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Introduction: It is not clear about mechanisms underlining the inter-segment 
reassortment of Influenza A viruses (IAVs).We analyzed the viral nucleotide 
composition (NC) in coding sequences,examined the intersegment NC 
correlation, and predicted the IAV reassortment using machine learning (ML) 
approaches based on viral NC features.

Methods: Unsupervised ML methods were used to examine the NC difference 
between human-adapted and zoonotic IAVs. Supervised ML models of random 
forest classifier (rfc) and multiple-layer preceptor (mlp) were developed to 
predict the human adaption to IAVs.

Results: Our results demonstrated that the frequencies of thymine, cytosine, 
adenine,and guanine (t, c, a, and g), as well as the content of gc/at were 
consistently high or low for the segments of PB2, PB1, PA, NP, M1, and NS1 
(ribonucleoprotein plus [RNPplus]), between mammalian and avian IAVs or 
between influenza B viruses (IBVs) and IAVs.RNPplus NC negatively correlated 
with the NC for HA, NA, and M1 (envelope protein plus [EPplus]). The human-
adapted NC accurately discriminated between human IAVs and avian IAVs. A 
total of 221,184 simulated IAVs with pd09H1N1 EPplus and with RNPplus from 
other IAV subtypes indicated a high adaption of the RNPplus, from H6N6, 
H13N2, and H13N8 and other IAVs.

Discussion: In summary, there is a distinct human adaption-specific genomic 
NC between human IAVs and avian IAVs. The intersegment NC correlation 
constrains segment reassortment. This study presents a novel strategy for 
predicting IAV reassortment based on viral genetic compatibility.
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Highlights

 • There was a correlation between the intersegment nucleotide composition and the 
genomic nucleotide composition of influenza A viruses (IAVs).

 • A machine-learning (ML) approach, based on features of viral nucleotide composition, 
predicted adaptive IAV reassortment.

 • The H6N6, H13N2, and H13N8 IAVs exhibited a high degree of human adaptation when 
their ribonucleoprotein plus (RNPplus), comprising segments of PB2, PB1, PA, NP, and 
NS1, was simulated and recombined with pd09H1N1 the envelope protein plus (EPplus), 
which includes segments of HA, NA, and M1.
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1 Introduction

Influenza A viruses (IAVs) are negative-sense, single-stranded, 
segmented RNA viruses, the genomes that contain eight RNA 
segments comprising more than 13,000 bases (Eisfeld et al., 2015; Te 
and Fodor, 2016). IAVs lack a proofreading function in RNA 
polymerase, resulting in a high mutation rate of 10−3 to 10−4 during 
replication (Ahlquist, 2002; Chen and Holmes, 2006; Liu et al., 2014). 
Mutations in structurally or functionally significant sites in IAVs (Sun 
H. et al., 2014; Taubenberger and Kash, 2010; Webster et al., 1992) 
drive a rapid virus evolution. Moreover, a high intersegment 
reassortment provides IAVs with greater evolutionary space and 
genetic diversification (Mehle et al., 2012), even though IAVs primarily 
infect avian or mammalian hosts (Deng et  al., 2017), generally 
exhibiting species specificity. It is concerning that another outbreak of 
the H5N1 IAV, which initially originated in Europe at the end of 2020 
(Adlhoch et  al., 2022), has subsequently spread throughout the 
United  States (Bevins et  al., 2022) and has resulted in 
widespread infections in mammals across Europe (Adlhoch et al., 
2022) and North America (Elsmo et  al., 2023), as well as in the 
countries of Peru and Chile in Central and South America (Leguia 
et al., 2023; Sevilla et al., 2024; Castro-Sanguinetti et al., 2024). Thus, 
there is a high reassortment risk of the prevalent H5N1 and H6N2 
viruses (Abolnik, 2024), as well as human IAVs. This risk is based on 
the fact that five of the last recorded influenza pandemics were caused 
by avian- or swine-origin or reassorted IAVs (Bragstad et al., 2011; 
Long et al., 2019; Reid et al., 2004; Kislinger et al., 2006). However, the 
mechanisms underlying adaptive IAV reassortment are unknown.

Interestingly, it seems that IAV segments do not reassort randomly 
with each other; in other words, there is a frequency bias for all eight 
segments in the reassortment (Marshall et al., 2013) due to multiple 
factors (Lowen, 2017). This bias is observed in the field and has been 
confirmed experimentally (Arai et al., 2019; Chen et al., 2008; Kimble 
et al., 2011; Octaviani et al., 2010). First, accessibility in space and time 
is essential for such reassortment. A coinfection of two or more IAVs 
in the same host or host cell is necessary for virus reassortment 
(Marshall et al., 2013). Second, the incompatibility of IAV segments 
among heterologous RNA packaging signals, particularly at both the 
5′ and 3′ terminals (non-coding sequences and parts of coding 
sequences), restricts the reassortment between H3N2 and H5N2 or 
between H1N1 and H3N2 viruses (Cobbin et al., 2014; Essere et al., 
2013; Sun W. et  al., 2014). Third, the compatibility among viral 
proteins, such as polymerase subunit proteins, exists between H7N7 
and H3N2 IAVs (Li et al., 2008), as well as between H1N1 and H5N1 
viruses (Naffakh et al., 2000). The balance between HA avidity and NA 
activity is another crucial compatibility restriction in protein level for 
IAV reassortment (Naffakh et al., 2000; Wagner et al., 2002). Thus, 
there is a constraint on intersegment reassortment for IAVs from avian 
and mammalian hosts.

IAV comprises eight viral RNA segments (PB2, PB1, PA, HA, NP, 
NA, M, and NS) and eight structural proteins, all of which are 
delicately packaged. Regarding the role of viral RNAs in viral 
packaging, the hydrogen bonds between nucleotides a and t, as well as 
between nucleotides c and g, contribute to the secondary structure 
stability of segmented viral RNAs. It is reasonable to infer that the 
nucleotide composition of viral RNAs may be highly significant for 
the folding free energy and in the structural stability, both of which 

regulate IAV evolution and host adaptation (Brower-Sinning et al., 
2009). An ordered RNA structure was found in IAV segments of PB2, 
NP, M, and NS that varied in free energies for secondary RNA 
structure formation among virus strains from avian, swine, and 
human species (Priore et  al., 2012). The nucleotide composition, 
particularly dinucleotides (Gaunt et al., 2016; Greenbaum et al., 2014), 
mononucleotides, and tetranucleotides (Iwasaki et al., 2013) in IAV 
coding sequences, has been indicated to be  structurally and 
functionally crucial for IAVs. Both experimental and computational 
evidence has demonstrated significant roles of nucleotide composition 
in regulating host innate immune response (Takata et  al., 2017), 
virulence (Atkinson et  al., 2014; Tulloch et  al., 2014), and viral 
replication (Witteveldt et al., 2016). Therefore, we hypothesized that a 
type of genetic compatibility for IAV reassortment may exist based on 
viral nucleotide composition.

In this study, we analyzed the viral nucleotide composition by 
counting the frequency of the four types of nucleotides, t, c, a, and g, 
calculating the gc and at content, the theoretical gc or/and at pairs, and 
the pair-free nucleotide in the full-length coding sequences for each 
of the eight IAV segments. The importance and differences in each of 
these nucleotide factors were analyzed using machine learning (ML) 
methods, and the intersegment correlation of these factors was also 
assessed with Pearson correlation. Subsequently, we  simulated 
reassortant IAVs with pandemic (H1N1) 2009 viruses (pd09H1N1) 
and other IAVs before 2009. This study presents a novel strategy for 
predicting IAV reassortment based on viral genetic compatibility.

2 Materials and methods

2.1 Sequence data processing

A total of 442,893 coding sequences from all eight IAV segments, 
including polymerase basic protein 2 (PB2), polymerase basic protein 
1 (PB1), polymerase acidic protein (PA), hemagglutinin (HA), 
nucleoprotein (NP), neuraminidase (NA), matrix protein 1 (M1), and 
nonstructural protein 1 (NS1), were downloaded from the Influenza 
Research Database (IRD) and from Global Initiative on Sharing All 
Influenza Data (GISAID) database (Shu and McCauley, 2017), as of 
31 December 2018. Full-length sequence samples were utilized for 
strain genome assembly and nucleotide composition analysis. IAVs 
had all the eight segmental full sequences assembled in order (first to 
eighth: PB2, PB1, PA, HA, NP, NA, M1, and NS1), creating a complete 
viral genomic coding sequence (n = 12, 400, within which 11, 861 
samples from IRD and the remainder from GISAID). A stochastic 
resampling was performed to reduce the distribution bias on the USA 
of the Country_area label, and on the 2009 of the Year label, 9,525 
strains of IAVs were left after dropping out 2,336 samples.

2.2 Counting of genomic nucleotide 
composition

A counting script was designed for analyzing NC features for each 
IAV gene sample based on previously reported methods (Jiang et al., 
2023; Li et al., 2023, 2020; Zhang et al., 2024). The algorithms were 
designed according to Equations 1, 2, respectively. Statistical 
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descriptions of variants were performed based on sample annotation 
information. The full-coding DNA sequence (CDS) for each sample 
with unknown nucleotide less than 1% was analyzed for its frequency 
of nucleotide (nt, t, c, a, and g), dinucleotide (dnt, tt, tc, ta, tg, ct, cc, ca, 
cg, at, ac, aa, ag, gt, gc, ga, and gg based on the position of first, second, 
and third for the first nt in a codon) and amino acid (aa). A vector with 
a dimension of 12, 48, or 20 was produced for nt, dnt, or aa, respectively.
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Codon-pair features of the reassorted genome of simulated IAVs 
were also analyzed based on the previously reported tool ().

2.3 IAV simulation with EPplus of 
pd09H1N1 IAVs and RNPplus of non-H1N1 
IAVs

The reassortment of pd09H1N1 IAVs with other IAVs was 
performed with a Python script (https://github.com/Jamalijama/
IAVreassormentConstraint). The reassortment between the pd09H1N1 
virus and different subtypes of IAVs was simulated with the segments 
of HA, NA, and M1 from 36 pandemic human-originated H1N1 strains 
isolated in 2009 in the USA, and with the segments of PB2, PB1, PA, 
NP, and NS1 from 6,144 non-H1N1 IAVs, from various host types. The 
nucleotide composition features for these simulated viruses were 
counted with the above-mentioned methods.

2.4 Unsupervised and supervised machine 
learning

The ML analysis was performed with the Scikit-learn package 
(version = 0.18.1, https://scikit-learn.org/stable/#, Python language) 
or Scipy package (cluster.hierarchy, version = 0.19.0, https://www.
scipy.org). “Sklearn.decomposition.PCA” was utilized for principal 
component analysis (PCA) (Jolliffe and Cadima, 2016), with which 
nucleotide composition features for multiple segments were reduced 
into one principal component, with the most significant possible 
variance (Equation 3). The separability in NC or codon-pair features 
between human and avian IAVs was assessed by feature reduction and 
pairplot. Another unsupervised ML approach, hierarchical clustering, 
was utilized for hierarchical cluster analysis of IAV sequences. 
According to Equation 4, IAVs were clustered into various hierarchical 
groups based on the Euclidean distance in nucleotide compositional  
values.
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Multiple Layer Perception Classifier (mlp) and Random Forest 
Classifier (rfc) were utilized, respectively, for supervised machine 
learning analysis, with “sklearn.neural_network.MLPClassifier” and 
“sklearn.ensemble.RandomForestClassifier.” Data were split into five 
training/test sets with sklearn.model_selection (n_splits = 5, random_
state = 1, shuffle = True) for ML analysis. Scipy package (cluster.
hierarchy, version 0.19.0, https://www.scipy.org) was utilized to build 
a hierarchical clustering of IAV sequences based on the Euclidean 
distance between/among sequences.

2.5 Adaptation risk assessment of simulated 
IAVs with pd09H1N1 EPplus and non-H1N1 
RNPplus

A total of 221,184 simulated IAVs with pd09H1N1 EPplus and 
non-H1N1 RNPplus were analyzed for their adaptation to humans. 
First, five trained mlp predictors and five rfc predictors with an area 
under the receiver operating characteristic (ROC) curve AUC value of 
more than 0.98 and adaptation probability of more than 0.5 as 
thresholds. An adaptation score for simulated IAVs was set as the 
median value of the prediction results of the trained five mlp predictors 
and rfc predictors. The adaptation ratios (adapted/total) for simulated 
IAVs based on varied serotypes, country/area, and years were analyzed.

3 Results

3.1 Prediction pipeline and species-specific 
genomic nucleotide composition in IAVs

Segment sequences from the same IAV stain were downloaded 
and were assembled on the turn of segment number (first to eighth: 
PB2, PB1, PA, HA, NP, NA, M1, and NS1) into a whole viral genomic 
coding sequence.12,400 IAV strains with full eight-segment coding 
sequences were assembled (Supplementary Figure S1). A stochastic 
resampling was performed to reduce the distribution bias on the 
USA of the Country_area label and on the post-2009 of the Year 
label (Supplementary Figure S2). For the total of 9,525 strains, 2,372 
samples from the USA and 2,230 samples from China accounted for 
half of the total samples, 4,500 strains were from mammalian hosts 
(2,978 from humans and 1,522 from swine), and the remainder 5, 
025 were from avian hosts (Supplementary Figures S2A,B). The 
strain samples for each category of subtype and year labels were also 
presented (Supplementary Figures S2C,D). As shown by the pipeline 
diagram (Figure 1), machine learning models were built based on 
the nucleotide composition of human and avian IAV sequences to 
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discriminate the IAV human adaption. Segment sequences with 
different subtypes and host labels were utilized to simulate IAV 
reassortment and the learning models were used to predict the 
human adaptation probability of such simulated reassortment.

The virus nucleotide composition was analyzed based on a 
segment or based on a strain. The average level and the distribution of 

each nucleotide composition item (except strain nt pair, the last 
subplot in Figure 2A) were plotted, respectively, for virus strain or 
virus segment (Figures 2A–I), showing a statistical difference between 
mammalian (human and swine) and avian hosts (p < 0.001 except for 
strain nt-pair, Supplementary Table S1). The higher Ratio_t, low 
Ratio_c, higher Ratio_a, lower Ratio_g, lower Ratio_cg, and higher 

FIGURE 1

The workflow of data processing, machine learning analysis, and sequence simulation. (A) Workflow of data processing, machine learning analysis, and 
sequence simulation. Influenza A and B virus sequences were assembled on the turn (PB2, PB1, PA, HA, NP, NA, M1, and NS1 successively) of segment 
number into a whole viral genomic sequence. Nucleotide composition was counted and analyzed with unsupervised and supervised approaches. The 
reassortment between the pd09H1N1 IAVs and the IAVs before 2009 were simulated, and human adaption of simulated IAVs was predicted with the 
aforementioned supervised machine-learning approach. (B) Sketch of the decomposition and simulation of IAV segmental and viral sequences. A total 
of 442,893 segmental (PB2, PB1, PA, HA, NP, NA, M1, and NS1) open reading frame (ORF) sequences were utilized to assemble, with all the eight 
segmental sequences from the same stain, the viral strain ORF sequences (N = 12, 400). The sequence simulation was performed to reconstruct the 
strain ORF sequences, with HA, NA, and M1 from 36 pd09H1N1 IAV strains, and with PB2, PB1, PA, NP, and NS1 from the 6,144 IAV strains before 2009. 
Frequency of four types of nucleotides (Ratio_nt_Seg, nt = t, c, a or g, Seg = PB2, PB1, PA, HA, NP, NA, M1, or NS1), The cg at content (Ratio_nts_Seg, 
nts = cg or at), the nucleotide bias (Ratio_Δ_cg_Seg/_strain and Ratio_Δ_at_Seg/_strain, relative number difference between a and t, between c and 
g), and paired nts (theoretically paired at and paired cg, nt_pair_Seg, nt_pair_stain) were counted as relative levels, dependent on segment- or strain.
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Ratio_at were unanimously observed for strain sequence, PB2, PB1, 
PA, NP, M1, and NS1 in the mammalian IAVs, compared to avian 
IAVs (p < 0.001 respectively, Figures 2A–D,F,H,I). To associate the 
nucleotide composition with host species, we  also analyzed such 
nucleotide composition differences between IAVs and IBVs, the latter 
of which only infect human hosts (Long et al., 2019). Interestingly, the 
nucleotide composition difference between IBV and IAV was the same 
as the difference between mammalian IAVs and avian IAVs 
(Supplementary Figures S3A–H; Supplementary Table S2). Such bias 
was also found for these segments (except Ratio_c_NP, Ratio_t_M1, 
and Ratio_t_NS1) in IBVs, compared to IAVs (p < 0.001 respectively, 
Supplementary Figures S3A–D,F,G). Besides, Hierarchical clustering 
was performed to evaluate the separability of nucleotide composition 
between avian and human IAVs. It was indicated that the random-
sampled human and avian segment sequences were automatically 
separated into human and avian groups, except for some 
environmental H7N9 IAVs in a human group, and some human-
infected avian IAVs and some 1968’s H3N2 viruses in the avian group 
(Supplementary Figures S4A–D for PB2, PB1, PA, and HA; 
Supplementary Figures S5A–D for NP, NA, M1, and NS1). Therefore, 
the nucleotide composition is host specific.

3.2 Intersegment nucleotide composition 
correlation of IAVs

To visualize the correlation among nucleotide composition 
features for IAV strains and the separability of each feature between 

avian and human samples, every pair of the nine features was plotted 
in a two-dimensional space. When Ratio_t_PB2 was taken as an x-axis 
label, each of the other eight features was separable for PB2 between 
avian and human samples (Supplementary Figure S6A), and some 
features presented a linear distribution, negatively (R_c_PB2, 
R_g_PB2, R_cg_PB2, and R_Δ_at_PB2) or positively (R_a_PB2 and 
R_at_PB2). The Spearman rank correlation analysis indicated a 
significant negative correlation between Ratio_t_PB2 and each of the 
four features (R_c_PB2, R_g_PB2, R_cg_PB2 and R_Δ_at_PB2) 
(R2 < −0.3 respectively, firstly column in Supplementary Figure S6B) 
and a significant positive correlation between Ratio_t_PB2 and each 
of the two features (R_a_PB2 and R_at_PB2) (R2 > 0.3 respectively, 
firstly column in Supplementary Figure S6B). The avian/human 
separability and the negative or positive correlation were also observed 
for other features (other columns in Supplementary Figures S6C,D) 
or other segments (Supplementary Figures S7–S9).

The correlation between segments for each nucleotide 
composition feature was also analyzed using principal component 
analysis (PCA). Ratio_c_PB2 served as a label for every strain sample, 
and the Ratio_c matrix for the remaining seven segments was reduced 
into one principal component (PCA1_7segs) by PCA. The paired 
plotting of Ratio_t_PB2 and PCA1_7segs in Figure 3A demonstrated 
a significant negative correlation (R2 = −0.844). A negative or positive 
correlation was also observed (Figures 3B–H) between the Ratio_c of 
each PCA1_7segs of the rest segments (R2 < −0.3 or R2 > 0.3), except 
PB1 and NA (R2 = 0.053 for PB1 and R2 = −0.188 for NA). The 
intersegment correlation was also significantly different for c_count, 
a_count, or g_count between each of the eight segments and the 

FIGURE 2

Violin plot of the nucleotide composition factors for avian and mammalian influenza A viruses. The frequency of nucleotide t, c, a or g (R_t, R_c, R_a or 
R_g), the frequency of gc or at content (R_at_ or R_cg), the relative levels of nucleotide bias (R_Δ_at or R_Δ_cg) and of nucleotide pair (nt_pair) were 
counted strain-dependently or segment-dependently (PB2, PB1, PA, HA, NP, NA, M1, or NS1), respectively (A–I); relative frequency value was plotted 
with Violin plot (seaborn model, Python); data were standardized as (value – value mean)/value SD. 0: Avian IAVs, 1: Mammalian IAVs. A p-value for 
each factor was indicated independently.
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PCA1_7segs value, except for the g_count of HA and NS1 (R2 < −0.3 
or R2 > 0.3, Supplementary Figures S10–S12).

Interestingly, there was a similarity in the distribution of the 
correlation coefficient matrix for segments PB2, PB1, PA, NP, and 
NS1 (Supplementary Figures S6B,D, 7B, 8B, 9D), based on the 
polarity and the degree of such correlation. All nucleotide 
composition features for PB2, PB1, PA, NP, and NS1 
(ribonucleoprotein plus [RNPplus]) were reduced into one PCA 
component, and these features for HA, NA, and M1 (Envelope 
Protein, EPplus) were reduced into another PCA component. There 
was a strong negative correlation between the two components and 
also an indication of separability between avian and human samples 
(R2 = −0.74), as shown in Figure  4. These results reveal the 
intersegment nucleotide composition correlation of IAVs.

3.3 Human adaption prediction of IAVs 
based on nucleotide composition

Multiple-layer perceptron (mlp) and random forest classifier (rfc) 
were utilized as supervised machine-learning approaches to predict 
the human-adaptive IAVs (H3N2 and H1N1) from avian IAVs (H5N1, 
H9N2, and H7N9), based on nucleotide composition features. It was 
shown that the true negative rate (true prediction of avian IAVs) and 
the true positive rate (true prediction of human IAVs) were 94.89% 
(2,377/2,505) and 98.53% (2,473/2,510), respectively, for mlp model 
(Figure  5A). The mean AUC of 5-fold tests was 0.982 ± 0.005 
(Figure 5B). The rfc model performed as well as mlp model, with true 
negative/positive rates of 98.60% (2,470/2,505) and 98.45% 

(2,471/2,510), respectively (Figure 5C), and with the mean AUC of 
0.996 ± 0.001 (Figure 5D).

ML models performed well in discriminating human IAV sets 
from a mixed IAV set from chicken, duck, mallard, and other avian 
hosts. To test whether such high performance was associated with the 
uniformity of the human dataset and the mixing property of the avian 
dataset, we performed mlp and rfc analyses to discriminate between 
the set of IAVs from chicken, duck, mallard, or other birds from the 
set of IAVs from the rest three types of avian hosts and from humans. 
As indicated in Figures  5E–L, the mean AUC only reached 
0.690 ± 0.013, 0.640 ± 0.029, 0.801 ± 0.021, and 0.752 ± 0.014 by mlp 
model for each of the four avian hosts, the mean AUC reached to a 
little higher level, but not yet over 0.900 (0.877 ± 0.012, 0.737 ± 0.014, 
0.854 ± 0.017 and 0.801 ± 0.009, respectively) by rfc model for each of 
the four avian hosts. Therefore, viral nucleotide composition 
accurately predicts the human adaption of IAVs using machine 
learning models. Additionally, we utilized the two models, with only 
human H3N2 IAVs as the human set in training data, to predict 
human H1N1 IAV. Both mlp and rfc models performed well for the 
H1N1 IAV prediction (Supplementary Figures S13A,B).

3.4 Human adaption prediction of 
reassortment pd09H1N1 IAVs based on the 
intersegment nucleotide composition 
correlation

The 2009 H1N1 influenza pandemic, the most recent influenza 
pandemic, was caused by a reassortment virus that contained 

FIGURE 3

Principal component analysis (PCA) of thymine composition between each segment and the other seven segments for IAVs. Thymine composition 
(Ratio_t) for every seven segments (A–H for PB2 and the other seven segments) was converted into one principal component (PCA model from 
sklearn.decomposition.PCA), along with Ratio_t_PB2, were scattered with scatter_matrix (pandas.plotting, Python). The correlation of the Ratio_t 
between each segment and the PCA1 of the other seven segments or the correlation of the two PCA1 for both groups of segments were analyzed with 
the Pearson correlation model of Pandas (pandas.DataFrame.corr (method = ‘Pearson’)) and were indicated as R2, respectively. Data of nucleotide ratio 
were standardized as (value – value mean)/value SD. 0.3 and −0.3 were set as the threshold of R2, respectively, for positive and negative correlation.
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segments of avian-, swine- and human-originated (Smith et al., 2009). 
To predict the reassortment of the pd09H1N1 virus with other IAVs, 
we built the mlp and rfc models with the human IAV set of one of the 
two major human IAV subtypes (H3N2 and H1N1), H3N2, and with 
the avian IAV set of dominant avian subtypes of H5N1, H9N2, and 
H7N9. As shown in Figures 5M–P, both models performed well in 
predicting the human adaption of the above-mentioned human IAVs. 
With the rcf model, we predict the human adaption of simulated 
reassortant H1N1 viruses, with segments from the pd09H1N1 virus 
and with segments from other subtypes of IAVs.

The reassortment between the pd09H1N1 virus and other 
subtypes of IAVs was simulated based on the uniform difference for 
RNPplus between avian and mammalian IAVs (Figure 2) and on the 
negative nucleotide composition correlation between RNPplus and 
EPplus (Figure 4). Thirty-six human-originated H1N1 strains isolated 
in 2009 in the USA were taken as pd09H1N1 viruses; 6,144 avian IAVs 
of the subtypes, other than H1N1 were taken as no-pd09H1N1 IAVs. 
A total of 221,184 reassortant H1N1 viruses with HA, NA, and M1 
from pd09H1N1 viruses, and with the other five segments from 
no-pd09H1N1 IAVs were produced. Sample distribution on the label 
of Country_area, Host, Subtype, and Year was indicated, respectively 
(Supplementary Figure S14).

To interpret the significance of genomic NC to the IAV adaptation 
classification, dimension reduction by PCA of the optimized NC 
features was performed and plotted with a pairplot with host labeled. 
A distinct separation of PCA1 value between human and avian hosts 
was indicated (Supplementary Figure S15A). In contrast, the PCA1 
value of the 3,721-dimensioned codon-pair was not markedly 
separated between human and avian simulated IAVs; only with PCA2 

value was separated (Supplementary Figure S15B). Both types of 
results implied a higher significant difference in NC features between 
human and avian simulated IAVs than in codon-pair.

Human adaption of these simulated IAVs was predicted by both 
mlp and rfc models, with the nucleotide composition features. 
Adaptation risk for each simulated reassortant was evaluated by a risk 
score, which was calculated based on the adaptation prediction results 
of five mlp predictors and five rfc predictors. Both adaptation ratio or 
adapted number indicated a high adaptive reassortment with 
pd09H1N1 EPplus of the RNPplus from the IAVs of such serotypes as 
H6N6, H6N2, H5N8 and others [adaptation ratio and adapted 
number, respectively (Figures 6A,B; Table 1)]. Both adaptation indexes 
indicated a high adaptation risk in Egypt, South Korea, Vietnam, 
Australia, and Canada (adaptation ratio and adapted number, 
respectively, in Figures 6C,D; Supplementary Table S3), with other top 
countries/areas also listed. The temporal adaptation ratio of these 
simulated reassortants (Figure 6E) showed a steep rise before 1971 and 
a followed outstanding peak in 1971. A waving adaptation ratio of IAV 
RNPplus has been lasting since the 1970s to now. It’s worth mentioning 
that a slow but sustained adaptation rise has been observed since 2004.

4 Discussion

Lots of viral protein determinants have been identified in host 
tropism (Eng et al., 2016), trans-species infection (Qiang et al., 2018), 
and virulence (Li et al., 2011; Oxford and Gill, 2018; Tscherne and 
Garcia-Sastre, 2011). Recent reports indicate the functional 
importance of viral nucleotide composition. Synonymous viral 
nucleotides or dinucleotides regulate the virus’s response to the host’s 
innate immune system (Takata et al., 2017), affect virus virulence 
(Atkinson et  al., 2014; Tulloch et  al., 2014), and influence virus 
replication (Witteveldt et  al., 2016). The host dependence of the 
nucleotide compositions of influenza viruses has also been implied 
(Bahir et al., 2009; Iwasaki et al., 2013; Su et al., 2009). However, the 
reliance of host species on nucleotide composition was not supported 
by other studies (Di Giallonardo et  al., 2017). In this study, 
we calculated the nucleotide composition based on each segment and 
also based on the entire genome by counting the frequency of each 
mononucleotide, the content of gc and at, the surplus of paired t/a and 
of paired c/g, and the paired nucleotides (t/a and c/g). We found a 
uniform difference between avian and mammalian IAVs, between the 
only-human-infected (Long et al., 2019) IBVs and the IAVs infect 
both birds and mammals. The higher Ratio_t, low Ratio_c, higher 
Ratio_a, lower Ratio_g, lower Ratio_cg, and higher Ratio_at were 
unanimously observed for the entire genomic sequence, PB2, PB1, PA, 
NP, M1, and NS1 in the mammalian IAVs and IBVs, compared to 
avian IAVs, or all IAVs. The unsupervised machine-learning approach 
of hierarchical clustering and the supervised machine-learning 
approaches of rfc and mlp unanimously confirmed the separability 
based on nucleotide composition between avian and human IAVs. 
Therefore, the nucleotide composition of IAVs is host specific.

There has not been a widely accepted definition of human adaptation 
for IAVs, and here we defined it as the capability to infect humans easily 
and to transmit among the population efficiently. The nucleotide 
composition of IBVs may represent a human-adaptive feature as IBVs 
are specifically adapted to humans and spread exclusively among 

FIGURE 4

Principal component analysis (PCA) of nucleotide cytosine 
composition between RNPplus and EPplus for IAVs. The nt_pair 
value for the segments of PB2, PB1, PA, NP, and NS1 (RNPplus) and 
for the segments of HA, NA, and M1 (EPplus) were, respectively, 
converted into one principal component and then were scattered. 
The distribution of the two values for avian and human sequences 
was scattered in brown and yellow, respectively.
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humans. More importantly, the nucleotide composition features of IBVs 
were uniform for six of eight genomic segments, except HA and NA; such 
uniform features were also found from these segments for mammalian 
IAVs, compared to avian IAVs. HA and NA are primary targets for an 
adaptive immune response to influenza infection (Andrews and 
McDermott, 2018; Bahadoran et al., 2016). There is a higher mutation 
rate in HA and NA under the host immune pressure compared to the 
other six segments (Ridenour et al., 2015; Xu et al., 1996). We speculated 
that the nucleotide composition of HA and NA was more influenced by 
host immune pressure, than the other six segments. Therefore, currently, 
human-adaptive IAVs are limited to H3N2 and H1N1 viruses, either of 
which continuously cause endemics or even pandemics in humans (Ren 
et al., 2016). To avoid possible overfitting for the subsequent prediction 
of simulated reassortant pd09H1N1 IAVs, human H1N1 viruses were 
not included in the training set; thus, the performance of our models in 
predicting the human adaption of the H1N1 viruses since 2009 was 
comparable to that of H3N2 viruses.

The mechanism underlying the high intersegment reassortment 
of IAVs is not well understood. It appears that a reassortment does not 

occur randomly, but rather tends to involve specific segments 
(Marshall et al., 2013), according to observation and experimental 
results (Arai et  al., 2019; Chen et  al., 2008; Kimble et  al., 2011; 
Octaviani et al., 2010). The compatibility or balance of viral proteins 
(Li et al., 2008; Naffakh et al., 2000; Wagner et al., 2002) is crucial for 
IAV reassortment. The incompatibility of RNA packaging signals in 
the segmental untranslated region (UTR) and parts of coding 
sequences restricts IAV reassortment (Cobbin et al., 2014; Essere et al., 
2013). Here, we  investigated the intersegment correlation of the 
nucleotide composition of IAVs. Each nucleotide composition feature 
correlated with the other features within a segment for each of the 
eight segments, and each segment correlated to the other segments in 
nucleotide composition to various degrees of IAVs. Moreover, there 
was a similarity in the distribution of the correlation coefficient matrix 
for segments PB2, PB1, PA, NP, and NS1, based on the polarity and 
the degree of such correlation. RNPplus, the PCA component 1 for 
nucleotide composition features of segments PB2, PB1, PA, NP, and 
NS1, negatively and strongly correlated with EPplus, the PCA 
component 1 for nucleotide composition features of HA, NA, and M1. 

FIGURE 5

Human adaptation prediction by machine-learning approaches, with nucleotide composition factors. The prediction and the probability of virus 
adaption to humans were evaluated by supervised machine learning approaches of random forest classifier (rfc) (A,B) and multiple-layer preceptor 
(mlp) (C,D). The receiver operating characteristic (ROC) and area under the ROC curve (AUC) (B,D) and the confusion matrix (A,C) of human adaption 
prediction were indicated, respectively. Training data were randomly split into five folds; 1x standard deviation (±1 SD) was adopted for ROC and AUC. 
ROC_AUC of the mlp or the rfc to discriminate the chicken- (E,F, respectively for mlp and rfc), duck- (G,H), mallard- (I,J), or other birds-originated 
(K,L) IAVs from the IAVs from the rest three avian types of hosts. Confusion matrix and ROC_AUC were plotted of the mlp (M,N) or the rfc model (O or 
P) for simulated reassortant H1N1 viruses, with segments from the pd09H1N1 virus and with segments from other subtypes of IAVs.
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FIGURE 6

Adaptation prediction of the simulated IAV reassortants with pd09H1N1 EPplus and non-H1N1 RNPplus. Heatmap of adaptation ratio (adapted/total) 
(A) and adapted numbers (presenting as ln(adapted number)) (B) for the simulated IAVs with RNPplus from the IAVs from top 50 serotypes, top 37 
(more than 500 IAV samples) country/areas (C,D) or top 50 years (E).
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Our results imply that the intersegment correlation of nucleotide 
composition might be another constraint factor for IAV reassortment.

The host also poses constraints on IAV reassortment via multiple 
mechanisms, via multiple mechanisms, such as antivirus immune 
response, whether innate or adapted, and receptor binding efficiency. 
Various types of host proteins regulate the activity of the IAV 
polymerase complex and thus constrain IAV reassortment (Tripathi 
et  al., 2015). Human-receptor-bindable H3N8 viruses were 
transmissible among ferrets, facilitating possible reassortment 
between it and other human IAVs (Sun et al., 2023). The dynamics of 
IAV replication in mammals allow diversification through 
reassortment of variants, shaping their evolution and onward 
transmission (Ganti et al., 2022). Immune escaping of IAVs benefiting 
from IAV reassortment facilitates the selection of IAV reassortants 
within the host (Vijaykrishna et  al., 2015). Additionally, tissue 
specificity was also observed to pose constraints on IAV reassortment 
(Tripathi et al., 2015). Given the challenge of analyzing interactively 
the constraints from host and viruses, this study only focused on the 
significance of viral genomic features on IAV reassortment.

pd09H1N1 virus caused the latest worldwide influenza 
pandemic (Fineberg, 2014; Swerdlow et  al., 2011). Here, 
we simulated the reassortment of pd09H1N1 viruses with RNPplus 
from human and avian IAVs. Interestingly, the reassortment viruses 
containing RNPplus from human H3N2 and the EPplus from 
pd09H1N1 were not adaptive to humans. However, some subtypes 
of IAVs, such as H6N2, H5N6, H6N6, H5N8, H16N3, H13N6, 

H13N8, H13N2, and H5N5, all of which previously spread mainly 
in birds, provide the human-adaptive RNPplus against the backdrop 
of pd09H1N1 EPplus. Notably, the reassortment pd09H1N1 viruses, 
with the RNPplus from H6N6, H13N8, and H13N2, were mostly 
highly risky, with an AUC of more than 0.9. Such a high human 
adaption score should arouse alertness against such high-risk 
reassortment. Our simulation was performed with the 36 whole 
genome-sequenced pd09H1N1 viruses in the USA and with all the 
other subtypes of IAVs available in the influenza research database 
(IRD) (Zhang et al., 2017). The simulated virus numbers varied from 
324 for H7N6 viruses to 53,316 for H3N2 viruses; the variation in 
the virus number reduces the prediction comparability among 
varied subtypes.

5 Conclusion

In summary, there is a human adaption-specific genomic 
nucleotide composition with which machine-learning approaches 
discriminate human IAVs from avian IAVs, accurately. The 
nucleotide composition correlates with others among different IAV 
segments and constrains segment reassortment from different 
subtypes of IAVs, such as pd09H1N1 viruses with other subtypes of 
viruses. Machine learning analysis with viral nucleotide 
composition provides a novel strategy to predict or evaluate the 
human adaption of IAVs.

TABLE 1 Adaptation ratio (adapted/total) of simulated reassortants between pd09H1N1 EPplus and the IAV of varied serotypes.

Subtypea Duck Mallard Chicken Other_birds Human Scoreb

H6N6 0.740 0.701 0.741 0.660 0.721

H6N2 0.477 0.058 0.736 0.096 0.286

H5N8 0.177 0.400 0.000 0.347 0.262

H1N3 0.333 0.155 1.000 0.087 0.244

H13N6 0.519 0.464 0.232

H5N6 0.223 0.213 0.103 0.267 0.000 0.218

H5N2 0.204 0.134 0.218 0.104 0.169

H7N3 0.313 0.001 0.226 0.097 0.000 0.162

H5N1 0.167 0.106 0.163 0.108 1.000 0.135

H4N8 0.226 0.151 0.000 0.119 0.135

H3N8 0.176 0.029 0.000 0.268 0.102

H7N7 0.280 0.004 0.000 0.173 0.000 0.088

H1N2 0.174 0.000 0.500 0.003 1.000 0.088

H11N3 0.472 0.000 0.176 0.088

H3N6 0.215 0.094 0.000 0.063 0.078

H6N1 0.125 0.083 0.062 0.043 0.073

H10N3 0.139 0.000 0.150 0.069

H11N2 0.000 0.130 0.000 0.163 0.065

H11N9 0.031 0.081 0.081 0.056

H10N7 0.000 0.016 1.000 0.095 0.056

aTop-20 subtypes with high human probability were listed.
bA score of adaptation risk was set as a median adaptation ratio of simulated IAVs with RNPplus from various hosts from the same serotype.
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