solani negative-stranded virus 4 (RsNSV4) with 
46% identity, which we named Pestalotiopsis mangiferae bunyavirus 1 
(PmBV1) (Figure 2, Table 1). The full length of PmBV1 was 7,190 nt, 
with complementary 3′ and 5′ terminal structures similar to those 
observed in NoDV1 (Figure  5C). The phylogenetic analysis 
categorized NoDV1 within the family Discoviridae and PmBV1 
among unclassified viruses in the order Hareavirales (Figure 5D). 
These findings revealed NoDV1 and PmBV1 as novel bunya-like 
mycoviruses in fungi.

3.5 Two viruses related to Chrysovirus

The Chrysoviridae family consists of dsRNA viruses typically 
encapsidated into four segments ranging from 2.5 to 3.6 kb (Kotta-
Loizou et al., 2020). We identified two novel chrysoviruses in the 
N. parvum strain A85 and the P. mangiferae strain P9, respectively. In 
strain A85, contigs 37,831, 36,161-gene1, 36,161-gene2, and 32,303 
corresponded to Botryosphaeria dothidea chrysovirus 1 (BdCV1) 
(Table  1) and have been designated Neofusicoccum parvum 
chrysovirus 2 (NpCV2). These segments are 3,643 bp, 2,719 bp, 

FIGURE 1

Colonies and dsRNA profiles of six fungal strains. (A) Colony 
morphology of the Phomopsis sp. strain A6, Phomopsis phaseoli 
strain A19, Nigrospora oryzae strain B24, Botryosphaeria ramosa 
strain A92, Neofusicoccum parvum strain A85, and Pestalotiopsis 
mangiferae strain P9. (B) dsRNA profiles of strains A6, A19, B24, A92, 
A85, and P9. The first and last lanes show markers DL15000 and 
DL5000, respectively (Takara, China).
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TABLE 1 Viral sequences in this study.

Name of viruses Virus abbrev. GenBank accession 
number

Viral full length 
(bp)1

Best match Aa identity (%) Family/class Genome 
type

Neofusicoccum parvum narnavirus 4 

(RNA1)

NpNarV4-RNA1 PQ653950 2,511 RNA-dependent RNA polymerase, Zhangzhou Narna 

tick virus 3 (UYL95381.1)

72 Narnaviridae +ssRNA

Neofusicoccum parvum narnavirus 4 

(RNA2)

NpNarV4-RNA2 PQ653952 2,271 RdRp, Downy mildew lesion associated splipalmivirus 

3 (WNA22209.1)

67 Narnaviridae +ssRNA

Neofusicoccum parvum Narnavirus 4 

(RNA3)

NpNarV4-RNA3 PQ653951 883 Hypothetical protein, Downy mildew lesion 

associated splipalmivirus 4 (WNA22213.1)

69 Narnaviridae +ssRNA

Pestalotiopsis mangiferae 

deltaflexivirus 1-P9

PmDfV1-P9 PQ653961 7,719 Neopestalotiopsis nebuloides deltaflexivirus 1 

(XBR32758.1)

98 Deltaflexiviridae +ssRNA

Phomopsis phaseoli alternavirus 1 

(dsRNA1)

PpAV1 PQ653938 3681 RNA-dependent RNA polymerase, Diaporthe 

alternavirus 1 (BDQ13829.1)

97 Alternaviridae dsRNA

Phomopsis phaseoli alternavirus 1 

(dsRNA2)

PpAV1 PQ653939 2,678 Hypothetical protein, Diaporthe alternavirus 1 

(BDQ13830.1)

98 Alternaviridae dsRNA

Phomopsis phaseoli alternavirus 1 

(dsRN3)

PpAV1 PQ653940 2,479 Coat protein, Diaporthe alternavirus 1 (BDQ13831.1) 96 Alternaviridae dsRNA

Phomopsis phaseoli alternavirus 1 

(dsRNA4)

PpAV1 PQ653941 1,699 Hypothetical protein, Diaporthe alternavirus 1 

(BDQ13832.1)

81 Alternaviridae dsRNA

Pestalotiopsis mangiferae chrysovirus 1 

(dsRNA1)

PmCV1 PQ653957 3,480 RNA-dependent RNA polymerase, Alphachrysovirus 

cerasi (CAH03664.1)

59 Chrysoviridae dsRNA

Pestalotiopsis mangiferae chrysovirus 1 

(dsRNA2)

PmCV1 PQ653958 3,060 Putative coat protein, Alphachrysovirus cerasi 

(YP_001531162.1)

42 Chrysoviridae dsRNA

Pestalotiopsis mangiferae chrysovirus 1 

(dsRNA3)

PmCV1 PQ653959 2,789 Putative protease, Alphachrysovirus cerasi 

(YP_001531161.1)

48 Chrysoviridae dsRNA

Pestalotiopsis mangiferae chrysovirus 1 

(dsRNA4)

PmCV1 PQ653960 2,265 Hypothetical protein, Alphachrysovirus cerasi 

(CAH03667.1)

30 Chrysoviridae dsRNA

Neofusicoccum parvum chrysovirus 2 

(dsRNA1)

NpCV2 PQ653953 3,643 RNA-dependent RNA polymerase, Betachrysovirus 

botryosphaeriae (AJD14830.1)

97 Chrysoviridae dsRNA

Neofusicoccum parvum chrysovirus 2 

(dsRNA2)

NpCV2 PQ653954 2,719 Coat protein, Botryosphaeria dothidea chrysovirus 

1-like (UVZ34690.1)

97 Chrysoviridae dsRNA

Neofusicoccum parvum chrysovirus 2 

(dsRNA3)

NpCV2 PQ653955 2,590 Hypothetical protein QK517_s3gp1, Botryosphaeria 

dothidea chrysovirus 1 (YP_010839425.1)

94 Chrysoviridae dsRNA

Neofusicoccum parvum chrysovirus 2 

(dsRNA4)

NpCV2 PQ653956 2,589 Hypothetical protein, Botryosphaeria dothidea 

chrysovirus 1 (YP_009353028.1)

94 Chrysoviridae dsRNA

Phomopsis partitivirus 3 (dsRNA1) PPV3 PQ653936 1807 RNA-dependent RNA polymerase, Sinodiscula 

camellicola partitivirus 1 (XFU40758.1)

68 Partitiviridae dsRNA

(Continued)
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TABLE 1 (Continued)

Name of viruses Virus abbrev. GenBank accession 
number

Viral full length 
(bp)1

Best match Aa identity (%) Family/class Genome 
type

Phomopsis partitivirus 3 (dsRNA2) PPV3 PQ653937 1739 Capsid protein, Sinodiscula camellicola partitivirus 1 

(XFU40757.1)

60 Partitiviridae dsRNA

Botryosphaeria ramosa polymycovirus 

1 (dsRNA 1)

BrPmV1 PQ653946 2,580 RNA-dependent RNA polymerase, Sclerotinia 

sclerotiorum tetramycovirus-1 (AWY10945.1)

47 Polymycoviridae dsRNA

Botryosphaeria ramosa polymycovirus 

1 (dsRNA 2)

BrPmV1 PQ653947 2,263 Hypothetical protein, Sclerotinia sclerotiorum 

tetramycovirus-1 (AWY10946.1)

33 Polymycoviridae dsRNA

Botryosphaeria ramosa polymycovirus 

1 (dsRNA3)

BrPmV1 PQ653948 2056 Methyltransferase, Sclerotinia sclerotiorum 

tetramycovirus-1 (AWY10947.1)

37 Polymycoviridae dsRNA

Botryosphaeria ramosa polymycovirus 

1 (dsRNA4)

BrPmV1 PQ653949 1,429 No match Polymycoviridae dsRNA

Nigrospora oryzae victorivirus 2-B24 

(ORF1)

NoVV2-B24 PQ653942 5,161 RNA-dependent RNA polymerase, Nigrospora 

sphaerica victorivirus 1 (BCY26964.1)

84 Pseudototiviridae dsRNA

Nigrospora oryzae victorivirus 2-B24 

(ORF2)

NoVV2-B24 PQ653942 5,161 Coat protein, Nigrospora oryzae victorivirus 2 

(AZP53926.1)

83 Pseudototiviridae dsRNA

Pestalotiopsis mangiferae bunyavirus 1 PmBV1 PQ653962 7,190 RNA-dependent RNA polymerase, Rhizoctonia solani 

negative-stranded virus 4 (ALD89133.1)

46 Bunyaviricetes -ssRNA

Nigrospora oryzae discovirus 1 

(RNA1)

NoDV1 PQ653943 6,604 Large protein, Guyuan tick virus 1 66 Discoviridae -ssRNA

Nigrospora oryzae discovirus 1 

(RNA2)

NoDV1 PQ653944 1930 Non-structural protein, Leptosphaeria biglobosa 

negative ssRNA virus 3 (UNI72637.1)

31 Discoviridae -ssRNA

Nigrospora oryzae discovirus 1 

(RNA3)

NoDV1 PQ653945 1,245 Nucleocapsid protein, Penicillium roseopurpureum 

negative ssRNA virus 1 (YP_010840310.1)

51 Discoviridae -ssRNA

1Virus sequence length without the termini polynucleotide, such as poly(A) or poly(U).
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2,590 bp, and 2,589 bp in length, respectively (Figure 6A). Notably, 
dsRNA3 and dsRNA4 contained poly(U) sequences at their 3′ 
termini. Predicted ORFs exhibited high identities (97, 97, 94, and 
94%) with BdCV1 proteins, identifying NpCV2 as a novel host-
associated chrysovirus.

In strain P9, contigs 34,766, 38,856, 39,201, and 39,301 
corresponded to Alphachrysovirus cerasi and have been named 
Pestalotiopsis mangiferae chrysovirus 1 (PmCV1). These four segments 
measured 3,480 bp, 3,060 bp, 2,789 bp, and 2,265 bp in length, each 
encoding a single predicted ORF (Figure 6B). The proteins of PmCV1 
exhibited 59, 42, 48, and 30% identities with those of Alphachrysovirus 
cerasi, respectively (Table 1).

The phylogenetic analysis revealed that NpCV2 clustered with the 
genus Betachrysovirus, while PmCV1 aligned with the genus 
Alphachrysovirus (Figure  6C). Collectively, our findings proposed 
PmCV1 as a novel member of the Chrysoviridae family.

3.6 Phomopsis partitivirus 3

The Partitiviridae family, widespread among plants, fungi, and 
protozoa, comprises five recognized genera: Alphapartitivirus, 
Betapartitivirus, Deltapartitivirus, Gammapartitivirus, and Cryspovirus 
(Vainio et  al., 2018). Some viruses, however, remain unclassified 
within these genera, leading to proposals for two additional genera: 

Epsilonpartitivirus and Zetapartitivirus (Zhu et al., 2024). Previously, 
Phomopsis asparagi partitivirus 1 (PaPV1) and Phomopsis vexans 
partitivirus 1 (PvPV1) were classified under Gammapartitivirus and 
Deltapartitivirus, respectively3.

In our study, contig 34,008 and contig 29,582 were detected in the 
Phomopsis sp. strain A6, exhibiting 68 and 60% identities, respectively, 
with the RdRp and coat protein (CP) of Sinodiscula camellicola partitivirus 
1 (ScPV1) (Figure  2, Table  1). These were designated as Phomopsis 
partitivirus 3 (PhPV3). The two dsRNA segments of PhPV3 measured 
1,849 bp and 1,745 bp in length, respectively, and shared identical 
terminal sequences (Figures 7A,B). The phylogenetic analysis categorized 
PhPV3 within the proposed genus Epsilonpartitivirus, distinctly separate 
from PaPV1 and PvPV1 (Figure 7C). PhPV3, found in a novel host, 
represents a new member of the proposed genus Epsilonpartitivirus.

3.7 Discovery of three additional viruses

Our study identified three additional mycoviruses with significant 
amino acid similarity to known viruses. In the P. phaseoli strain A19, 
contig 39,771, contig 39,474, contig 39,168, and contig 38,550 encoded 
four predicted proteins sharing identities of 97, 98, 96, and 81%, 

3 www.ncbi.nlm.nih.gov/Taxonomy/

FIGURE 2

RT-PCR validation of viral contigs in six fungal strains. Primer sequences and predicted PCR product sizes are detailed in Supplementary Table S2. The 
electrophoresis map shows corresponding contigs and viral names on the right hand side. Lane M contains the DNA marker DL2000 (Takara, China).
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respectively, with Diaporthe alternavirus 1 (DaV1). Since Phomopsis 
represents the asexual state of Diaporthe, and no spores of strain A19 
were observed on PDA plates, we designated this virus as Phomopsis 
phaseoli alternavirus 1 (PpAV1). Similar to DaV1, the genome RNAs 
of PpAV1 contained poly(A) tails (Figure 8A).

In the P. mangiferae strain P9, contig 39,786 encoded an RdRp 
sharing 98% identity with Neopestalotiopsis nebuloides deltaflexivirus 
1. This virus was named Pestalotiopsis mangiferae deltaflexivirus 1-P9 
(PmDfV1-P9). The PmDfV1-P9 genome encoded four predicted 
ORFs and featured a polyA tail at its 3′ terminus (Figure 8B).

Finally, in the N. oryzae strain B24, contig 16,704 and contig 36,111 
encoded an RdRp and a coat protein (CP), sharing 84 and 83% identities, 
respectively, with Nigrospora oryzae victorivirus 2 (NoVV2). To confirm 
the sequence linkage between contig16704 and contig36111, primers 
vicF2866 (located in Contig36111) and vicR4131 (in Contig16704) were 
designed, respectively (Supplementary Table S4), and amplification 
results confirmed the full-length sequence of Nigrospora oryzae 
victorivirus 2-B24 (NoVV2-B24) (Supplementary Figure  S3). The 
complete genome of NoVV2-B24 spans a length of 5,161 bp and features 
two large overlapping ORFs (Figure 8C).

FIGURE 3

Genome organization and phylogenetic analysis of Botryosphaeria ramose polymycovirus 1 (BrPV1). (A) Genome schematic of BrPV1. Black lines 
indicate dsRNA, with colored boxes denoting ORFs. Labels include Pro (protease) and Met (methyltransferase). (B) Sequence similarity of the 5’ and 3’ 
terminal regions of BrPV1 RNA1–4. (C) Phylogenetic tree of Polymycoviridae viruses, based on RdRp sequences, constructed using the maximum 
likelihood method.
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4 Discussion

This is the first study to document the presence of 10 mycoviruses 
in 6 fungi that are associated with mango leaf spots in China. Using 
NGS and rPCR, 27 viral sequences were efficiently identified from 6 
dsRNA-containing fungal strains. A total of 10 mycoviruses were 
classified into 8 distinct lineages: Alternaviridae, Chrysoviridae, 
Partitiviridae, Polymycoviridae, Orthototiviridae, Deltaflexiviridae, 

Narnaviridae, and Bunyaviricetes. With the exception of NoVV2-B24, 
which is a viral strain of NoVV2, the other nine viruses exhibited less 
than 60% amino acid sequence identity with their closest known 
references or were discovered in novel hosts. This suggests either 
significant divergence or association with previously 
unidentified viruses.

In this study, the initial NGS pool comprised only six fungal 
strains—a relatively limited number of mixed species. Although a 

FIGURE 4

Genome organization and phylogenetic analysis of Neofusicoccum parvum narnavirus 4 (NpNarV4). (A) Genome schematics for NpNarV4 RNA1-3. 
Black lines indicate dsRNA, with motifs (F, A, B, C, D) and ORFs outlined in colored boxes. (B) Sequence similarity of 5’ and 3’ terminal regions of 
NpNarV4 RNA1-3. (C) Alignment of RdRp motifs from Narnavirus genus viruses. Accession numbers and virus names are listed in Table S5. 
(D) Phylogenetic tree of Narnaviridae viruses, based on RdRp sequences, using the maximum likelihood method.
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FIGURE 5

Genome organization and phylogenetic analysis of Nigrospora oryzae discovirus 1 (NoDV1) and Pestalotiopsis mangiferae bunyavirus 1 (PmBV1). Black 
lines represent genomic dsRNA. Colored boxes represent the ORFs encoded by positive-strand viral RNAs. LP, large protein; Ns, nonstructure protein; 
NP, nucleocapsid protein. (A) Genome schematics for NoDV1 RNA1 -3 and PmBV1. Black lines indicate dsRNA, with ORFs shown in colored boxes. 
(B) Sequence similarity of 5’ and 3’ terminal regions of NoDV1 RNA1 -3 and PmBV1 segments. (C) Complementarity analysis of the 5’ and 3’ terminal 
regions of NoDV1 RNA1 -3 and PmBV1, showing potential panhandle structures formed by inverted complementarity, as predicted using Mfold RNA 
structure software. (D) Phylogenetic tree of Bunyaviricetes viruses, based on RdRp sequences, using the maximum likelihood method.
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majority of the viral contigs contained complete coding sequences 
(CDSs), a few contigs, such as contig 8,561, contig 4,706, and contig 
27,821, were considerably shorter than the related genomic RNAs of 
polymycoviruses. To address this, a second NGS pool was prepared 
using the total RNA from the strain A92, which produced lengthy 
contigs (92contig9071, 92contig9284, and 92contig9395) with 
complete CDSs of BrPmV1. Additionally, rPCR revealed that the 
smallest dsRNA band (1.5 kb) from the strain A92 corresponded to 
BrPmV1 RNA4. Notably, when we used the sequence of BrPmV1 
RNA4 for BLASTn against the two NGS assemblies, no matching 
contig was found in the mixed-fungi NGS pool. However, the second 
NGS assembly contained 92contig7847, which encoded the entire 

CDS. These findings indicate that pooling multiple fungal species in 
NGS experiments may compromise the integrity of specific viral 
sequences. NGS of individual strains and rPCR targeting specific 
fragments could improve the integrity and accuracy of 
virome investigation.

Polymycoviruses, which possess the characteristics of both dsRNA 
and + ssRNA viruses, as well as encapsidated and capsidless RNA 
viruses, are known to influence host phenotypes (Wang et al., 2023). 
For instance, Metarhizium anisopliae polymycovirus 1 enhances host 
growth, conidiation, and UV-B sensitivity (Wang et al., 2023), while 
Aspergillus fumigatus polymycovirus 1 slows host growth and increases 
susceptibility to stressors such as high temperature, Congo red, and 

FIGURE 6

Genome organization and phylogenetic analysis of Neofusicoccum parvum chrysovirus 2 (NpCV2) and Pestalotiopsis mangiferae chrysovirus 1 
(PmCV1). (A) Schematic representation of NpCV2. (B) Schematic representation of PmCV1 genomes. Black lines represent dsRNA, with ORFs shown in 
colored boxes. (C) Phylogenetic tree of Chrysoviridae viruses, based on RdRp sequences, constructed using the maximum likelihood method.
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hydrogen peroxide (Sass et al., 2023). In this study, dsRNA1, dsRNA2, 
and dsRNA3 of BrPmV1 showed low sequence identities with 
SsTmV1. The smallest BrPmV1 dsRNA4 appears to encode a novel 
protein with no homolog in the known databases. Whether BrPmV1 
forms filamentous particles remains unclear. Importantly, BrPmV1 is 
the first polymycovirus identified in B. ramosa and appears to 
be phylogenetically distinct from other polymycoviruses infecting 
Botryosphaeria species.

The Narnaviridae family is characterized by simple RNA viruses 
that typically encoded only one RdRp protein, as seen in the 

Saccharomyces 20S RNA narnavirus (ScNV-20S) and Saccharomyces 
23S RNA narnavirus (ScNV-23S). Recent studies have revealed 
narnaviruses with multiple segments, such as splipalmiviruses, where 
the RdRp palm domain is divided across separate genomic segments 
(Sato et al., 2022; Daghino et al., 2024). In this study, the five RdRp 
motifs of NpNarV4 were divided into two segments. Two parts of RdRp 
were also grouped into two separate phylogenetic branches, which 
implied their evolutionary independence; but how the two RdRp parts 
supply the replication of NpNarV4 remain to be  explored. Some 
narnaviruses also possessed a third segment encoding hypothetical 

FIGURE 7

Genome organization and phylogenetic analysis of Phomopsis partitivirus 3 (PhPV3). (A) Schematic diagram of the PhPV3 genome. Black lines indicate 
dsRNA, while colored boxes represent ORFs encoded by positive-strand viral RNAs. (B) Sequence similarity analysis of the 5’ and 3’ terminal regions of 
PhPV3 dsRNA1 and dsRNA2. (C) Phylogenetic tree of viruses in the Partitiviridae family, based on RdRp sequences, constructed using the maximum 
likelihood method.
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proteins, such as Magnaporthe oryzae narnavirus 1 and Oidiodendron 
maius splipalmivirus 1 (Chiba et  al., 2021; Daghino et  al., 2024). 
Intriguingly, the RNA3 of Botrytis cinerea narnavirus 1 (BcNV1) 
encoded a hypothetical protein homologous to the envelope 
glycoproteins of herpesviruses and the capsid proteins of the white spot 
syndrome virus (Muñoz-Suárez et al., 2024). NpNarV4 RNA3 encoded 
a protein featuring a NUDIX hydrolase 26 domain (accession number 
cd04685). Similar domains have been observed in the proteins of 
African swine fever virus (ASFV), Lentinula edodes mycovirus HKB 
(LeVHKB), Rhizoctonia fumigate virus 1 (RfV1), and Thelephora 
terrestris virus 1 (TtV1) (Cartwright et al., 2002; Magae, 2012; Li et al., 
2015; Petrzik et  al., 2016). NUDIX hydrolases are known for their 
“housekeeping” functions such as removing harmful metabolites 
(McLennan, 2006). The g5R protein of ASFV (dsDNA virus) regulates 
viral morphogenesis involving diphosphoinositol polyphosphate-
mediated membrane trafficking (Cartwright et al., 2002). LeVHKB, 
RfV1, and TtV1 are single-segment dsRNA mycoviruses encoding large 
hypothetical proteins (162, 198, 202 kDa) with NUDIX motifs. The 
discovery of NpNarV4 as the first +ssRNA virus encoding a NUDIX 
domain underscores its novelty and potential biological significance.

The first evidence of fungal negative-stranded RNA virus was 
identified in the phytopathogenic ascomycete Erysiphe pisi (Kondo 
et al., 2013), followed by Sclerotinia sclerotiorum negative-stranded RNA 
virus 1 (SsNSRV1) (Liu et al., 2014). Subsequent discoveries included 
a bunya-like mycovirus with a single-segment genome (Donaire et al., 
2016) and multipartite bunya-like mycoviruses in Lentinula edodes, 
Valsa mali, and Sclerotinia sclerotiorum (Lin et al., 2019; Huang et al., 
2023; Dai et al., 2024). Pestalotiopsis negative-stranded RNA virus 1 
(PNSRV1), an unclassified bunyavirus, was identified in Pestalotiopsis 
sp. (Chen et al., 2021). Phylogenetic analyses revealed that PmBV1 and 
NoDV1 belong to the order Hareavirales within the class Bunyaviricetes. 
Independent from PNSRV1, PmBV1 formed a distinct branch with 
Rhizoctonia solani negative-stranded virus 4 (RsNSV4), Cladosporium 
cladosporioides negative-stranded RNA virus 2 (CcNSRV2), and Ixodes 
scapularis associated virus-6 (IsAV-6), suggesting the potential 

existence of a new family within Hareavirales. RdRp, Ns, and NP of 
NoDV1 were most closely related to GtV1, LbNSRV3, and PrNSRV1, 
respectively. Notably, NoDV1 represents the first discovirus identified 
in N. oryzae. These findings demonstrate the diversity and prevalence 
of negative-stranded RNA viruses in the fungal kingdom.

In this study, we identified two chrysoviruses. PmCV1 is the first 
chrysovirus discovered in P. mangiferae, forming a distinct 
phylogenetic branch alongside Alphachrysovirus cerasi. It also 
represents the second chrysovirus found in Pestalotioid fungi. 
Meanwhile, NpCV2, although closely related to BdCV1, was identified 
as a new host. Notably, the P3 protein encoded by BdCV1 functions 
as a silencing suppressor, slowing growth and reducing the virulence 
of B. dothidea (Li et al., 2023). Whether P3 protein of NpCV2 exhibits 
similar silencing suppressor activity and impacts the phenotypes of 
N. parvum remains to be explored.

The phylogenetic analysis revealed that PhPV3 clustered with 
members of the proposed Epsilonpartitivirus family, which includes 
both mycoviruses (e.g., Diplodia seriata partitivirus 1, Colletotrichum 
eremochloae partitivirus 1, and ScPV1) and insect viruses (e.g., Wuhan 
fly virus 5, Vera virus, Hubei diptera virus 17, and Atrato partiti-like 
virus 2). However, the mycovirus and insect virus clades within this 
family remained distinct, suggesting independent evolutionary 
trajectories across different hosts.

The genomic analysis of several positive-stranded RNA viruses 
revealed 3′-poly(A) and 5′-poly(U) tracts (van Ooij et al., 2006). Our 
study identified the presence of poly(U) or poly(A) in partial viral 
genome termini. Specifically, we  observed 3′-poly(A) or poly(U) 
sequences in the genome termini of NpNarV4 and PpAV1, while the 
RNA3 and RNA4 segments of NpCV2 exhibited 3′-poly(U) tracts, 
respectively. Such sequences, previously identified in the hepatitis C 
virus (+ssRNA), are known to play critical roles in viral replication 
(You and Rice, 2008). The presence of poly(U) tracts in NpCV2 
highlights the need for further investigation into their potential 
functions in viral replication. In addition, our study identified five 
multipartite viruses—PhPV3, PpAV1, BrPmV1, NpNarV4, and 

FIGURE 8

Genome organization of (A) Phomopsis phaseoli alternavirus 1 (PpAV1), (B) Nigrospora oryzae victorivirus 2-B24 (NoVV2-B24), and (C) Pestalotiopsis 
mangiferae deltaflexivirus 1-P9 (PmDfV1-P9). Black lines indicate dsRNA. Colored boxes represent ORFs, while red and green lines denote start and 
stop codons, respectively.
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NoDV1—with identical terminal sequences. This finding underscores 
the importance of cis-acting elements in regulating viral replication 
processes and warrants deeper functional studies.

5 Conclusion

Our research significantly advances the field of mycovirology, 
identifying six novel mycoviruses: BrPmV1, NpNarV4, NoDV1, 
PmBV1, PmCV1, and PhPV3. These discoveries enrich the known 
diversity of mycoviruses and their potential ecological roles in 
fungal hosts. Additionally, we documented four other viruses—
PpAV1, NpCV2, and PmDfV1-P9 in new hosts and NoVV2-B24 as 
a new viral strain. These findings suggest that mycoviruses not only 
adapt to new hosts but also evolve into novel strains, offering 
insights into viral evolution. Beyond their evolutionary implications, 
our discoveries highlight the potential biocontrol applications of 
mycoviruses against plant pathogenic fungi. Exploring the diversity, 
host adaptability, and molecular mechanisms of these mycoviruses 
opens promising avenues for advancing agricultural, ecological, and 
virological research.
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SUPPLEMENTARY FIGURE S1

RLM-RACE amplification of viral termini (Part 1). RACE amplification products 
confirm viral termini of (A) NpNarV4, (B) BrPmV1, (C) NoDV1, and (D) PmBV1. 
Specific primers and target termini are labeled. Primer sequences are in 
Supplementary Table S3. Red arrows indicate target PCR products. Lane M: 
DNA marker DL2000 (Takara).

SUPPLEMENTARY FIGURE S2

RLM-RACE amplification of viral termini (Part 2). RACE products confirm 
termini of (A) PpAV1, (B) PhPV3, (C) PmCV1, (D) NoVV2-B24, (E) NpCV2, and 
(F) PmDfV1-P9. Specific primers and target termini are labeled. Primer 
sequences are in Supplementary Table S3. Red arrows indicate target PCR 
products. Lane M: DNA marker DL2000 (Takara).

SUPPLEMENTARY FIGURE S3

RT-PCR validation of the gap between contigs 16704 and 36111. Primer 
vicF2866 targets contig36111, and primer vicR4131 targets contig16704. 
Primer sequences are listed in Supplementary Table S4. Lane M shows DNA 
marker DL2000 (Takara).
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