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An integrative and comprehensive 
analysis of blood transcriptomes 
combined with machine learning 
models reveals key signatures for 
tuberculosis diagnosis and risk 
stratification
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Tuberculosis (TB) remains a major global health challenge, contributing substantially 
to morbidity and mortality worldwide. The progression from Mycobacterium 
tuberculosis (Mtb) infection to active disease involves a complex interplay between 
host immune responses and Mtb’s ability to evade them. However, current diagnostic 
tools, such as interferon-gamma release assays (IGRAs) and tuberculin skin tests 
(TSTs), have limited ability to distinguish between different stages of TB or to 
predict the progression from infection to active disease. In this study, we performed 
an integrative analysis of 324 previously acquired blood transcriptome samples 
from TB patients, TB contacts, and controls across diverse geographical regions. 
Differential gene expression analysis revealed distinct transcriptomic signatures 
in TB patients, highlighting dysregulated pathways related to immune responses, 
antimicrobial peptides, and extracellular matrix organization. Using machine 
learning, we  identified a 99-transcript signature that accurately distinguished 
TB patients from controls, demonstrated strong predictive performance across 
different cohorts, and identified potential progressors or subclinical cases. Validation 
in an independent dataset comprising 90 TB patients and 20 healthy controls 
confirmed the robustness of the 10-gene signature (BATF2, FAM20A, FBLN2, AK5, 
VAMP5, MMP8, KLHDC8B, LINC00402, DEFA3, and GBP6), achieving high area 
under the curve (AUC) values in both receiver operating characteristic (ROC) and 
precision–recall analyses. This 10-gene signature offers promising candidates 
for further validation and the development of diagnostic and prognostic tools, 
supporting global efforts to improve TB detection and risk stratification.
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1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a global health 
crisis, causing over one million deaths annually despite advancements in diagnostic tools and 
treatment strategies (World Health Organization, 2023a). Historically, TB has been 
dichotomized into latent TB infection (TBI), a clinically asymptomatic stage without 
microbiological evidence of active disease, and active TB (ATB), characterized by overt clinical 
symptoms and microbial detection (Cobelens et al., 2017; Kiazyk and Ball, 2017; Behr et al., 
2024). However, this dichotomic classification of TB pathogenesis is currently being 
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reconsidered as emerging evidence highlighting the importance of 
dynamic interactions between host and Mtb. This spectrum includes 
people who have cleared TB, individuals still harboring live bacteria 
or those with subclinical or incipient TB. In this context, TBI shows a 
persistent immune response to Mtb antigens without clinical evidence 
of active disease while maintaining its viability with the potential to 
replicate and cause symptomatic disease (Behr et al., 2024; Lee, 2016; 
Singhania et al., 2018a; Drain et al., 2018; Larsson et al., 2024).

Approximately 5–10% of individuals infected with Mtb progress to 
ATB within months to 2 years of initial infection (Behr et al., 2024; Lee, 
2016; Singhania et al., 2018a). Therefore, TBI is increasingly recognized 
as a critical component of the global programmatic TB control efforts. 
The World Health Organization’s (WHO) aim to achieve the “End TB 
Strategy” targets recommends the early diagnosis and treatment of 
people with TBI who are at high risk of progression as a critical step to 
eliminate TB (Agbota et  al., 2023). However, given the cost of 
intervention, potential toxicity, and adverse effects of treatment, 
identifying individuals at high risk of TB progression using non-invasive 
approaches would increase the benefits of preventive therapy (PT).

Current diagnostic tools for TBI, including interferon-gamma 
release assay (IGRA) and tuberculin skin test (TST), cannot 
differentiate between ATB and TB exposure with persistent infection 
(TBI), nor can they predict progression from TBI to ATB (Behr et al., 
2024; Lee, 2016; Singhania et al., 2018a; Drain et al., 2018). In addition, 
multiple studies have shown that patients who have undergone PT 
retain immunoreactivity to the inactivated Mtb protein fraction used 
in the TST and to specific Mtb antigens used in IGRA (Behr et al., 
2024). On the other hand, the early secreted antigenic target of 6 kDa 
(ESAT-6) has been shown to inhibit the release of IFN-γ by human T 
cells (Wang et al., 2009), potentially reducing the sensitivity of these 
diagnostic tools. Therefore, the development of simple and scalable 
methods to identify individuals at high risk of TB progression is 
essential for optimizing the impact and cost-effectiveness of PT.

Gene expression profiling of blood transcriptomes offers a 
powerful approach to investigate the immune system alterations in TB 
(Maertzdorf et al., 2011; Estévez et al., 2020; Kwan et al., 2020; Van 
Doorn et al., 2022; Thompson et al., 2017). However, the mechanisms 
that determine the potential outcome of TB infection are not 
thoroughly understood. Furthermore, gene expression data are 
characterized by high dimensionality, and only a limited number of 
studies have utilized gene expression profiles alongside data mining 
techniques to reduce the dimensionality, identify discriminative genes, 
learn diagnostic patterns, and predict high-risk TBI cases likely to 
progress to active disease. In addition, these studies often rely on 
single-source datasets for both model training and prediction, limiting 
their generalizability (Estévez et al., 2020). To develop robust and 
globally applicable predictive models, integrated transcriptomic data 
from diverse populations and settings—accounting for biological and 
technical variability—must maintain high predictive performance and 
generalizability across contexts.

In this study, we leveraged a comprehensive dataset comprising 324 
blood transcriptome samples collected from five countries with distinct 
TB epidemiological profiles: South  Africa, Mozambique, Spain, 
Singapore, and Indonesia. South Africa and Mozambique are among 
the countries with the highest TB incidence globally, largely driven by 
high rates of HIV co-infection and limited healthcare resources (World 
Health Organization, 2023b). Indonesia, currently ranked third in 
global TB burden, faces significant challenges in detection and 

treatment (United  States Agency for International Development 
(USAID), 2021). Singapore, classified as a medium TB burden country, 
reported that migrants accounted for 49% of all notified active TB cases 
in 2017 (Chee et al., 2018; Lim et al., 2021). Spain, representing a 
low-burden country, has recorded TB cases primarily among 
immigrant populations from higher burden regions (Abascal et al., 
2019). This dataset encompassed a broad array of subgroups, including 
TB patients, contacts, and controls with and without immunoreactivity, 
offering a robust platform for cross-population transcriptome analysis.

By combining next-generation sequencing with advanced data 
analysis techniques, our approach aims to elucidate the dynamic 
transitions from TB infection to active disease. To achieve this, 
we first prioritized TB- and control-distinguishing signatures using 
differential gene expression analysis. This was followed by binary 
classification and feature importance analysis to retain the most 
relevant transcriptomic markers. Using this refined feature set, 
we  identified IGRA/TST + contacts whose blood transcriptomic 
profiles closely resembled those of TB patients. We further leveraged 
this reduced feature set to study distinct TB subgroups in greater 
detail. Finally, the top  10 ranked features were validated on an 
independent dataset to confirm their robustness.

2 Methods

2.1 Data

Whole-blood mRNA sequencing data were obtained from four 
publicly available studies—PRJEB31975, PRJNA595691, 
PRJNA798683, and PRJNA352062—through the NCBI Gene 
Expression Omnibus (GEO).1

 • PRJEB31975 includes 65 active tuberculosis (ATB) cases, 43 
IGRA/TST + contacts, and 50 controls (TB contacts with 
negative immunoreactivity).

 • PRJNA595691 includes 14 ATB cases, 26 contacts, and 5 controls 
(volunteers with no recent TB exposure, with or without 
positive immunoreactivity).

 • PRJNA798683 includes 11 ATB baseline samples suitable for 
inclusion in this study.

The integrated dataset comprised 90 ATB cases, 43 IGRA/
TST + contacts, 26 contacts, and 55 controls (Table 1).

In this study, TB contacts from the PRJEB31975 dataset who 
tested positive for immunoreactivity via IGRA and/or TST are referred 
to as “IGRA/TST + contacts.” However, “contacts” refers to 
TB-exposed individuals from the PRJNA595691 dataset, of which 
approximately 50% were IGRA-positive according to the original 
study (Estévez et al., 2020; Kwan et al., 2020). Due to the unavailability 
of individual-level IGRA and TST results, the two contact groups were 
analyzed separately.

PRJNA352062 was used as an independent validation set, focusing 
on baseline samples from ATB subjects and controls. This dataset 
included 20 healthy controls and 90 ATB cases.

1 https://www.ncbi.nlm.nih.gov/geo/
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In all studies, ATB individuals were diagnosed with TB shortly 
before blood sampling. Table  2 summarizes the inclusion and 
exclusion criteria applied in the original studies.

The datasets included in this study were selected based on the 
following criteria:

 • Sample type: Only datasets driven from human whole-blood 
samples were included. Studies involving non-human sources or 
other sample types (e.g., peripheral blood mononuclear cells 
[PBMCs]) were excluded.

 • Medical condition: Datasets containing samples from individuals 
co-infected with HIV or other additional diagnoses were excluded.

 • Inclusion of both sexes: Each experimental group was required 
to include both male and female participants.

 • Geographic diversity: Datasets were selected from multiple 
countries to capture population-level variability and 
enhance generalizability.

 • Data type: Only RNA sequencing (RNA-seq) datasets were 
considered. Studies utilizing microarray platforms were excluded.

2.2 Gene expression quantification and 
downstream analysis

All raw reads are aligned with the human reference genome 
(hg38/GRCh38) using STAR (v2.5.3a).

Post-alignment QC including quantification of mapped reads on 
unique regions and coding sequences was conducted using the 
MultiQC (v1.9.0) tool. Mapping reads were counted from BAM files 
with featureCounts (v. 1.6.4), and Ensemble basic annotation was used 
to quantify expression levels. Differentially expressed (DE) genes 
between groups were identified using Limma-Voom functions from the 
edgeR package (v.38.4) following normalization by DESeq2. Batch 
correction was performed for different conditions (ATB, IGRA/
TST + contacts, contacts, and controls) and the source of the data 
(Spain, Mozambique, South  Africa, Indonesia, and Singapore): 
design = ~ condition + country. Genes with an adjusted p-value 
(p.adj) < 0.05 and an absolute log2 (fold-change) > 1 were considered 
significant in terms of differential expression. While a stricter threshold 
(e.g., log2 (fold-change) > 1.5) is sometimes used, we selected this cutoff 

to ensure the inclusion of biologically meaningful genes, which is 
consistent with the aims of our integrative analysis. This approach has 
also been applied in previous studies using comparable cohorts and 
methodologies (Estévez et al., 2020; Kwan et al., 2020). The list of DE 
genes from each comparison was analyzed for pathway enrichment 
using EnrichR (Reactome), available at: https://maayanlab.cloud/
Enrichr/. The results were then visualized using the ggplot2 package in 
R. To assess global transcriptional differences across the four 
experimental groups, we performed an ANOVA-style analysis using the 
topTableF() function from the limma package, following the voom 
transformation for RNA-seq count data. The design matrix included the 
experimental group as the main variable of interest and country 
(design = ~ condition + country). Normalization and variance 
modeling were conducted using voom(), after which linear models were 
fit with lmFit() and moderated with eBayes(). The topTableF() function 
was then used to compute F-statistics and false discovery rates (FDRs) 
for each gene. Genes with FDR < 0.01 were considered significantly 
differentially expressed across the groups. These genes were 
subsequently subjected to pathway enrichment analysis.

2.3 Preprocessing of dataset for 
classification task

To prepare the transcriptome dataset for classification, transcripts 
were retained if expressed in at least 26 subjects (the number of subjects 
in the smallest group) according to the R package edgeR (v3.26.8). For 
outlier detection, count per million (CPM) was calculated for the 
retained transcripts. Next, the similarity among all subjects was 
calculated using the Pearson correlation coefficient, and Z scores were 
calculated for the correlation matrix (Omrani et al., 2024). Subjects 
with a Z score less than −2 were identified as outliers (ERR3258186 
and ERR3258088; an ATB subject and an IGRA/TST + contact from 
the Mozambique cohort, respectively) and excluded from the analysis.

2.4 Binary classification workflow

To develop a global TB-specific signature, we conducted binary 
classification to discern active TB and controls using 269 differentially 

TABLE 1 Demographic composition of the cohorts.

Data sources Active TB IGRA/
TST + contacts

Contacts Controls Country of 
samples

PRJEB31975

Total (female: male) 65 (17:48) 43 (20:23)
0

50 (27:23)
Mozambique, Spain

Age mean (range) 35.3 (13–72) 42.0 (8–71) 38.5 (9–80)

PRJNA798683

PRJNA798683 (information of age and 

sex is not available)
11 0 0 0

Indonesia, 

South Africa

PRJNA595691

Total (female: male) 14 (4:10) 0 26 (14:12) 5 (0:5) Singapore

Age mean (range) 50.1 (27–69) 41.6 (22–66) 29.6 (24–38)

PRJNA352062

PRJNA352062 (information of age and 

sex is not available)
90 20 South Africa
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expressed genes. We used decision tree-based algorithms, emphasizing 
their robust classification capabilities and efficient parallel processing. 
Specifically, we used the widely adopted random forests (RFs) due to 
their effectiveness in handling complex datasets. We  also applied 
adaptive boosting (ADAboost) and XGBoost (XGB) due to their proven 
ability to enhance classification performance through boosting 
techniques (Omrani et al., 2024; Freund and Schapire, 2005; Chen and 
Guestrin, 2016). For unbiased comparison of distinct learning 
algorithms and hyperparameters, we developed a grid search with a 
5-fold cross-validation (CV) workflow. We first standardized the dataset 
by removing the mean and scaling it to unit variance using the 
StandardScaler function from the scikit-learn (Python v 3.10.6). This 
step ensured that the contribution of each transcript in the analysis is 
not affected by sequence depth. The data were randomly split into 
training (75%) and validation (25%) sets. Fine-tuning of the 
hyperparameters of each algorithm was conducted through an 
exhaustive search in a cross-validation loop, which was used for the 
proper evaluation of the predictive model. The combination of 
hyperparameters that maximized the F1 score [balanced evaluation of 
false positives (FP) and false negatives (FN)] was identified as optimal 
and subsequently applied to the algorithm. The preprocessed data, 
purged of non-informative transcripts and outliers, were introduced 
into the machine learning workflow (Figure 1). We implemented all 
three classification algorithms using the scikit-learn Python package. 
For RF, all the hyperparameters were set to default except for the n_
estimators hyperparameter (the number of trees in the forest) and 
Max_depth (the maximum depth of each tree in the forest). Exhaustive 
searches for n_estimators hyperparameter were performed among 5, 10, 
30, 50, 100, and 200 and for Max_depth among default, 10, 20, and 50.

For ADABoost and XGB, all the hyperparameters were set to default 
except for the n_estimators hyperparameter (the maximum number of 
weak learners to be  combined in ADABoost and is the number of 
boosting round in XGB) and learning_rate (the contribution of each weak 
learner to the final combined model). We  searched for the best n_
estimators hyperparameter among 5, 10, 30, 50, 100, and 200 and 
learning_rate among default, 0.01, 0.1, 0.5, 1, and 10.

The best model, along with its optimal hyperparameters (XGB, see 
Table 3), was retrained on the entire dataset, encompassing all active 
TB and control subjects. This model was then employed on 42 IGRA/
TST + contacts that were labeled as active TB to identify the most 
similar subjects to active TB cases.

3 Results

3.1 Differential expression analysis to 
compare TB subgroups

A differential gene expression analysis was performed using 
pairwise comparisons between experimental groups and found 269 
DE genes between ATB and control groups (Figures  2A,B; 
Supplementary Table S1), 294 genes between ATB and IGRA/
TST + contacts (Figures  2A,C; Supplementary Table S2), 185 DE 
genes between ATB patients and contacts (Figures  2A,D; 
Supplementary Table S3), 0 DE gene between IGRA/TST + contact 
and controls (Figure 2A), 1 DE gene between IGRA/TST + contacts 
and contacts (Figure 2A; Supplementary Table S4), and 7 DE genes 
between contacts and control samples (Figure  2A; 
Supplementary Table S5).

As shown in the Venn diagram (Figure 2E), TB signatures derived 
from a comparison between ATB, controls, IGRA/TST + contacts, and 
contact subjects have 81 genes in common (Supplementary Table S6).

Since all contact populations belong to the Singaporean cohort, to 
obtain a comprehensive list of dysregulated genes between contacts 
and control individuals and mitigate potential batch effects, a 
differential expression gene analysis was conducted exclusively on 
individuals from this country. Supplementary Table S7 shows 126 DE 
genes obtained where only contacts and control individuals from 
Singapore were compared. The global ANOVA-style comparison 
across all experimental groups identified genes with significant 
differences in expression (FDR < 0.01), supporting the presence of 
extensive transcriptional variation across conditions. To prioritize 
high-confidence findings, we applied additional filters: F-statistic > 
30,000 and AveExpr > 5. This resulted in a focused set of 367 genes, 
which are reported in Supplementary Table S8.

Pathway enrichment analysis of the 367 genes revealed enrichment 
in multiple immune- and signaling-related pathways. Notably, several 
pathways related to interleukin signaling (e.g., IL-12, TGF-beta, and 
interleukins), MHC antigen presentation, MAPK signaling cascades, 
JAK–STAT signaling, WNT and RAF kinase pathways, and viral and 
parasite infections (e.g., HIV, SARS-CoV, and Leishmania) were 
significantly represented. These results highlight that the observed 
transcriptional variation across experimental groups is associated with 
key immune regulatory and host–pathogen interaction pathways, 

TABLE 2 Summary of inclusion and exclusion criteria applied in the original studies for each experimental group.

Group Inclusion criteria Exclusion criteria

Active tuberculosis (ATB) 

(PRJEB31975, PRJNA595691, 

PRJNA798683, and 

PRJNA352062)

Clinically diagnosed and 

microbiologically confirmed TB

Age < 18, pregnant women, diabetes, requiring chemotherapy, co-infected with HIV, having received 

anti-TB treatment recently, and previous TB diagnosis

IGRA/TST + contacts 

(PRJEB31975)

Healthy people exposed to a 

pulmonary microbiologically 

confirmed TB index case

Age < 18, pregnant women diabetes, requiring chemotherapy, co-infected with HIV, previous TB 

diagnosis, previous positive TST/IGRA documented, previous old healed lesion on chest radiography, 

recent (<3 months) vaccination with live-attenuated strains, any other active infection during the 

previous month, IGRA result indeterminate and having received anti-TB treatment before

Contacts (PRJNA595691) Close household contact of 

patients with smear positive 

pulmonary TB

Age < 18, pregnant women, diabetes, requiring chemotherapy, co-infected with HIV, having received 

anti-TB treatment recently, having no evidence of active clinical TB, IGRA result indeterminate, and 

past history of TB

Controls (PRJEB31975,PRJNA

595691,PRJNA352062)

Age < 18, pregnant women, diabetes, requiring chemotherapy, co-infected with HIV, sign of TB and 

other active infections, having received anti-TB treatment, and past history of TB
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further supporting the biological relevance of the group differences. 
A list of top enriched pathways is provided in Supplementary Table S9.

3.2 Biological processes involved in TB

Pathway analyses revealed significant differences in biological 
processes between ATB and controls, IGRA/TST + contacts, and 
contacts. These pathways include neutrophil degranulation, immune 
system, antimicrobial peptides, complement cascade, extracellular 
matrix organization, and other biological processes related to host 
response against TB infection (Figures 3A–C) (Supplementary Tables 
S10–S12).

Neutrophil degranulation, immune system, and antimicrobial 
peptide-related genes are also significantly enriched among 81 TB 
common signatures (Supplementary Table S12).

Supplementary Table S13 shows exclusively biological processes 
involved in contacts for Singaporean participants.

3.3 Binary classification correctly 
distinguished TB patients from control 
subjects from different countries and 
reduced TB-specific signatures

To investigate whether the blood transcriptome harbors sufficient 
information to discern TB patients from control cases, we conducted 

a binary classification workflow (Figure 1). As shown in Figure 1, after 
preprocessing data (discarding non-informative transcripts and 
outlier subjects), the data containing TB patients and controls from 
diverse geographical regions entered an evaluation loop. During 
5-fold cross-validation, the dataset was partitioned into sub-training 
and validation sets. Each fold involved training a model with a specific 
set of hyperparameters on the sub-training data and subsequently 
evaluating its performance using the validation data. All three 
algorithms with perfect performance discerned two groups. Table 3 
shows the F1 score for each algorithm using the best combination of 
hyperparameters found by the grid search method when the models 
were tested with validation data. The model with the highest F1 score 
was chosen as the best model. This XGB-based model was then 
retrained on the complete training set. This approach resulted in 
reducing the initial set of features from 269 DE genes to 99 important 
features, which were then used to access the label of the IGRA/
TST + contacts. The final model identified 11 of 42 (26%) of IGRA/
TST + contacts (4 of 15 subjects from Mozambique and 7 of 27 
subjects from Spain) with similar transcriptome profiles of TB patients 
(TB-like) and 31 of 42 (74%) of IGRA/TST + contacts (11 of 15 
subjects from Mozambique and 20 of 27 subjects from Spain) with 
similar expression profiles to controls (No TB-like).

The 99 features ranked based on the prediction power using the 
feature_importances attribute from the sklearn package 
(Supplementary Table S14). Supplementary Table S15 shows pathway 
enrichment for 99 features.

Clustering analysis based on the 99-gene signature provided 
additional insights into TB subjects, the TB-like group, and contacts 
(see Supplementary data).

3.4 Gene set enrichment analysis (GSEA) 
discerns IGRA/TST+ contacts resembling 
TB patients (TB-like group)

To explore the gene enrichment patterns in the IGRA/TST+ 
contacts that showed similar blood profiles to TB patients (TB-like) 
versus those classified as No TB-like, we conducted GSEA using the H 
collection from the Molecular Signatures Database (MSigDB) 
(consisting of 50 gene sets). The results indicated that 16 gene sets were 
significantly upregulated in the TB-like group, with a false discovery rate 
(FDR) of less than 25% and a nominal p-value of less than 5%. The FDR 
threshold was selected in accordance with the GSEA user guide 
(Subramanian et  al., 2005), which recommends this cutoff for 
exploratory analyses involving phenotype permutations. This level 
balances the risk of false positives and maintains adequate sensitivity to 
identify biologically relevant gene sets that merit further investigation. 
The significantly upregulated gene sets include those that are involved in 
host immune responses such as IL6_JAK_STAT3_SIGNALING, 
INTERFERON_GAMMA_RESPONSE, TNFA_SIGNALING_VIA_
NFKB, INTERFERON_ALPHA_RESPONSE, INFLAMMATORY_
RESPONSE, and COMPLEMENT (Supplementary Table S16, see gene 
names along with their corresponding identifiers for each gene set in 
Supplementary Tables S17–S22). In contrast, no gene sets were 
significantly enriched in the No TB-like group.

Furthermore, applying the previously published 16-gene signature 
for progression to TB by Zak et al. (2016) and the 22-signature (out of 
27) discriminating against TBI from TB by Kaforou et al. (2013) shows 

FIGURE 1

Machine learning workflow for TB classification. After standardizing 
the dataset and removing non-informative transcripts, the data were 
split into sub-train and validation sets. Decision tree-based 
algorithms, including random forests (RF), adaptive boosting 
(ADAboost), and XGBoost (XGB), were employed for binary 
classification to distinguish active TB and control cases based on 
their differentiating DEGs. The best algorithm and hyperparameters 
were found using a grid search with 5-fold cross-validation to 
maximize F-measure. The optimal model was retrained on the entire 
dataset and identified informative features for classification. 
Subsequently, the trained model was applied to IGRA/TST + contacts 
labeled as active TB to access the labels and identify IGRA/
TST + contacts such as active TB cases.
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high enrichment for TB-like with respect to the No TB-like group, as 
shown in Figure 4, indicating different profiles in the two groups of 
IGRA/TST + contacts (TB-like vs. No TB-like). These gene sets did 
not show significant enrichment when contacts were compared to the 
controls. However, as shown in Supplementary Table S23, some genes 
among the 16-Zak signature were slightly upregulated in contacts with 
respect to controls.

3.5 Validation of the model and 10 top 
features using an independent dataset

A total of 90 TB subjects and 20 healthy controls from the publicly 
available dataset PRJNA352062 were subjected to differential gene 
expression analysis (see Methods). The analysis identified 450 
differentially expressed genes, including 336 upregulated and 114 
downregulated genes (Supplementary Table S24).

The dataset was preprocessed following the methodology applied 
to the training set to remove non-informative genes and outlier 
subjects. During this process, five subjects (two healthy controls and 
three TB patients) were identified as outliers and excluded from the 
study. The XGBoost algorithm was then retrained on the complete 
training dataset using the top 10 features (BATF2, FAM20A, FBLN2, 
AK5, VAMP5, MMP8, KLHDC8B, LINC00402, DEFA3, and GBP6) 
to reduce the number of predictive features for clinical application. 
The model was subsequently evaluated on the independent 
validation dataset.

To ensure robust model performance, testing was conducted 
across five iterations. Each iteration included all healthy control 
subjects and a subset of TB subjects. The results, including the ROC 
and precision–recall curves, along with the individual AUCs from 
each iteration, mean values, and 95% confidence intervals, are 
presented in Figure 5.

4 Discussion

Tuberculosis (TB) remains a global health challenge, and there is 
increasing interest in the accuracy and scalability of transcriptomic 
signatures to diagnose TB across diverse settings (Mulenga et al., 2020; 
Blankley et al., 2014; Singhania et al., 2018b). In this study, we utilized 
diverse public datasets from several countries including Spain, 
Mozambique, Singapore, Indonesia, and South Africa to improve the 
discrimination between active TB and control subjects and identify 
contacts with positive immunoreactivity who have TB-like blood 
profiles. Our initial comparisons involved TB patients, IGRA/
TST + contacts, contacts, and control groups using RNA-seq analysis.

We used the term IGRA/TST + instead of the routine 
nomenclature “latent TB” to emphasize that a positive immune 
response, such as from IGRA or TST, does not necessarily indicate a 
TB infection. This change in terminology reflects the evolving 
understanding of TB pathogenesis in which immunoreactivity may 
indicate past exposure or infection clearance, rather than necessarily 
ongoing latent infection. Our gene expression and pathway analysis 
further confirmed this new classification. Comparing active TB 
patients with controls and IGRA/TST+ contacts showed that controls 
and contacts displayed remarkably similar blood profiles. This 
suggests that many of the IGRA/TST + individuals either never had 
an active infection or had successfully cleared it. This was further 
re-confirmed by labeling assessment using a trained model, which 
showed that only 26% of IGRA/TST + subjects were identified to have 
similar blood profiles to active TB (TB-like group).

Our integrative analysis of differentially expressed genes identified 
a 269-gene signature that distinguishes active TB from controls. This 
signature includes key genes such as BATF2, ANKRD22, GBP1, 
GBP5, FCGR1A, FCGR1BP, SEPTIN4, SERPING1, ETV7, SCARF1, 
GBP2, and APOL1, which align with previously reported TB-related 
signatures (Zak et al., 2016; Kaforou et al., 2013; Mulenga et al., 2020).

In our TB cohort, we  also observed an upregulation of 
inflammatory markers such as S100A12, S100A8, S100A9, and RETN, 
which are associated with myeloid cell accumulation and inflammatory 
monocyte activity in TB (Blankley et al., 2014; Singhania et al., 2018b; 
Darboe et al., 2018; Roe et al., 2016). Furthermore, we identified an 
upregulation of TCN1 and TCN2, involved in cobalamin (vitamin 
B12) transport, suggesting that MTB may enhance its survival by 
increasing vitamin B12 uptake (Estévez et  al., 2020). In addition, 
syndecans (SDC1 and SDC3), which promote bacterial internalization, 
were also upregulated in the TB cohort, supporting previous studies 
(Roe et al., 2020).

While comparisons between contacts and all controls revealed few 
dysregulated genes, a greater number of differentially expressed genes 
(ADM, IFITM2, and IFITM3) were identified when Singaporean 
contacts were compared with controls from the same country, likely 
due to the elimination of potential batch effects (Roe et al., 2016; Roe 
et al., 2020; Zimmermann et al., 2016; Xu et al., 2022; Pan et al., 2017).

Our results highlighted that neutrophil degranulation is a key 
pathway in TB patients, followed by other immune responses such as 
interferon signaling and cytokine signaling, which is consistent with 
previous studies (Estévez et al., 2020; Ranjbar et al., 2015). However, 
pathways involved in bacterial killing, such as neutrophil 
degranulation and antimicrobial peptides, were absent when 
comparing contacts and control subjects from Singapore. This 
suggests that contacts may have initiated immune responses aimed at 
controlling the infection but have not progressed to the later stages 
associated with the active elimination of replicating mycobacteria.

It has been shown that massive long non-coding RNAs (lncRNA) 
play several critical roles in Mtb-induced apoptosis, autophagy of 
macrophages, and the pathogenesis of TB. The Meg3, a significant 
LncRNA, exhibits downregulation when TB patients were compared 
to controls and IGRA/TST + contacts in the current study. The 
decreased expression of this lncRNA has previously been linked to key 
immune responses such as increased cell proliferation, reduced 
apoptosis, and enhanced autophagy in macrophages. Furthermore, it 
has been shown that the knockdown of MEG3  in macrophages 
resulted in the induction of autophagy and enhanced eradication of 

TABLE 3 F1 score for each algorithm using the best combination of 
hyperparameters found by the grid search method when the models 
were tested with validation data.

Algorithms Best hyperparameters F1 score for 
validation set

Adaptive boosting 

(ADAboost)

learning_rate: 0.1, n_estimators: 

200

88%

Random forest (RF) max_depth: 10, n_estimators: 200 93%

XGBoost (XGB) learning_rate: 0.1, n_estimators:200 95%
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intracellular M. bovis BCG (Berry et al., 2010; Behar et al., 2011; Kim 
et al., 2019; Pawar et al., 2016; Almatroudi, 2022).

To identify more specific discriminative signatures, we performed 
binary classification, prioritizing differentially expressed genes 
between all TB patients and controls. Unlike previous studies (Estévez 
et al., 2020), we utilized integrated datasets, enhancing data diversity 
for training, validation, and label prediction. This approach aligns 
with real-world scenarios and supports the development of a robust, 

globally applicable model. Assigning feature importance in our study 
suggested that 99 transcripts of 269 (37%) can discriminate TB cases 
from controls.

The significant enrichment of gene sets involved in key immune 
response mechanisms, such as interferon and inflammatory 
responses in TB-like with respect to No TB-like, supports the 
hypothesis that these individuals could be at high risk of progressing 
to active TB. GSEA further validated the relevance of the previously 

FIGURE 2

Summary of differentially expressed genes (DEGs) in tuberculosis stages. (A) The number of DEGs, both up- and downregulated, related to four 
pairwise comparisons. Volcano plots highlight the most significant genes dysregulated between (B) active TB and control group, (C) active TB and 
IGRA/TST + contacts, and (D) active TB and contacts. (E) A Venn diagram illustrates the overlapping TB signatures among the different comparisons.
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identified gene signatures (by Zak and Kaforou et  al.) in the 
TB-like group.

The observed heterogeneity within TB patients and the TB-like 
group, as revealed through hierarchical clustering using 99 selected 
transcriptomic features, offers deeper insights into the complex and 
diverse nature of TB progression. Interestingly, clustering analysis, 
which performed exclusively on TB patients, showed that some 
individuals exhibited an elevated expression of genes related to 
immune responses and antibacterial activity. These findings suggest 
the potential for personalized treatment strategies and deserve further 
investigation. In addition, MEG3 emerged as one of the most variably 
expressed genes across the cohort, highlighting its potential as a 
biomarker for monitoring TB outcomes—an area that warrants future 
research. Our top 10 ranked features based on their prediction power 
have a remarkable overlap with published TB signatures. These 
features were further evaluated using an independent dataset and 
showed robust prediction performance. This includes BATF2, which 
has the highest predictive score in our analysis to distinguish TB from 
controls (Supplementary Table S15) and is also a component of the 
11-gene signature reported by Darboe et al. (2018) and the 16-gene 
signature by Zak et al. (2016). Moreover, BATF2 was highlighted as a 
potential single gene for discriminating TB from TBI in the study by 
Roe et al. based on its diagnostic value among different settings (Roe 
et al., 2016; Roe et al., 2020). This transcription factor plays a key role 

in TB immunopathology and is upregulated in response to interferon 
signaling, particularly through IFN-γ and interactions with IRF1, 
which mediate macrophage activation and inflammatory responses in 
TB. Its strong predictive power, highlighted by its top ranking in our 
analysis and inclusion in multiple published TB gene signatures, 
suggests that BATF2 could be a key biomarker for tracking disease 
progression and immune responses in TB.

FAM20A, previously reported in 25 Kaforou signatures (Mulenga 
et al., 2020), was identified among the top features. In contrast, FBLN2, 
AK5, and KLHDC8B, although not previously associated with TB, also 
emerged as high-scoring features. These genes have demonstrated 
prognostic value in other diseases, particularly various cancers, and 
may deserve further investigation in the context of TB (Lawrie et al., 
2018). VAMP5 is also present in 25 Kaforou signatures (Kaforou et al., 
2013), and MMP8 showed altered expression in the cohort with TB in 
an integrated dataset (Singh et al., 2024). Next is LINC00402, a long 
non-coding RNA that emerged as one of the top features, suggesting 
a potential role in the TB-related immune response. DEFA3 represents 
a promising biomarker in the fight against tuberculosis, offering 
insights into disease mechanisms and potential new avenues for 
diagnosis and treatment. Its role in the immune response underscores 
the importance of innate immunity in controlling TB infection. It 
provides a foundation for future research and therapeutic development 
(Rivas-Santiago et al., 2006), and the 10th feature is GBP6, which 

FIGURE 3

Pathway analysis. (A) Pathway analysis comparing active TB and control groups. (B) Pathway analysis comparing active TB and IGRA/TST + contacts. 
(C) Pathway analysis comparing active TB and contacts.
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previously linked to TB in 25 Kaforou signatures and Rajan 5-gene 
signature (Mulenga et al., 2020; Rajan et al., 2019).

The identified transcriptomic signature has practical applications 
across multiple stages of TB management. It is valuable for screening 

high-risk individuals, particularly subclinical patients in endemic 
regions, where early detection can prevent progression and reduce 
transmission. These biomarkers also enable treatment monitoring, 
aiding clinicians in evaluating therapy effectiveness, especially in 

FIGURE 4

Enrichment score barplot for TB-like group obtained by gene set enrichment analysis (GSEA) using (A) 16 Zak et al. and (B) 22 out of 27 Kaforou et al. 
TB gene signatures. The genes are ranked from top to bottom based on their fold changes, reflecting the degree of differential expression associated 
with the phenotype.

FIGURE 5

Validation of the model and top 10 features with an independent dataset. (A) ROC curve with confidence interval and individual iterations: The receiver 
operating characteristic (ROC) curves illustrate the performance of the classification model across five iterations of TB subsampling. Each curve 
corresponds to a subsampling, displaying the true-positive rate (TPR) against the false-positive rate (FPR). The dashed black diagonal line represents 
the random chance baseline. The blue curve represents the mean ROC across iterations, with the shaded blue region denoting the 95% confidence 
interval (CI) for the mean ROC. The area under the curve (AUC) for each iteration and the mean AUC value with 95% CI are annotated in the legend. 
(B) Precision–recall curve with confidence interval and individual iterations: The precision–recall (PR) curves evaluate the model’s precision (positive 
predictive value) against recall (sensitivity) for five TB subsampling iterations. Each curve represents an individual subsampling, with the green curve 
depicting the mean PR curve. The shaded green region highlights the 95% confidence interval (CI) for the mean PR curve. The area under the curve 
(AUC) for precision–recall for each iteration and the mean PR AUC with 95% CI are annotated in the legend.
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multidrug-resistant TB (MDR-TB) cases. In addition, the signature 
could inform prevention strategies in at-risk populations, such as 
those with TB infection or immunosuppression, enabling targeted 
interventions and efficient resource allocation.

An advantage of this study lies in the integration of multiple 
complementary approaches, including differential gene expression 
analysis, machine learning-based classification, feature selection, 
and unsupervised clustering. Together, these techniques enabled 
higher resolution characterization of TB-associated transcriptomic 
profiles. This integrative framework revealed subtle subgroup 
differences that may be  overlooked using conventional gene 
expression analyses alone. Moreover, the relatively large and 
geographically diverse sample size increased statistical power, while 
the application of batch effect correction ensured consistency and 
reliability across datasets. However, relying on publicly available 
datasets limited access to biological samples and complete metadata 
such as immunoreactivity results, thereby restricting the ability to 
correlate findings with clinical outcomes and to perform more 
detailed data stratification. For instance, tracking TB-like individuals 
with profiles that resemble active TB could provide insights into 
early disease stages or progression risk. Future studies with complete 
metadata and longitudinal analyses are necessary to validate these 
findings and refine their clinical applicability.

In conclusion, our study underscores the potential of integrative 
blood transcriptome analysis for improving TB diagnosis and risk 
stratification. The identified gene signatures offer valuable candidates 
for further validation and development of targeted diagnostic and 
therapeutic interventions. By enhancing our understanding of TB 
pathogenesis and progression, this research contributes to the global 
effort to combat TB and reduce its impact on public health.
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